【考点7】概率

合集下载

山东初二初中数学期末考试带答案解析

山东初二初中数学期末考试带答案解析

山东初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列实数中,无理数是A.B.C.D.0.10100100012.-64的立方根是A.-8B.±8C.±4D.-43.下列图形:其中是轴对称图形的共有A.1个B.2个C.3个D.4个4.向如图所示的等边三角形区域扔沙包(区域中每一个小等边三角形除颜色外完全相同),假设沙包击中每一个小等边三角形是等可能的,扔沙包一次,击中阴影区域的概率等于A.B.C.D.5.下列各组数中,是勾股数的一组为A.3,4,25B.6,8,10C.5,12,17D.8,7,66.下列各式成立的是A.=9B.="2"C.=±5D.=67.若等腰三角形的一角为100°,则它的底角是A.20°B.40°C.60°D.80°8.一次函数y=-2x+4的图象与x轴的交点坐标是A.(2,0)B.(0,2)C.(0,4)D.(4,0)9.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=12,BD=8,则点D到AB的距离是A.6B.4C.3D.210.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是A B C D11.如图,在Rt△ABC中,∠B=90°,AB=8,BC=4,斜边AC的垂直平分线分别交AB、AC于点E、O,连接CE,则CE的长为A. 5B. 6C. 7D. 4.512.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路,若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是A.汽车在高速公路上行驶速度为100km/hB.乡村公路总长为90kmC.汽车在乡村公路上行驶速度为60km/hD.该记者在出发后4.5h到达采访地二、填空题1.49的算术平方根是_______。

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)(解析版)

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)(解析版)

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)【考点分析】①转移概率:对于有限状态集合S ,定义:)|(1,i n j n j i X X P P ==+=为从状态i 到状态j 的转移概率.②马尔可夫链:若ij i n j n i i n i n j n P X X P X X X X P n ==⋅⋅⋅==+==-==+-)|(),,,|(101101,即未来状态1+n X 只受当前状态n X 的影响,与之前的021,,,X X X n n ⋅⋅⋅--无关.③完备事件组:如果样本空间Ω中一组事件组},,{21n A A A ⋅⋅⋅符合下列两个条件:(1)n j i j i A A j i ⋅⋅⋅=≠∅=⋂,2,1,,,;(2)Ω==k nk A 1 .则称},,{21n A A A ⋅⋅⋅是Ω的一个完备事件组,也称是Ω的一个分割.④全概率公式: 设},,{21n A A A ⋅⋅⋅是一个完备事件组,则有)|()()(1knk kA B P A P B P ∑==⑤一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=-==+-==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P 另一方面,由于αβ==+==+-==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11-+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+-++=i i i i cP bP aP P【精选例题】【例1】(2023·新高考1卷)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .解析:(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭.(3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,故52()11853n n E Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【例2】某公司为激励员工,在年会活动中,该公司的()3n n ≥位员工通过摸球游戏抽奖,其游戏规则为:每位员工前面都有1个暗盒,第1个暗盒里有3个红球与1个白球.其余暗盒里都恰有2个红球与1个白球,这些球的形状大小都完全相同.第1位员工从第1个暗盒里取出1个球,并将这个球放入第2个暗盒里,第2位员工再从第2个暗盒里面取出1个球并放入第3个暗盒里,依次类推,第n 1-位员工再从第n 1-个暗盒4.马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第1n +次状态的概率分布只跟第n 次的状态有关,与第1,2,3,n n n ---⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行()*N n n ∈次操作后,记甲盒子中黑球个数为n X ,甲盒中恰有1个黑球的概率为n a ,恰有2个黑球的概率为n b .(1)求1X 的分布列;(2)求数列{}n a 的通项公式;(3)求n X 的期望.解析:(1)由题可知,1X 的可能取值为0,1,2.由相互独立事件概率乘法公式可知:()11220339P X ==⨯=;()111225133339P X ==⨯+⨯=;()12122339P X ==⨯=,故1X 的分布列如下表:1X 012P295929(2)由全概率公式可知:()11n P X +=()()()()11111212n n n n n n P X P X X P X P X X ++==⋅==+=⋅==()()1010n n n P X P X X ++=⋅==()()()11222211210333333n n n P X P X P X ⎛⎫⎛⎫⎛⎫=⨯+⨯=+⨯=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()522120933n n n P X P X P X ==+=+=,即:()15221933n n n n n a a b a b +=++--,所以11293n n a a +=-+,所以1313595n n a a +⎛⎫-=-- ⎪⎝⎭,又()11519a P X ===,所以,数列35n a ⎧⎫-⎨⎬⎩⎭为以132545a -=-为首项,以19-为公比的等比数列,所以132121545959n n n a -⎛⎫⎛⎫-=-⋅-=⋅- ⎪⎪⎝⎭⎝⎭,即:321559nn a ⎛⎫=+⋅- ⎪⎝⎭.(3)由全概率公式可得:()12n P X +=()()()()11121222n n n n n n P X P X X P X P X X ++==⋅==+=⋅==()()1020n n n P X P X X ++=⋅==()()()21111200333n n n P X P X P X ⎛⎫⎛⎫=⨯⋅=+⨯⋅=+⋅= ⎪ ⎪⎝⎭⎝⎭,即:12193n n n b a b +=+,又321559nn a ⎛⎫=+⋅- ⎪⎝⎭,所以11232139559n n n b b +⎛⎫⎛⎫=++-⎪ ⎪ ⎪⎝⎭⎝⎭,所以11111]1111[5593559n nn n b b ++⎛⎫⎛⎫-+-=-+- ⎪⎪⎝⎭⎝⎭,又()11229b P X ===,所以111121105599545b ⎛⎫-+⨯-=--= ⎪⎝⎭,所以1110559n n b ⎛⎫-+-= ⎪⎝⎭,所以111559nn b ⎛⎫=-- ⎪⎝⎭,所以()()20121n n n n n n n E X a b a b a b =++--=+=.5.足球是一项大众喜爱的运动.2022卡塔尔世界杯揭幕战将在2022年11月21日打响,决赛定于12月18日晚进行,全程为期28天.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第n 次触球者是甲的概率记为n P ,即11P =.(1)求3P (直接写出结果即可);(2)证明:数列14n P ⎧⎫-⎨⎬⎩⎭为等比数列,并判断第19次与第20次触球者是甲的概率的大小.解析:(1)由题意得:第二次触球者为乙,丙,丁中的一个,第二次触球者传给包括甲的三人中的一人,故传给甲的概率为13,故313P =.(2)第n 次触球者是甲的概率记为n P ,则当2n ≥时,第1n -次触球者是甲的概率为1n P -,第1n -次触球者不是甲的概率为11n P --,则()()1111101133n n n n P P P P ---=⋅+-⋅=-,从而1111434n n P P -⎛⎫-=-- ⎪⎝⎭,又11344P -=,14n P ⎧⎫∴-⎨⎬⎩⎭是以34为首项,公比为13-的等比数列. 则1311434n n P -⎛⎫=⨯-+ ⎪⎝⎭,∴181931114344P ⎛⎫=⨯-+> ⎪⎝⎭,192031114344P ⎛⎫=⨯-+< ⎪⎝⎭,1920P P >,故第19次触球者是甲的概率大6.(2019全国1卷).为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i )证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii )求4p ,并根据4p 的值解释这种试验方案的合理性.解析:(1)由题意可知X 所有可能的取值为:1-,0,1()()11PX αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:X1-01P()1αβ-()()11αβαβ+--()1αβ-(2)0.5α= ,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7ii i i p ap bp cp i -+=++=⋅⋅⋅ ;即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅;()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i ii i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=-()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.。

高中数学7-1条件概率与全概率公式7-1-2全概率公式新人教A版选择性必修第三册

高中数学7-1条件概率与全概率公式7-1-2全概率公式新人教A版选择性必修第三册

=P(APi)P(B(B) |Ai)=
P(Ai)P(B|Ai)
n
,i=1,2,…,n.
P(Ak)P(B|Ak)
k=1
(2)在贝叶斯公式中,P(Ai)和 P(Ai |B)分别称为原因的先验概率和后验 概率.
【预习自测】
全概率公式与贝叶斯公式的联系与区别是什么? 提示:两者的最大不同在处理的对象不同,其中全概率公式用来计 算复杂事件的概率,而贝叶斯公式是用来计算简单条件下发生的复杂事 件,也就是说,全概率公式是计算普通概率的,贝叶斯公式是用来计算 条件概率的.
由全概率公式,得
P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)·P(B3)=13×15+14×12+112 ×130=1630.
(2)所求概率为 P(B2|A),由贝叶斯公式,得 P(B2|A)=P(A|PB(2A)P) (B2)=141×321=2165.
60
P(Ai)(i=1,2,…,n)是在没有进一步信息(不知道事件B是否发生) 的情况下,人们对诸事件发生可能性大小的认识.当有了新的信息(知 道B发生),人们对诸事件发生可能性大小P(Ai|B)有了新的估计.贝叶斯 公式从数量上刻画了这种变化.
3.(题型2)李老师一家要外出游玩几天,家里有一盆花交给邻居帮 忙照顾,如果这几天内邻居记得浇水,那么花存活的概率为0.8,如果这 几天邻居忘记浇水,那么花存活的概率为0.3.假设李老师对邻居不了解, 即可以认为邻居记得和忘记浇水的概率均为0.5,几天后李老师回来发现 花还活着,则邻居记得浇水的概率为________.
【答案】181
【解析】设 B 表示“邻居记得浇水”,-B 表示“邻居忘记浇水”,A 表示“花还活着”,由贝叶斯公式,得 P(B|A)=P(B)P(AP|B(B)+)PP(A(-|BB))P(A|-B ) =0.5×00..58×+00..85×0.3=181.

第七课 概率问题

第七课 概率问题

如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,•事件
的图象上的概率一定大
的倍数的概率
江苏扬州,
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方
法,求出所选两名留守儿童来自同一个班级的概率.
2011
其中的一项实验,由学生自己抽签确定做哪项试验.在这次测试
博思教育中小学个性化辅导专家
东城校区:东城育兴路劳动局斜对面南城校区:南城新基路口国美对面电话:22291990。

高中数学复习课第7课时概率课件

高中数学复习课第7课时概率课件
(1)将所求事件转化为几个彼此互斥的事件的和事件;
(2)将一个较复杂的事件转化为几个互斥事件的和事件,需要
分类较多,而其对立面的分类较少时,可考虑利用对立事件的
概率公式,即“正难则反”.它常用来求“至少……”或“至多……”
型事件的概率.
【变式训练4】 某商场进行有奖销售,购满100元商品得1张奖
券,多购多得.1 000张奖券为一个开奖单位,每个开奖单位设特
等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等
奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券中奖的概率;
(3)1张奖券不中特等奖且不中一等奖的概率.


解:(1)P(A)= ,P(B)=
故事件


= ,P(C)=
的个数是有限的,那么称样本空间Ω为有限样本空间.
3.什么是随机事件,必然事件,不可能事件?
提示:一般地,把试验E的样本空间Ω的子集称为E的随机事件,
简称事件,常用A,B,C等表示.样本空间Ω是其自身的子集,因
此Ω也是一个事件;又因为它包含所有的样本点,每次试验无
论哪个样本点ω出现,Ω都必然发生,因此称Ω为必然事件.空
互斥事件与对立事件的判断方法:
(1)利用基本概念:①互斥事件不可能同时发生;②对立事件首
先是互斥事件,且必有一个发生.
(2)利用集合的观点:设事件A,B所包含的样本点组成的集合
表示分别是A,B.
①事件A与B互斥,即A∩B=⌀;
②事件A与B对立,即A∩B=⌀,且A∪B=Ω(Ω为样本空间),也即
A=∁ΩB或B=∁ΩA.
)
A.① B.②④ C.③ D.①③

小学奥数:7-9-1 概率.学生版

小学奥数:7-9-1 概率.学生版

7-9-1.概率教学目标“统计与概率”主要研究现实生活中的数据和客观世界中的随机现象,兼有应用性和趣味性,其内容及延伸贯穿于初等数学到高等数学,因此成为小学数学中新增内容.1.能准确判断事件发生的等可能性以及游戏规则的公平性问题.2.运用排列组合知识和枚举等计数方法求解概率问题.3.理解和运用概率性质进行概率的运算.知识要点一、概率的古典定义如果一个试验满足两条:⑴试验只有有限个基本结果;⑵试验的每个基本结果出现的可能性是一样的.这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()m P A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中所涉及的概率都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.二、对立事件对立事件的含义:两个事件在任何一次试验中有且仅有一个发生,那么这两个事件叫作对立事件如果事件A 和B 为对立事件(互斥事件),那么A 或B 中之一发生的概率等于事件A 发生的概率与事件B 发生的概率之和,为1,即:()()1P A P B +=.三、相互独立事件事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件.如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即:()()()P A B P A P B ⋅=⋅.例题精讲模块一、概率的意义【例1】气象台预报“本市明天降雨概率是80%”.对此信息,下列说法中正确的是________.①本市明天将有80%的地区降水.②本市明天将有80%的时间降水.③明天肯定下雨.④明天降水的可能性比较大.【考点】概率的意义【难度】1星【题型】填空【关键词】希望杯,决赛【解析】降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间.80%的概率也不是指肯定下雨,100%的概率才是肯定下雨.80%的概率是说明有比较大的可能性下雨.【答案】④【例2】约翰与汤姆掷硬币,约翰掷两次,汤姆掷两次,约翰掷两次,……,这样轮流掷下去.若约翰连续两次掷得的结果相同,则记1分,否则记0分.若汤姆连续两次掷得的结果中至少有1次硬币的正面向上,则记1分,否则记0分.谁先记满10分谁就赢.赢的可能性较大(请填汤姆或约翰).【考点】概率的意义【难度】2星【题型】填空【关键词】走美杯,5年级,决赛,第7题【解析】连续扔两次硬币可能出现的情况有(正,正);(正,反);(反,正);(反,反)共四种情况。

2022年甘肃省兰州市中考数学试题(解析版)

2022年甘肃省兰州市中考数学试题(解析版)

兰州市2022 年中考试题数学〔A〕本卷须知:1.本试卷总分值150 分,考试用时120 分钟。

2.考生必须将姓名、准考证号、考场、座位号等个人信息填〔涂〕在答题卡上。

3.考生务必将答案直接填〔涂〕写在答题卡的相应位置上。

一、选择题:本大题共15 小题,每题4 分,共60 分,在每题给出的四个选项中仅有一项为哪一项符合题意的。

1.如图是由5 个大小相同的正方体组成的几何体,那么该几何体的主视图是〔〕。

〔A〕〔B〕〔C〕〔D〕【答案】A【解析】主视图是从正面看到的图形。

从正面看有两行,上面一行最左边有一个正方形,下面一行有三个正方形,所以答案选A。

【考点】简单组合体的三视图2.反比例函数的图像在〔〕。

〔A〕第一、二象限〔B〕第一、三象限〔C〕第二、三象限〔D〕第二、四象限【答案】B【解析】反比例函数的图象受到k的影响,当k 大于0 时,图象位于第一、三象限,当k小于0 时,图象位于第二、四象限,此题中k =2 大于0,图象位于第一、三象限,所以答案选B。

【考点】反比例函数的系数k 与图象的关系3.△ABC ∽△DEF,假设△ABC与△DEF的相似比为3/4,那么△ABC与△DEF对应中线的比为〔〕。

〔A〕3/4〔B〕4/3〔C〕9/16〔D〕16/9【答案】A【解析】根据相似三角形的性质,相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比,此题中相似三角形的相似比为3/4,即对应中线的比为3/4,所以答案选A。

【考点】相似三角形的性质4.在Rt △ABC中,∠C=90°,sinA=3/5,BC=6,那么AB=〔〕。

〔A〕4 〔B〕6 〔C〕8 〔D〕10【答案】D【解析】在Rt △ABC中,sinA=BC/AB=6/AB=3/5,解得AB=10,所以答案选D。

【考点】三角函数的运用5.一元二次方程的根的情况〔〕。

〔A〕有一个实数根〔B〕有两个相等的实数根〔C〕有两个不相等的实数根〔D〕没有实数根【答案】B【解析】根据题目,∆==0, 判断得方程有两个相等的实数根,所以答案选B。

2021_2022学年新教材高中数学第7章概率3频率与概率课件北师大版必修第一册

2021_2022学年新教材高中数学第7章概率3频率与概率课件北师大版必修第一册

A.9199
B.1
1 000
C.1909090
D.12
【解析】选 D.抛掷一枚质地均匀的硬币,只考虑第 999 次,有两 种结果:正面朝上,反面朝上,每种结果等可能出现,故所求概率为 1 2.
1.概率意义下的“可能性”是大量随机现象的客观规律,与我 们平时所说的“可能”“估计”是不同的,也就是说,单独一次结果 的不肯定性与积累结果的规律性,才是概率意义下的“可能性”,而 日常生活中的“可能”“估计”侧重于某次的偶然性.
【解析】(1)一对夫妇生两小孩可能是(男,男),(男,女),(女, 男),(女,女),所以 A 不正确;中奖概率为 0.2 是说中奖的可能性为 0.2,当摸 5 张票时,可能都中奖,也可能中一张、两张、三张、四张, 或者都不中奖,所以 B 不正确;10 张票中有 1 张奖票,10 人去摸, 每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是 0.1, 所以 C 不正确;D 正确.
表情7-7是20世纪波兰的一些统计资料,(结果精确度 0.0001).
从表7-7可以看出,它们与拉普拉斯得到的结果非常相近.
【概率】 在相同条件下,大量重复进行同一试验时,随机事件A发
生的频率通常会在某个常数附近摆动,即随机事件A发生的频率 具有稳定性.这时,把这个常数叫作随机事件A的概率,记作P(A).
【解析】选 D.概率是描述事件发生的可能性大小.
2.事件 Aห้องสมุดไป่ตู้发生的概率接近于 0,则( B )
A.事件 A 不可能发生 B.事件 A 也可能发生 C.事件 A 一定发生 D.事件 A 发生的可能性很大
3.从一批准备出厂的电视机中随机抽取 10 台进行质量检查,其 中有 1 台是次品,若用 C 表示抽到次品这一事件,则对 C 的说法正
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年数学高考试题分类解析【考点7】概率一、选择题1.(浙江理9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A.15 B.25C.35D45【答案】B2.(四川理1)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5)4 [19.5,23.5)9 [23.5,27.5)18 [27.5,31.5)1l [31.5,35.5)12 [35.5.39.5)7 [39.5,43.5)3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A.16 B.13C.12D.23【答案】B【解析】从31.5到43.5共有22,所以221663P==。

3.(陕西理10)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是A.136B.19C.536D.16【答案】D4.(全国新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)13(B)12(C)23(D)34【答案】A5.(辽宁理5)从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=(A)18(B)14(C)25(D)12【答案】B6.(湖北理5)已知随机变量ξ服从正态分布()22N ,a,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B .0.4C .0.3D .0.2【答案】C7.(湖北理7)如图,用K 、1A 、2A 三类不同的元件连接成一个系统。

当K 正常工作且1A 、2A 至少有一个正常工作时,系统正常工作,已知K 、1A 、2A 正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A .0.960B .0.864C .0.720D .0.576【答案】B8.(广东理6)甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34【答案】D9.(福建理4)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12 D .23【答案】C 二、填空题10.(湖北理12)在30瓶饮料中,有3瓶已过了保质期。

从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期饮料的概率为 。

(结果用最简分数表示)【答案】2814511.(福建理13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。

若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。

【答案】3512.(浙江理15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙丙公司面试的概率为p ,且三个公司是否让其面试是相互独立的。

记X 为该毕业生得到面试得公司个数。

若1(0)12P X ==,则随机变量X 的数学期望()E X =【答案】5313.(湖南理15)如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。

将一颗豆子随 机地扔到该图内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事 件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )= _____________; (2)P (B|A )= .【答案】(1)21,(2)4π14.(上海理9)马老师从课本上抄录一个随机变量ε的概率分布律如下表 请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。

据此,小牛给出了正确答案E ε= 。

【答案】215.(重庆理13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率__________【答案】113216.(上海理12)随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。

【答案】0.98517.(江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为?!?321P(ε=x )x【答案】131618.(江苏5)5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______【答案】31三、解答题19.后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。

(Ⅰ)求当天商品不进货的概率;(Ⅱ)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期型。

解(I )P (“当天商品不进货”)P =(“当天商品销售量为0件”)P +(“当天商品销售量为1件”).103205201=+=(Ⅱ)由题意知,X 的可能取值为2,3.P X P ==)2((“当天商品销售量为1件”);41205==P X P ==)3((“当天商品销售量为0件”)P +(“当天商品销售量为2件”)P +(“当天商品销售量为3件”).43205209201=++=故X 的分布列为X 的数学期望为.411433412=⨯+⨯=EX20.(安徽理20)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。

现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,,p p p 123,假设,,p p p 123互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。

若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,,q q q 123,其中,,q q q 123是,,p p p 123的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)E X ; (Ⅲ)假定p p p 1231>>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。

解:本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识.解:(I )无论以怎样的顺序派出人员,任务不能被完成的概率都是)1)(1)(1(321p p p ---,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于.)1)(1)(1(1321133221321321p p p p p p p p p p p p p p p +---++=----(II )当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是.23)1)(1(3)1(2212121211q q q q q q q q q EX +--=--+-+=(III )(方法一)由(II )的结论知,当以甲最先、乙次之、丙最后的顺序派人时, .232121p p p p EX +--=根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值. 下面证明:对于321,,p p p 的任意排列321,,q q q ,都有≥+--212123q q q q ,232121p p p p +--……………………(*)事实上,)23()23(21212121p p p p q q q q +---+--=∆.0)]())[(1())((1())(2()()()()(2)()(221211221112221211221121212211≥+-+-≥--+--=-----+-=+--+-=q q p p q q p q q p p q p q p q p q p q p q q p p q p q p即(*)成立.(方法二)(i )可将(II )中所求的EX 改写为,)(312121q q q q q -++-若交换前两人的派出顺序,则变为,)(312121q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减小均值.(ii )也可将(II )中所求的EX 改写为212123q q q q +--,或交换后两人的派出顺序,则变为313123q q q q +--.由此可见,若保持第一个派出的人选不变,当23q q >时,交换后两人的派出顺序也可减小均值.序综合(i )(ii )可知,当),,(),,(321321p p p q q q =时,EX 达到最小. 即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.21.(北京理17)以下茎叶图记录了甲、乙两组个四名同学的植树棵树。

乙组记录中有一个数据模糊,无法确认,在图中以X 表示。

(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望。

(注:方差()()()2222121n s x xxxx xn ⎡⎤=-+-++-⎢⎥⎣⎦ ,其中x 为1x ,2x ,…… n x 的平均数)解:(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为;435410988=+++=x方差为.1611])43510()4359()4358()4358[(4122222=-+-+-+-=s(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。

分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P (Y=17)=.81162=同理可得;41)18(==Y P ;41)19(==Y P .81)21(;41)20(====Y P Y PEY=17×P (Y=17)+18×P (Y=18)+19×P (Y=19)+20×P (Y=20)+21×P (Y=21)=17×81+18×41+19×41+20×41+21×81=1922.(福建理19)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,……,8,其中X ≥5为标准A ,X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 (I )已知甲厂产品的等级系数X1的概率分布列如下所示:且(II )为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 3 46 3 47 5 3 48 5 3 8 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.(III )在(I )、(II )的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.解:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。

相关文档
最新文档