湖南省长沙市麓山国际实验学校2017届九年级上学期第一次限时训练数学试题(附答案)
湖南省长沙市麓山国际实验学校2017届九年级上学期第一次限时训练化学试题(附答案)$717689

麓山国际实验学校2016—2017—1初三第一次限时训练化学试卷总分:100分时间:60分钟一、选择题:(每小题3分,共45分)1.下列是生活中常见的一些现象,其中属于化学变化的是()A.分离液态空气制取氧气B.干冰升华C.酒精挥发D.铁生锈2.下列物质的用途主要利用其化学性质的是()A.氢气用于填充气球B.液氮做制冷剂C.稀有气体做保护气D.铝用于制造导线3.下列物质不属于空气质量指标的是()A.烟尘B.CO2C.O3 D.NO24.化学是一门研究物质组成、结构、性质及其变化规律的基础自然学科,下列领域不是化学所研究的是()A.开发新的游戏软件B.研发治疗癌症的药物C.研究一种耐火材料D.开发新的清洁能源5.下列图示实验操作中正确的是()A.向试管中滴加液体B.给试管中液体加热C.检查装置的气密性D.闻气味6.下列物质的化学式不正确的是()A.氦气He2B.二氧化硫:SO2C.四氧化三铁:Fe3O4D.氧气:O2 7.化学实验过程中要规范操作,注意实验安全。
下列做法中正确的是()A.用嘴吹灭酒精灯的火焰B.加热后的试管立即用水冲洗C.连接仪器时,将橡胶塞用力压入大试管中D.洒在实验台上的酒精失火立即用湿布覆盖8.金秋时节,走在麓山的校园里,我们总能闻到淡淡的桂花香味,这是因为()A.分子的体积和质量都很小B.分子间有一定的间隔C.分子在不断地运动D.分子可以再分9.下列变化不属于氧化反应,但属于化合反应的是()A.石蜡+ 氧气二氧化碳+水B.氧化钙+ 水氢氧化钙C.碱式碳酸铜氧化铜+ 二氧化碳+ 水D.酒精+ 氧气二氧化碳+ 水10.下列关于实验现象的描述,正确的是()A.硫在氧气中燃烧发出明亮的蓝紫色火焰,生成一种无色无味的气体B.细铁丝在空气中燃烧时,火星四射,生成一种黑色固体C.将澄清的石灰水倒入充满二氧化碳的集气瓶中,振荡,澄清石灰水变浑浊D.木炭在氧气中燃烧时,发红光,生成了二氧化碳11.小亮同学用量筒量取液体,量筒放平稳,且面对刻度线,初次仰视液面读数为90mL,倾倒出一部分液体后,又俯视液面读数为40mL,则他实际倒出的液体的体积为()A.小于50mL B.大于50mLC.等于50mL D.无法判断12.下列物质属于前者是纯净物,后者是混合物的是()A.液氧、稀有气体B.纯净的空气、冰水混合C.氢气、五氧化二磷D.蜡烛燃烧后的产物、矿泉水13.下列关于分子、原子的说法,错误的是()A.分子可分,原子不可分B.分子和原子都可以直接构成物质C.分子由原子构成D.氧气和液氧都有助燃性,这是因为相同物质的分子,其化学性质相同14.用排水法收集一瓶人体呼出的气体的操作顺序为()①在水下立即用玻璃片将集气瓶的瓶口盖好,然后取出集气瓶正放在桌上②把盛满水的集气瓶连同玻璃片倒放在水槽中③将集气瓶盛满水,用玻璃片先盖住瓶口的一小部分,然后推动玻璃片将瓶口全部盖住④将饮料管小心地插入集气瓶内,并向集气瓶内缓缓吹气,直到集气瓶内充满呼出的气体A .①②③④B .③②④①C .②③①④D .④③②①15.下列实验指定容器中的水,其解释没有体现水的主要作用的是 ( )二、填空题:(每空2分,文字表达式每个3分,共20分 )16.用适当的符号填空:(1)氮元素___________ (2)五氧化二磷______________17.化学是一门以实验为基础的学科,请写出以下实验操作的目的或原因。
湖南省长沙市麓山国际实验学校初三上入学考试数学试卷及答案

麓山国际实验学校初三入学限时训练数 学 试 卷一、选择题(每小题3分,共30分) 1.下列说法中不正确的是( )A .抛掷一枚硬币,硬币落地时正面朝上是随机事件B .把4个球放入三个抽屉中,其中有一个抽屉中至少有2个球是必然事件C .任意打开七年级下册数学教科书,正好是97页是确定事件D .一个盒子中有白球m 个,红球6个,黑球n 个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m 与n 的和是6 2.一次函数32+-=x y 的图象不经过下列哪个象限( )A .第一象限B .第二象限C . 第三象限D . 第四象限3.用配方法解方程0462=+-x x 时,配方后得的方程为( ) A .5)3(2=+x B .13)3(2-=-xC .5)3(2=-xD .13)3(2=-x4.如图1,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上,∠ADC =54°,则∠BAC 的度数等于( )A .36°B .44°C .46°D .54°5.如图2,PB PA ,为⊙O 的切线,A B ,分别为切点,60APB =∠,点P 到圆心O 的距离2OP =,则⊙O 的半径为( )A .12B .1C .32D .26.小明把如图3所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( ) A .21 B .31 C .41 D .517.已知点M (1,a )和点N (2,b )是一次函数3)2(--=x k y 图象上的两点,若a >b ,则k 的取值范围是( )A .2>kB .0<kC .2<kD .2≤k8.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( )ABOP(图2)(图1)(图3)A .1k >-B .1k <且0k ≠C .1k ≥-且0k ≠D .1k >-且0k ≠9.如图4,直线x y 2=和4+=ax y 相交于点A (m ,3),则不等式42+≥ax x 的解集为( )A .23≥x B .23≤xC .3≥xD . 3≤x 10.如图5是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m 。
长沙市麓山国际实九年级(上)数学试卷及解析

湖南省长沙市麓山国际实验学校九年级(上)限时训练数学试卷一、选择题(每小题3分,共36分)1.(3分)下列函数:xy=1,y=,y=,y=,y=2x2中,是y关于x的反比例函数的有()个.A.1个B.2个C.3个D.4个2.(3分)同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为133.(3分)已知反比例函数y=的图象在每一个象限内,y随x的增大而减小,则()A.m≥5 B.m<5 C.m>5 D.m≤54.(3分)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A.B.C.D.5.(3分)下列四个三角形中,与图中的三角形相似的是()A.B.C.D.6.(3分)如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7 B.7.5 C.8 D.8.57.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.B.C.∠B=∠D D.∠C=∠AED8.(3分)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x﹣2)2+3 C.y=3(x+2)2﹣3 D.y=3(x﹣2)2﹣39.(3分)二次函数y=kx2﹣6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3 D.k≤3且k≠010.(3分)在函数中,自变量x的取值范围是()A.x≥1 B.x<﹣1 C.x≥﹣1且x≠D.x≤﹣111.(3分)已知反比例函数的图象如图,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.12.(3分)如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5D.6二、填空题(每小题3分,共18分)13.(3分)在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别写有1,2,3,4,5这5个数字.小芳从袋中任意摸出一个小球,球面数字的平方根是无理数的概率是.14.(3分)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).15.(3分)在函数y=(a为常数)的图象上三点(﹣1,y1),(﹣,y2),(,y3),则函数值y1、y2、y3的大小关系是.16.(3分)如图,反比例函数y=(x<0)的图象经过点P,则k的值为.17.(3分)已知△ABC与△DEF的相似,它们的相似比是3:4,且△ABC的面积为18cm2,则△DEF的面积为cm2.18.(3分)如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A、P、Q为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ的长为.三、解答题(19-25题每题8分,26题10分共66分)19.(8分)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.20.(8分)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求一次函数解析式及反比例函数的解析式;(2)若一次函数值大于反比例函数值,请求出相应的自变量x的取值范围.21.(8分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.22.(8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?23.(8分)△ABC是一块锐角三角形余料,边BC=180mm,高AD=120mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长是宽的2倍,则边长是多少?24.(8分)如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D 点,OC交AB于E点.(1)求∠D的度数;(2)若CE=3,AD=4,求线段AC的长.25.(8分)如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当:△ADE是等腰三角形时,求AE的长.26.(10分)如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.2015-2016学年湖南省长沙市麓山国际实验学校九年级(上)第一次限时训练数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)(2016秋•岳麓区校级月考)下列函数:xy=1,y=,y=,y=,y=2x2中,是y关于x的反比例函数的有()个.A.1个B.2个C.3个D.4个【解答】解:xy=1,符合反比例函数的定义;y=,属于正比例函数;y=,需要k≠0,y=,该函数不属于反比例函数,y=2x2该函数属于二次函数,故选:A.【点评】本题考查了反比例函数的定义.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式y=(k为常数,k≠0)或y=kx﹣1(k为常数,k ≠0).2.(3分)(2006•永春县)同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为13【解答】解:A、6点+6点=12点,为随机事件,不符合题意;B、例如:1点+1点=2点,为随机事件,不符合题意;C、例如:1点+5点=6点,为随机事件,不符合题意;D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意.故选:D.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.不可能事件是指在一定条件下,一定不发生的事件.3.(3分)(2015秋•长沙校级月考)已知反比例函数y=的图象在每一个象限内,y随x的增大而减小,则()A.m≥5 B.m<5 C.m>5 D.m≤5【解答】解:∵在每个象限内,y随着x的增大而减小,∴5﹣m>0,∴m<5.故选B.【点评】此题主要考查了反比例函数的性质,熟练掌握其性质是解决问题的关键,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限,在每个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每个象限内,y随x的增大而增大.4.(3分)(2015•株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A.B.C.D.【解答】解:画树状图得:∵共有12种等可能的结果,点(a,b)在函数y=图象上的有(3,4),(4,3);∴点(a,b)在函数y=图象上的概率是:=.故选D.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)(2008•江西)下列四个三角形中,与图中的三角形相似的是()A.B.C.D.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.6.(3分)(2011•肇庆)如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7 B.7.5 C.8 D.8.5【解答】解:∵a∥b∥c,∴,∵AC=4,CE=6,BD=3,∴,解得:DF=,∴BF=BD+DF=3+=7.5.故选:B.【点评】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.7.(3分)(2007•海南)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.B.C.∠B=∠D D.∠C=∠AED【解答】解:∵∠1=∠2∴∠DAE=∠BAC∴A,C,D都可判定△ABC∽△ADE选项B中不是夹这两个角的边,所以不相似,故选B.【点评】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.8.(3分)(2012•泰安)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x﹣2)2+3 C.y=3(x+2)2﹣3 D.y=3(x﹣2)2﹣3【解答】解:由“上加下减”的原则可知,将抛物线y=3x2向上平移3个单位所得抛物线的解析式为:y=3x2+3;由“左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3(x+2)2+3.故选A.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数图象平移的法则是解答此题的关键.9.(3分)(2013春•新泰市期中)二次函数y=kx2﹣6x+3的图象与x轴有两个交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3 D.k≤3且k≠0【解答】解:∵二次函数y=kx2﹣6x+3的图象与x轴有两个交点,∴,即,解得k<3且k≠0.故选B.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与△的关系是解答此题的关键.10.(3分)(2010•凉山州)在函数中,自变量x的取值范围是()A.x≥1 B.x<﹣1 C.x≥﹣1且x≠D.x≤﹣1【解答】解:x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.11.(3分)(2016•井研县一模)已知反比例函数的图象如图,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.【解答】解:∵反比例函数图象在第二四象限,∴k<0,∴二次函数图象开口向下,抛物线对称轴为直线x=﹣<0,∵k2>0,∴二次函数图象与y轴的正半轴相交.纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了二次函数图象,反比例函数图象,根据k的取值范围求出二次函数开口方向、对称轴和与y轴的正半轴相交是解题的关键.12.(3分)(2015•绥化)如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5D.6【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为2,所以BE=4.∵△ABC∽△EFB,∴=,即=EF=8.故选B.【点评】本题考查最短路径问题,关键确定何时路径最短,然后运用勾股定理和相似三角形的性质求得解.二、填空题(每小题3分,共18分)13.(3分)(2008•益阳)在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别写有1,2,3,4,5这5个数字.小芳从袋中任意摸出一个小球,球面数字的平方根是无理数的概率是.【解答】解:因为从装有十个除数字外其它完全相同的小球任意摸出一个小球共5种情况,其中有3种情况是球面数字的平方根是无理数,故其概率是=.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据以上数据可以估计,该玉米种子发芽的概率约为0.8(精确到0.1).【解答】解:∵种子粒数5000粒时,种子发芽的频率趋近于0.801,∴估计种子发芽的概率为0.801,精确到0.1,即为0.8.故本题答案为:0.8.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2013春•红塔区校级期中)在函数y=(a为常数)的图象上三点(﹣1,y1),(﹣,y2),(,y3),则函数值y1、y2、y3的大小关系是y3<y1<y2.【解答】解:∵在函数y=(a为常数)中k=﹣a2﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣<﹣<0,∴0<y1<y2.∵>0,∴y3<0,∴y3<y1<y2.故答案为y3<y1<y2.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.16.(3分)(2016春•宝应县校级月考)如图,反比例函数y=(x<0)的图象经过点P,则k的值为﹣6.【解答】解:如图所示,点P的坐标是(﹣3,2),则k=xy=﹣3×2=﹣6.故答案是:﹣6.【点评】本题考查了反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.17.(3分)(2012•重庆模拟)已知△ABC与△DEF的相似,它们的相似比是3:4,且△ABC的面积为18cm2,则△DEF的面积为32cm2.【解答】解:∵△ABC与△DEF的相似,它们的相似比是3:4,∴它们的面积比是9:16,∵△ABC的面积为18cm2,∴△DEF的面积为:18×=32(cm2).故答案为:32.【点评】此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握相似三角形的面积比等于相似比的平方定理的应用.18.(3分)(2012•西安模拟)如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A、P、Q为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ的长为3或.【解答】解:∵AC=4,P是AC的中点,∴AP=AC=2,①若△APQ∽△ACB,则,即,解得:AQ=3;②若△APQ∽△ABC,则,即,解得:AQ=;∴AQ的长为3或.故答案为:3或.【点评】此题考查了相似三角形的性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.三、解答题(19-25题每题8分,26题10分共66分)19.(8分)(2014•泉州)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.【解答】解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是:;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2015秋•长沙校级月考)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求一次函数解析式及反比例函数的解析式;(2)若一次函数值大于反比例函数值,请求出相应的自变量x的取值范围.【解答】解:(1)∵OA=OB,点B的坐标为(0,2),∴点A(﹣2,0),点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得k=1,b=2,∴一次函数的解析式为y=x+2.∵B是线段AC的中点,∴点C的坐标为(2,4),又∵点C在反比例函数y=(k≠0)的图象上,∴k=8∴反比例函数的解析式为y=.(2)一次函数值大于反比例函数值的自变量x的取值范围﹣4<x<0或x>2.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.21.(8分)(2014•孝感)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.【解答】解:(1)本次抽样测试的学生人数是:=40(人),故答案为:40;(2)根据题意得:360°×=54°,答:图1中∠α的度数是54°;C级的人数是:40﹣6﹣12﹣8=14(人),如图:故答案为:54°;(3)根据题意得:3500×=700(人),答:不及格的人数为700人.故答案为:700;(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)==.【点评】此题考查了条形统计图和扇形统计图的综合应用,用到的知识点是用样本估计总体、频数、频率、总数之间的关系等,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2016•呼伦贝尔)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.23.(8分)(2015秋•长沙校级月考)△ABC是一块锐角三角形余料,边BC=180mm,高AD=120mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长是宽的2倍,则边长是多少?【解答】解:(1)设边长为xmm,∵矩形为正方形,∴PN∥BC,PQ∥AD,根据平行线的性质可以得出:=、=,由题意知PQ=x,BC=180mm,AD=120mm,PN=x,即=,=,∵AP+BP=AB,∴+=+=1,解得x=72.答:若这个矩形是正方形,那么边长是72mm.(2)设边宽为xmm,则长为2xmm,∵四边形PNMQ为矩形,∴PN∥BC,PQ∥AD,根据平行线的性质可以得出:=、=,①PQ为长,PN为宽:由题意知PQ=2xmm,AD=120mm,BC=180mm,AN=xmm,即=,=,∵AP+BP=AB,∴+=+=1,解得x=45,2x=90.即长为90mm,宽为45mm.②PQ为宽,PN为长:由题意知PQ=xmm,AD=120mm,BC=180mm,PN=2xmm,即=,=,∵AP+BP=AB,∴+=+=1,解得x=,2x=.即长为mm,宽为mm.答:矩形的长为90mm,宽是45mm或者长为mm,宽为mm.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应高的比等于相似比,熟记性质并列出比例式是解题的关键.24.(8分)(2015秋•长沙校级月考)如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)若CE=3,AD=4,求线段AC的长.【解答】解:(1)连接OB,∵∠BOC=2∠BAC=90°,OB=OC,∴∠OCB=∠OBC=45°,∵AD∥OC,∴∠D=∠OCB=45°;(2)∵∠ABC=15°,∠OCB=45°,∴∠AEC=60°,∠ACD=∠ABC+∠BAC=60°,∴∠AEC=∠ACD=60°,∵∠D=45°,∠ACD=60°,∴∠CAD=75°,又∵∠OCA=75°,∴∠CAD=∠OCA=75°,∴△ACE∽△DAC,∴=,即AC2=AD•CE=4×3=12,∴AC=2.【点评】此题考查了相似三角形的判定与性质,圆周角定理,等腰三角形的性质,三角形的外角性质,以及三角形的内角和定理.注意证得△OBC是等腰直角三角形,△ACE∽△DAC是关键.25.(8分)(2005•岳阳)如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当:△ADE是等腰三角形时,求AE的长.【解答】(1)证明:∵△ABC中,∠BAC=90°,AB=AC=1,∴∠ABC=∠ACB=45°.∵∠ADE=45°,∴∠BDA+∠CDE=135°.又∠BDA+∠BAD=135°,∴∠BAD=∠CDE.∴△ABD∽△DCE.(2)解:∵△ABD∽△DCE,∴;∵BD=x,∴CD=BC﹣BD=﹣x.∴,∴CE=x﹣x2.∴AE=AC﹣CE=1﹣(x﹣x2)=x2﹣x+1.即y=x2﹣x+1.(3)解:∠DAE<∠BAC=90°,∠ADE=45°,∴当△ADE是等腰三角形时,第一种可能是AD=DE.又∵△ABD∽△DCE,∴△ABD≌△DCE.∴CD=AB=1.∴BD=﹣1.∵BD=CE,∴AE=AC﹣CE=2﹣.当△ADE是等腰三角形时,第二种可能是ED=EA.∵∠ADE=45°,∴此时有∠DEA=90°.即△ADE为等腰直角三角形.∴AE=DE=AC=.当AD=EA时,点D与点B重合,不合题意,所以舍去,因此AE的长为2﹣或.【点评】此题三个问题各有特点,却又紧密相联,第一个问题考查的是三角形的相似;第二个问题看起来是考查的函数但却与第一问紧密相联,运用第一问的结论即可顺利解决;第三问的关键是分类讨论,要考虑等腰的几种不同情况.26.(10分)(2015•徐州)如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y 轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=4;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.【解答】解:(1)连接OE,如,图1,∵Rt△AOE的面积为2,∴k=2×2=4.(2)连接AC,如图1,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,=,∴∴DE∥AC.(3)假设存在点D满足条件.设D(x,5),E(3,),则CD=x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,如图2,易证△B′CD∽△EFB′,∴,即=,∴B′F=,∴OB′=B′F+OF=B′F+AE=+=,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,(5﹣)2+x2=(3﹣x)2,解这个方程得,x1=1.5(舍去),x2=0.96,∴满足条件的点D存在,D的坐标为D(0.96,5).【点评】本题考查了反比例函数综合题,涉及反比例函数k的几何意义、平行线分线段成比例定理、轴对称的性质、相似三角形的性质等知识,值得关注.参与本试卷答题和审题的老师有:wdzyzlhx;zhjh;CJX;sjzx;zcx;智波;ln_86;张其铎;HJJ;星期八;zcl5287;ZJX;自由人;Linaliu;守拙;dbz1018;lantin;gbl210;MMCH;heihudie(排名不分先后)菁优网2016年12月22日。
麓山国际2017—2018—1九年级上册第一次限时训练

麓山国际实验学校2017-2018-1初三第一次限时训练数学试卷命题人:谭政军 审题人:胡勋总分:120分 时量:120分钟一、选择题(本大题共12个小题,每小题3分,共36分)1、下列说明正确的是:( )A .长沙某天的降水概率为89%说明这一天中有80%的时间会下雨。
B .任意三条线段可以组成一个三角形是必然事件C .掷一枚图钉,钉尖朝上是随机事件。
D .抛一枚硬币1000次,必有500次正面朝上。
2、将直线2y x =向下平移2个单位所得的直线的解析式是( )A .22y x =+B .22y x =-C .2(2)y x =-D .2(2)y x =+ 3、如图1,Rt △ABC 的一个顶点B 在原点,BC 在y 轴上,AC =1,BC =2,把Rt △ABC 绕点B 逆时针旋转90°,顶点A 的对应点为A '。
若反比例函数k y x=的图象经过点A ',则k 的值为( )A B .C .2 D .-24、对于抛物线2(1)3y x =-++,下列结论不正确的是( )A .抛物线的开口向下B .对称轴为直线x =1C .顶点坐标为(-1,3)D .x >1时,y 随x 的增大而减小5、如图2,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,连接AD 、BD 、DC 、AC ,如果∠BAD =25°,那么∠C 的度数是( )A .50°B .60°C .65°D .70°6、如图3△ABC 中,DE //BC ,AD =5,BD =10,DE =3,则BC 的长为( )A .9B .8C .7D .67、如图,D 是△ABC 的边AB 上的一点,那么下列四个条件不能单独判定△ABC ∽△ACD 的是( ) A . ∠ADC =∠ACB B . ∠B =∠ACD C . AC 2=AD ⋅AB D . AC CD = ABBC8、二次函数2y ax bx c =++的图像如图5所示,则一次函数y ax c =+的图像可能是( )9、如图6,AM ,AN 分别切⊙于M 、N 两点,B 在⊙O 上,且∠MBN =70°,则∠A 的度数为( )A .40°B .50°C .55°D .70°10、物理某一实验的电路图如图7所示.其中K 1,K 2,K 3 为电路开关,L 1,L 2为能正常发光的灯泡。
湖南四大名校内部资料 九年级 数学上册麓山国际九年级第一次月考数学试卷

麓山国际实验学校120192018--初三第一次限时训练数学试卷总分:120分 时量:120分钟命题人:吴志辉、卢俊红一、选择题(本大题共12个小题,每小题3分,共36分)1. 下面四个手机应用图标中,属于中心对称图形的是( )2. 已知关于x 的一元二次方程0422=+-ax x 的一个根是2,则a 的值为( )A. 1B. 1-C. 2D. 2-3. 关于抛物线22x y =,下列说法错误的是( )A. 开口向上B. 对称轴是y 轴C. 函数有最大值D. 当0>x 时,函数y 随x 的增大而增大4. 随着划片招生和小班政策的实施,麓山国际实验学校初一新生人数逐步减少,2014届初一新入校人数为1300人,2016届初一新入校人数为1053人,设该校入校人数平均每年的下降率为x ,则根据题意可列方程为( )A. ()2113001053x -=B. ()2110531300x -=C. ()2110531300x +=D. ()2113001053x += 6. 如图,过O Θ外一点P 引O Θ的两条切线PA 、PB ,切点分别是A 、B ,OP 交O Θ于点C ,点D 是弧ABC 上不与点A 、点C 重合的一个动点,连接AD 、CD ,若︒=∠80APB ,则ADC ∠的度数是( )A. ︒15B. ︒20C. ︒25D. ︒307. 下列说法:①过切点的直线垂直于切线,则这条直线必过圆心;②长度相等的弧是等弧;③平分弦的直径必垂直于弦;④三角形内心到三个顶点的距离相等. 其中正确的个数有( )A. 1B. 2C. 3D. 48. 如图,在ABC Rt ∆中,︒=∠90C ,5=AC ,12=BC ,C Θ的半径为5.6,则C Θ与AB 的位置关系是( )A. 相切B. 相离C. 相交D. 无法确定9. 如图,四边形ABCD 内接于O Θ,它的一个外角︒=∠65EBC ,分别连接AC 、BD ,若AD AC =,则DBC ∠的度数为( )A. ︒50B. ︒55C. ︒65D. ︒70第8题 第9题10. 一个圆的内接正三边形的边长为32,则该圆的内接正方形的边长为( ) A. 2 B. 4 C. 32 D. 2211. 如图①,O Θ的半径为r ,若点P '在射线OP 上,满足2r OP P O =⨯',则称点P '是点P 关于O Θ的“反演点”,如图②,O Θ的半径为4,点B 在O Θ上,︒=∠60BOA ,8=OA ,若点A '是点A 关于O Θ的反演点,求B A '的长为( )A. 3B. 32C. 2D. 4① ②第11题 第12题12. 如图所示,已知二次函数c bx ax y ++=2的图象与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线1=x ,直线c x y +-=与抛物线c bx ax y ++=2交于C 、D 两点,D 点在x 轴下方且横坐标小于3,则下列结论:①02>++c b a ;②0<+-c b a ;③()b a b ax x +≤+;④1-<a . 其中正确的有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6个小题,每小题3分,共18分)13. 方程0322=-+x x 的两个根分别为 ;14. 如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB ∆是边长为2的等边三角形,以O 为旋转中心,将OAB ∆按顺时针方向旋转︒60,得到B A O ''∆,那么点A '的坐标为 ;第14题 第18题15. 用一个半径为30,圆心角为︒90的扇形围成一个圆锥,则这个圆锥的底面半径是 ;16. 关于x 的方程022=--k kx x 的两个根的平方和为12,则=k ;17. 二次函数1422+-=x x y 在30≤≤x 时y 的取值范围为 ;18. 如图,O Θ的半径为2,AB 是O Θ的弦,点P 是弦AB 上的动点,且21≤≤OP ,则弦AB 所对的圆周角的度数是 .三、解答题(本大题共8小题,共66分)19. (6分)计算:()12127220-+⎪⎭⎫ ⎝⎛-+--π.20. (6分)先化简,再求值:()()()()b a a b a b a b a 222---++-,其中21=a ,22-=b .21. (8分)在“优秀传统文化进校园”活动中,学校计划每周一下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人值能参加其中一项活动,教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图并计算扇形统计图中武术所对的圆心角度数;(2)教师从武术类中选取最优秀的4人,刚好2男2女,现教务处从中任意抽取2人参加比赛,用列表法或画树状图法求出被抽取的两名学生性别相同的概率是多少.22. (8分)如图所示,已知AB 为O Θ的直径,CD 是弦,且CD AB ⊥于点E ,连接AC 、OC 、BC .(1)若︒=∠25ACO ,求BCD ∠的度数;(2)若cm EB 4=,cm CD 16=,求O Θ的直径.23. (9分)如图,ABC ∆中,︒=∠90ABC ,以AB 为直径的O Θ交AC 于点D ,点E 为BC 的终点,连接OD 、DE ,已知︒=∠30BAC ,8=AB .(1)求劣弧BD 的长;(2)求阴影部分的面积.24. (9分)如图,AB 是O Θ的直径,弦AB CD ⊥于点H ,点G 在弧BD 上,连接AG ,交CD 于点K ,过点G 的直线交CD 的延长线于点E ,交AB 的延长线于点F ,且EK EG =.(1)求证:EF 是O Θ的切线;(2)若O Θ的半径为13,12=CH ,31=OF OH ,求FG 的长.25. (10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求,若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于80万元,已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21501-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?26. (10分)如图,已知抛物线32-+=bx ax y 与x 轴交于A 、B 两点,与y 轴交于C 点,经过A 、B 、C 三点的圆的圆心为()1,1-M ,已知点()0,3B ,设M Θ与y 轴交于点D ,抛物线的顶点为E .(1)求M Θ的半径及抛物线的解析式;(2)若点F 在抛物线的第四象限上,求FBC ∆的面积的最大值;(3)探究坐标轴上是否存在点P ,使得PAC ∆是直角三角形,且两直角边的长度之比是3:1?若存在,求出点P 的坐标;若不存在,请说明理由.。
麓山国际学校201172初三第一次模拟考试

麓山国际实验学校2016-17-2初三第一次模拟考试数学试卷总分:120 时量:120分钟一、选择题(每小题3分,共36分)1.在下列选项中,具有相反意义的量是()A.收入20元与支出30元B.上升了6米和后退了7米C.卖出10斤米和盈利10元D.向东行30米和向北行30米2.x的2倍与y的和的平方用代数式表示为()A.(2x+y)2B.2x+y2C.2x2+y2D.2(x+y)23.人体中红细胞的直径约为0.0000077m,用科学记数法表示数的结果是()A.0.77×10﹣5m B.0.77×10﹣6m C.7.7×10﹣5m D.7.7×10﹣6m4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.下列函数表达式中,y不是x的反比例函数的是()A.y=B.y=C.y=D.xy=6.数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4 B.4.5 C.5 D.67.下列图形中,不是轴对称图形的是()A .B .C .D .8.如图所示正三棱柱的主视图是()A .B .C .D .9.下列事件中是必然事件的是()A.﹣a是负数B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.图形平移前后的对应线段相等10.如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()A.12 B.14 C.16 D.3611.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的内心到三角形各边的距离都相等;④相等的弦所对的弧相等.其中正确的有()A.4个B.3个C.2个D.1个12.如图,矩形ABCD中,AB=8,BC=6.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C .D .二、填空题(每小题3分,共18分)13.的平方根是.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= .15.若a+b=2,则代数式3﹣2a﹣2b= .16.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m= .17.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA= 度.18.如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=3,则BC= .三、解答题(第19,20题每题6分,21,22题每题8分,23,24题每题9分,共46分)19.计算:﹣(﹣)﹣1+(﹣)0﹣6sin60°.20. 先化简,再求值:(x+y)2﹣2y(x+y),其中x=﹣1,y=.21.某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.22.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.23.去冬今春,某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有哪几种方案?请你帮助设计出来.四、综合题(第25,26题每题10分,共20分)24.如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.25.已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD 是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+2,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C、D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.26.已知二次函数y=ax2+bx﹣2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.麓山国际实验学校2016-17-2初三第一次模拟考试数学参考答案一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A A D D B C C B D D C D二、填空题(每小题3分,共18分)13. ± 14. 2 15. ﹣116. 4 17. 36 18. 3三、解答题19. 解:原式=3﹣(﹣3)+1﹣6×…………………………(每项1分,4分)=4 ……………………………… (6分)20. 解:(x+y )2﹣2y(x+y)=x2+2xy+y2﹣2xy﹣2y2=x2﹣y2,………………………………(4分)当x=﹣1,y=时,原式=(﹣1)2﹣()2=2+1﹣2﹣3=﹣2.………………………………(6分)21. (1))25,72 …………………………(2分)(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:…………………………(6分)(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.……………………(8分)22. (1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE ⊥CD ,AM ⊥BC , ∴∠AMC=∠AEN=90°, ∵∠ANE=∠CNM , ∴∠BCD=∠BAM , ∴∠BAM=BAD , 在△ANE 与△ADE 中,,∴△ANE ≌△ADE ,∴AD=AN ; ………………………… (4分)(2)解:∵AB=4,AE ⊥CD , ∴AE=2,又∵ON=1,∴设NE=x ,则OE=x ﹣1,NE=ED=x ,r=OD=OE+ED=2x ﹣1 连结AO ,则AO=OD=2x ﹣1, ∵△AOE 是直角三角形,AE=2,OE=x ﹣1,AO=2x ﹣1,∴(2)2+(x ﹣1)2=(2x ﹣1)2,解得x=2,∴r=2x ﹣1=3. ………………………… (8分) 23. 解:(1)设饮用水有x 件,蔬菜有y 件, 根据题意得:,解得,答:饮用水和蔬菜各有200件和120件; ………………………… (4分) (2)设租用甲种货车m 辆,则租用乙种货车(8﹣m )辆, 根据得:,解这个不等式组,得2≤m ≤4, ∵m 为正整数, ∴m=2或3或4,则安排甲、乙两种货车时有3种方案, ………………………… (8分) 设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆.………………(9分) 24. 解:(1)∵E 为AB 的中点, ∴AB=2BE , ∵AB=2AD , ∴BE=AD ,∵∠A=90°,AD ∥BC ,∴∠ABC =90°, 在△ABD 与△BCE 中,,∴△ABD ≌△BCE ,∴CE=BD ; ………………………… (3分) (2)∵AB=4,∴AE=BE=2,BC=4,∵FE ⊥CE ,∴∠FEC=90°,∴∠AEF+∠AFE=∠AEF+∠BEC=90°, ∴∠AFE=∠BEC ,∴△AEF ∽△BCE , ∴,∴AF=1; ………………………… (6分)(3)∵△AEF ∽△BCE , ∴,∴AF=AE ,设AF=k ,则AE=BE=2k ,BC=4k , ∴EF==k ,CE==2k ,∴CF==5k ,∴sin ∠EFC==.…………………………(9分)25.解:(1)(I )当点A 在x 轴正半轴、点B 在y 轴负半轴上时:正方形ABCD 的边长为22. (II )当点A 在x 轴负半轴、点B 在y 轴正半轴上时:。
2017-2018学年湖南省长沙市岳麓区麓山国际实验学校九年级(上)开学数学试卷 解析版

2017-2018学年湖南省长沙市岳麓区麓山国际实验学校九年级(上)开学数学试卷一、选择题(每小题3分,共39分)1.(3分)在下列图形中,是中心对称图形的有()A.1个B.2个C.3个D.4个2.(3分)将抛物线y=(x+2)2﹣3如何平移得到y=x2的图象()A.向右平移2个单位,再向上平移3个单位B.向左平移2个单位,再向上平移3个单位C.向左平移2个单位,再向下平移3个单位D.向右平移2个单位,再向下平移3个单位3.(3分)如图,将五角星绕中心O按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.2164.(3分)如图,已知圆锥的高为4,底面圆的直径为6,则此圆锥的侧面积是()A.12πB.15πC.20πD.30π5.(3分)如图,△BC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O 相切,切点为B,如果∠C=26°,那么∠A等于()A.26°B.38°C.48°D.52°6.(3分)如图,∠ACB=90°,∠B=46°,将△ABC绕点C顺时针旋转得到△A′B′C,若点B′恰好落在线段AB上,AC与A′B′交于点O,则∠COA′的度数是()A.44°B.46°C.48°D.50°7.(3分)如图,AB是⊙O的直径,∠ADC=30°,OA=1,则BC的长为()A.1B.2C.D.28.(3分)已知抛物线y=ax2+bx+c(a>0)过A(﹣2,0),B(4,0),C(﹣3,y1),D(3,y2)四点,则y1与y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定9.(3分)圆内接四边形ABCD中,∠A,∠B,∠C的度数之比为2:5:7,则∠D的度数为()A.60°B.80°C.100°D.120°10.(3分)关于x的二次函数y=(a﹣3)x2+bx+a2﹣9的图象过原点,则a的值为()A.﹣3B.3C.±3D.011.(3分)如图,四边形ABCD各边与⊙O相切,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.1112.(3分)如图,抛物线y=ax2+bx+c与x轴的两个交点分别为(﹣1,0),(3,0),有下列命题:①abc>0;②a:b:c=1:2:3;③b2﹣4ac>0;④8a+c>0,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)13.(3分)如图,正六边形ABCDEF的中心为原点O,点D的坐标为(2,0),则点B 的坐标为.14.(3分)如图,AB是O的直径,C,D,E是⊙O上不同于A,B的任意三点,且点C,D处在AB同一侧,点E处在AB另一侧,则∠C+∠D=.15.(3分)已知抛物线y=x2+(m2﹣4m)x+3关于y轴对称,则m=.16.(3分)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°得到△AB′C′,连接CC′,若AC=4,AB=1,则△B′C′C的面积为.17.(3分)当﹣1≤x≤3时,函数y=x2﹣4x+3的最小值为a,最大值为b,则a+b=.18.(3分)如图,∠ACB=60°,半径为3cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是cm.三、解答题(共66分)19.(6分)如图,有一座圆弧形拱桥,拱的跨度AB=8m,拱高CD=2m,求拱形所在圆的直径.20.(8分)如图,△ABC的顶点分别为A(2,1),B(4,4),C(1,3).(1)画出△ABC关于原点O对称的图形△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的图形△A2B2C2,并写出点C2的坐标.21.(8分)已知二次函数y=ax2+bx+c,当x=3时,y有最小值﹣4,且图象经过点(﹣1,12).(1)求此二次函数的解析式;(2)该抛物线交x轴于点A,B(点A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.22.(8分)如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=2,AE=1,求劣弧BD的长.23.(8分)已知二次函数y=x2﹣(a﹣1)x+a﹣2,其中a是常数.(1)求证:不论a为何值,抛物线y=x2﹣(a﹣1)x+a﹣2与x轴一定有交点;(2)若抛物线y=x2﹣(a﹣1)x+a﹣2的图象如图所示,请直接写出不等式x2﹣(a﹣l)x+a﹣2<0的解集;(3)在(2)的条件下,若关于x的方程x2﹣(a﹣1)x+a﹣2=k恰有两个相等的实数根,求k的值.24.(8分)如图,AB为⊙O的直径,点D是弧BC的中点,DE⊥AC交AC的延长线于点E,FB是⊙O的切线,交AD的延长线于点F.(1)求证:DE是⊙O的切线;(2)若BF=1,⊙O的半径为1,求DF的长.25.(10分)某水产养殖户一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售,已知每天放养的费用相同,放养10天的总成本为30.4万元:放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为mkg,销售单价为y元/kg,已知m与t的函数关系为m=,y与t的函数关系如图所示,请分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;(3)在(2)的条件下,设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出W的最大值.(利润=销售总额﹣总成本)26.(10分)如图,在直角坐标系中,O为坐标原点,A点坐标为(﹣3,0),B点坐标为(12,0),以AB的中点P为圆心,AB为直径作⊙P与y轴的负半轴交于点C,抛物线经过A,B,C三点,其顶点为M.(1)求此抛物线的解析式;(2)设点D是抛物线与⊙P的第四个交点(除A,B,C三点以外),判断直线MD与⊙P的位置关系,并说明理由;(3)点E是抛物线上的动点,在x轴上是否存在点F,使以A,D,E,F四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点的坐标;如果不存在,请说明理由.2017-2018学年湖南省长沙市岳麓区麓山国际实验学校九年级(上)开学数学试卷参考答案与试题解析一、选择题(每小题3分,共39分)1.(3分)在下列图形中,是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据中心对称图形的概念求解.【解答】解:是中心对称图形的有第1、2、3个图形,故选:C.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(3分)将抛物线y=(x+2)2﹣3如何平移得到y=x2的图象()A.向右平移2个单位,再向上平移3个单位B.向左平移2个单位,再向上平移3个单位C.向左平移2个单位,再向下平移3个单位D.向右平移2个单位,再向下平移3个单位【分析】分别写出两抛物线的顶点坐标,然后利用点平移的规律确定抛物线的平移规律.【解答】解:抛物线y=(x+2)2﹣3的顶点坐标为(﹣2,﹣3),抛物线y=x2的顶点坐标为(0,0),把点(﹣2,﹣3)先向右平移2个单位,再向上平移3个单位得到点(0,0),所以把抛物线y=(x+2)2﹣3先向右平移2个单位,再向上平移3个单位得到抛物线y =x2.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.(3分)如图,将五角星绕中心O按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216【分析】该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选:B.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.4.(3分)如图,已知圆锥的高为4,底面圆的直径为6,则此圆锥的侧面积是()A.12πB.15πC.20πD.30π【分析】在由母线、底面圆的半径和圆锥的高组成的直角三角形中,利用勾股定理计算出母线长,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长,利用扇形的面积公式计算即可得到圆锥的侧面积.【解答】解:∵底面圆的直径为6,∴底面圆的半径为3,而高为4,∴圆锥的母线长==5,∴圆锥的侧面积=•2π•3•5=15π.故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长;也考查了扇形的面积公式:S=lR(l为弧长,R为扇形的半径)以及勾股定理.5.(3分)如图,△BC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O 相切,切点为B,如果∠C=26°,那么∠A等于()A.26°B.38°C.48°D.52°【分析】连接OB,由切线的性质可求得∠AOB,再由圆周角定理可求得∠A.【解答】解:如图,连接OB,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵OB=OC,∠C=26°,∴∠OBC=∠C=26°,∴∠COB=180°﹣26°﹣26°=128°,∴∠A=128°﹣90°=38°,故选:B.【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键.6.(3分)如图,∠ACB=90°,∠B=46°,将△ABC绕点C顺时针旋转得到△A′B′C,若点B′恰好落在线段AB上,AC与A′B′交于点O,则∠COA′的度数是()A.44°B.46°C.48°D.50°【分析】根据∠COA′=∠ACB′+∠OB′C,只要求出∠ACB′即可.【解答】解:∵CB=CB′,∴∠B=∠CB′B=46°,∴∠BCB′=180°﹣46°﹣46°=88°,∵∠ACB=90°,∴∠ACB′=2°,∵∠OB′C=∠B=46°,∴∠COA′=∠ACB′+∠OB′C=2°+46°=48°,故选:C.【点评】本题考查旋转变换、等腰三角形的性质、三角形内角和定理、三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(3分)如图,AB是⊙O的直径,∠ADC=30°,OA=1,则BC的长为()A.1B.2C.D.2【分析】连接BD,根据圆周角定理得到∠B=∠ADC=30°,∠ACB=90°,根据余弦的定义计算.【解答】解:连接BD,由圆周角定理得,∠B=∠ADC=30°,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABD中,BC=AB•cos B=,故选:C.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是90°、同弧所对的圆周角相等是解题的关键.8.(3分)已知抛物线y=ax2+bx+c(a>0)过A(﹣2,0),B(4,0),C(﹣3,y1),D(3,y2)四点,则y1与y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定【分析】由已知可得抛物线与x轴交于A(﹣2,0)、B(4,0)两点,开口向上,对称轴为x=1,可知D、C两点在对称轴的两边,点D离对称轴较近,再根据抛物线图象进行判断.【解答】解:∵抛物线与x轴交于A(﹣2,0)、B(4,0)两点,∴抛物线对称轴为x==1∵C(﹣3,y1)、D(3,y2),点D离对称轴较近,且抛物线开口向上,∴y1>y2.故选:C.【点评】本题考查了二次函数的增减性.当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y 随x的增大而增大,在对称轴的右边,y随x的增大而减小.9.(3分)圆内接四边形ABCD中,∠A,∠B,∠C的度数之比为2:5:7,则∠D的度数为()A.60°B.80°C.100°D.120°【分析】设∠A,∠B,∠C的度数分别为2x、5x、7x,根据圆内接四边形的性质列出方程,解方程即可.【解答】解:设∠A,∠B,∠C的度数分别为2x、5x、7x,由圆内接四边形的性质可知,2x+7x=180°,解得,x=20°,∴∠B=5x=100°,∴∠D=180°﹣100°=80°,故选:B.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.10.(3分)关于x的二次函数y=(a﹣3)x2+bx+a2﹣9的图象过原点,则a的值为()A.﹣3B.3C.±3D.0【分析】把原点坐标代入解析式得到a2﹣9=0,再解关于a的方程,然后利用二次函数的定义确定a的值.【解答】解:把(0,0)代入y=(a﹣3)x2+bx+a2﹣9得a2﹣9=0,解得a1=3,a2=﹣3,而a﹣3≠0,所以a的值为﹣3.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点的坐标满足其解析式.也考查了二次函数的定义.11.(3分)如图,四边形ABCD各边与⊙O相切,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.11【分析】根据切线长定理可得AD+BC=AB+CD,即可求AD的长度.【解答】解:如图,E,F,G,H是切点∵四边形ABCD各边与⊙O相切∴AH=AE,DH=DG,CG=CF,BE=BF∴AH+DH+CF+BF=AE+DG+CG+BE∴AD+BC=CD+AB∵AB=10,BC=7,CD=8∴AD=11故选:D.【点评】本题考查了切线的性质,熟练掌握切线长定理是解决问题的关键.12.(3分)如图,抛物线y=ax2+bx+c与x轴的两个交点分别为(﹣1,0),(3,0),有下列命题:①abc>0;②a:b:c=1:2:3;③b2﹣4ac>0;④8a+c>0,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据抛物线的开口方向、对称轴、与y轴的交点、与x轴的交点以及二次函数图象上点的坐标特征判断.【解答】解:抛物线开口向上,∴a>0,抛物线经过y轴的负半轴,∴c<0,对称轴是x=﹣=1>0,∴b<0,∴abc>0,故①正确;∵a>0,b<0,∴故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;对称轴是x=﹣=1,则b=﹣2a,因(3,0)在函数图象上,故9a+3b+c=0,将b=﹣2a代入得,3a+c=0,由函数图象知a>0,故3a+c+5a>0,即8a+c>0.故④正确,故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,掌握二次函数图象与系数的关系是解题的关键.二、填空题(每小题3分,共18分)13.(3分)如图,正六边形ABCDEF的中心为原点O,点D的坐标为(2,0),则点B的坐标为(﹣1,﹣).【分析】连接OB、OC,根据正多边形的中心角的计算公式求出∠BOC,求出BH、OH,得到答案.【解答】解:连接OB、OC,∵六边形ABCDEF是正六边形,∴∠BOC==60°,∴∠BOH=30°,∴BH=OB=1,OH=OB=,∴点B的坐标为(﹣1,﹣),故答案为:(﹣1,﹣).【点评】本题考查的是多边形的有关计算、坐标与图形性质,掌握正多边形的中心角的计算公式、坐标的确定方法是解题的关键.14.(3分)如图,AB是O的直径,C,D,E是⊙O上不同于A,B的任意三点,且点C,D处在AB同一侧,点E处在AB另一侧,则∠C+∠D=90°.【分析】如图,连接AE、BE.因为AB是直径,推出∠AEB=90°,推出∠EAB+∠EBA =90°,因为∠C=∠EBA,∠D=∠EAB,可得结论;【解答】解:如图,连接AE、BE.∵AB是直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠C=∠EBA,∠D=∠EAB,∴∠C+∠D=90°,故答案为90°.【点评】本题考查圆周角定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.15.(3分)已知抛物线y =x 2+(m 2﹣4m )x +3关于y 轴对称,则m = 0或4 .【分析】利用对称轴方程得到﹣=0,然后解关于m 的方程即可.【解答】解:∵抛物线y =x 2+(m 2﹣4m )x +3关于y 轴对称,∴﹣=0,∴m =0或m =4.故答案为:0或4.【点评】本题考查了二次函数图象的对称轴问题,解题时需要提炼隐含的条件:﹣=0.16.(3分)如图,在Rt △ABC 中,∠BAC =90°,将△ABC 绕点A 顺时针旋转90°得到△AB ′C ′,连接CC ′,若AC =4,AB =1,则△B ′C ′C 的面积为 6 .【分析】先根据旋转的性质得AC =AC ′=4,AB ′=AB =1,∠CAC ′=90°,则可判断△ACC ′为等腰直角三角形,然后根据三角形的面积公式即可得到结论.【解答】解:∵△ABC 绕点A 顺时针旋转90°后得到的△AB ′C ′,∴AC =AC ′=4,AB ′=AB =1,∠CAC ′=90°,∴△ACC ′为等腰直角三角形,∴S △B ′C ′C =S △ACC ′﹣S △AB ′C ′=×4×4﹣×4×1=6.故答案为6.【点评】本题考查了旋转的性质:旋转前、后的图形全等,还考查了三角形的面积,熟练掌握旋转的性质是解题的关键.17.(3分)当﹣1≤x ≤3时,函数y =x 2﹣4x +3的最小值为a ,最大值为b ,则a +b = 7 .【分析】先把一般式配成顶点式得到抛物线的对称轴为直线x =2,利用二次函数的性质得当1≤x ≤3时,x =2时,y 的值最小;x =﹣1时,y 的值最大,然后分别计算出a 和b 的值,从而得到a +b 的值.【解答】解:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,∵﹣1≤x≤3,∴x=2时,y的值最小,即a=﹣1;x=﹣1时,y的值最大,即b=(﹣1﹣2)2﹣1=8,∴a+b=﹣1+8=7.故答案为7.【点评】本题考查了二次函数的最值:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.18.(3分)如图,∠ACB=60°,半径为3cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是3cm.【分析】设⊙O与CA相切于点P,此时和CB相切于点D,连接OC,OD、OP根据切线长定理得∠OCD=30°,则CD=OD,求出CD即可解决问题.【解答】解:设⊙O与CA相切于点P,此时和CB相切于点D,连接OC,OD、OP.∵⊙O与CA相切,⊙O与CB相切,∴∠OCD=∠ACB=30°,∵OC=OD=3,∴PD=3.故答案为3.【点评】本题考查切线的性质、切线长定理、30°的直角三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活应用所学知识解决问题,属于中考常考题型.三、解答题(共66分)19.(6分)如图,有一座圆弧形拱桥,拱的跨度AB=8m,拱高CD=2m,求拱形所在圆的直径.【分析】先根据题意找出圆心,连接OA,OD,由垂径定理得出AB=2AD,设OA=r,则OD=r﹣2,在Rt△AOD中,根据OA2=AD2+OD2,构建方程求出r即可解决问题;【解答】解:如图所示,连接OD,由题意O、D、C共线.∵AB⊥CO,∴AB=2AD,∵AB=8m,CD=2m,∴AD=4m,设OA=r,则OD=r﹣2,在Rt△AOD中,∵OA2=AD2+OD2,即r2=42+(r﹣2)2,解得r=5m.∴拱形所在圆的直径为10cm.【点评】本题主要考查直角三角形和垂径定理的应用,根据题意作出辅助线是解答此题的关键.20.(8分)如图,△ABC的顶点分别为A(2,1),B(4,4),C(1,3).(1)画出△ABC关于原点O对称的图形△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的图形△A2B2C2,并写出点C2的坐标.【分析】(1)依据△ABC关于原点O对称的图形是△A1B1C1进行画图,进而得到点A1的坐标;(2)依据△ABC绕点O逆时针旋转90°后得到图形△A2B2C2进行画图,进而得到点C2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;点A1的坐标为(﹣2,﹣1);(2)如图所示,△A2B2C2即为所求,点C2的坐标为(﹣3,1).【点评】本题主要考查了利用旋转变换进行作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.(8分)已知二次函数y=ax2+bx+c,当x=3时,y有最小值﹣4,且图象经过点(﹣1,12).(1)求此二次函数的解析式;(2)该抛物线交x轴于点A,B(点A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.【分析】(1)由顶点坐标将二次函数的解析式设成y=a(x﹣3)2﹣4,由该函数图象上一点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征可求出点A、B、C的坐标,由二次函数图象的对称性可得出连接BC交抛物线对称轴于点P,此时PA+PC取最小值,最小值为BC,根据点B、C的坐标可求出直线BC的解析式及线段BC的长度,再利用一次函数图象上点的坐标特征即可求出点P的坐标,此题得解.【解答】解:(1)∵当x=3时,y有最小值﹣4,∴设二次函数解析式为y=a(x﹣3)2﹣4.∵二次函数图象经过点(﹣1,12),∴12=16a﹣4,∴a=1,∴二次函数的解析式为y=(x﹣3)2﹣4=x2﹣6x+5.(2)当y=0时,有x2﹣6x+5=0,解得:x1=1,x2=5,∴点A的坐标为(1,0),点B的坐标为(5,0);当x=0时,y=x2﹣6x+5=5,∴点C的坐标为(0,5).连接BC交抛物线对称轴于点P,此时PA+PC取最小值,最小值为BC,如图所示.设直线BC的解析式为y=mx+n(m≠0),将B(5,0)、C(0,5)代入y=mx+n,得:,解得:,∴直线BC的解析式为y=﹣x+5.∵B(5,0)、C(0,5),∴BC=5.∵当x=3时,y=﹣x+5=2,∴当点P的坐标为(3,2)时,PA+PC取最小值,最小值为5.【点评】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、二次函数的最值、待定系数法求二次函数解析式以及轴对称中最短路线问题,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短结合二次函数的对称性找出点P的位置.22.(8分)如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=2,AE=1,求劣弧BD的长.【分析】(1)由等腰三角形的性质与圆周角定理,易得∠BCO=∠B=∠D;(2)由垂径定理可求得CE与DE的长,然后证得△BCE∽△DAE,再由相似三角形的对应边成比例,求得BE的长,继而求得直径与半径,再求出圆心角∠BOD即可解决问题;【解答】(1)证明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:连接OD.∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴1:=:BE,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半径为2,∵tan∠EOD==,∴∠EOD=60°,∴∠BOD=120°,∴的长==π.【点评】此题考查了圆周角定理、垂径定理、相似三角形的判定与性质以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.证得△BCE∽△DAE是关键.23.(8分)已知二次函数y=x2﹣(a﹣1)x+a﹣2,其中a是常数.(1)求证:不论a为何值,抛物线y=x2﹣(a﹣1)x+a﹣2与x轴一定有交点;(2)若抛物线y=x2﹣(a﹣1)x+a﹣2的图象如图所示,请直接写出不等式x2﹣(a﹣l)x+a﹣2<0的解集;(3)在(2)的条件下,若关于x的方程x2﹣(a﹣1)x+a﹣2=k恰有两个相等的实数根,求k的值.【分析】(1)计算判别式得到△=(a﹣3)2,则根据非负数的性质可判断△≥0,然后根据判别式的意义得到结论;(2)利用对称轴方程得到a=4,则抛物线解析式为y=x2﹣3x+2,再解方程x2﹣3x+2=0得抛物线与x轴的两个交点坐标为(1,0),(2,0),然后写出抛物线在x轴下方所对应的自变量的范围得到不等式x2﹣(a﹣l)x+a﹣2<0的解集;(3)方程整理为x2﹣3x+2﹣k=0,然后利用判别式的意义得到△=32﹣4(2﹣k)=0,然后解关于k的方程即可.【解答】(1)证明:△=(a﹣1)2﹣4(a﹣2)=a2﹣2a+1﹣4a+8=(a﹣3)2,∵(a﹣3)2≥0,即△≥0,∴不论a为何值,抛物线y=x2﹣(a﹣1)x+a﹣2与x轴一定有交点;(2)解:∵x=﹣=,∴a=4,∴抛物线解析式为y=x2﹣3x+2,当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,∴抛物线与x轴的两个交点坐标为(1,0),(2,0),当1<x<2时,y<0,即不等式x2﹣(a﹣l)x+a﹣2<0的解集为1<x<2;(3)解:x2﹣3x+2=k,即x2﹣3x+2﹣k=0,∵方程x2﹣(a﹣1)x+a﹣2=k恰有两个相等的实数根,∴△=32﹣4(2﹣k)=0,解得k=﹣.【点评】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0),利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了判别式的意义.24.(8分)如图,AB为⊙O的直径,点D是弧BC的中点,DE⊥AC交AC的延长线于点E,FB是⊙O的切线,交AD的延长线于点F.(1)求证:DE是⊙O的切线;(2)若BF=1,⊙O的半径为1,求DF的长.【分析】(1)根据切线的判定即可求出答案.(2)根据圆周角定理可知∠ADB=90°,利用勾股定理可求出AF的长度,然后利用相似三角形的性质与判定即可求出DF的长度.【解答】解:(1)连接OD,∵点D是弧BC的中点,∴∠EAD=∠OAD,∵OA=OD,∴∠OAD=∠ADO,∴∠EAD=∠ADO,∴AE∥OD,∴∠ODE+∠AED=180°,∴∠ODE=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=2,BF=1,∴由勾股定理可知:AF=,∵FB是⊙O的切线,∴∠ABF=90°,∵∠F=∠F,∠ABF=∠BDF=90°,∴△BDF∽△ABF,∴BF2=DF•AF,∴DF=【点评】本题考查圆的综合问题,涉及相似三角形的性质与判定,勾股定理,切线的判定等知识,需要学生灵活运用所学知识.25.(10分)某水产养殖户一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售,已知每天放养的费用相同,放养10天的总成本为30.4万元:放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为mkg,销售单价为y元/kg,已知m与t的函数关系为m=,y与t的函数关系如图所示,请分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;(3)在(2)的条件下,设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出W的最大值.(利润=销售总额﹣总成本)【分析】(1)由放养10天的总成本为30.4万元;放养20天的总成本为30.8万元可得答案;(2)分0≤t≤50、50<t≤100两种情况,结合函数图象利用待定系数法求解可得;(3)就以上两种情况,根据“利润=销售总额﹣总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.【解答】解:(1)由题意,得:,解得:,答:a的值为0.04,b的值为30;(2)当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,将(0,15)、(50,25)代入,得:,解得:,∴y与t的函数解析式为y=t+15;当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、(100,20)代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;(3)由题意,当0≤t≤50时,W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴当t=50时,W=180000(元);最大值当50<t≤100时,W=(100t+15000)(﹣t+30)﹣(400t+300000)=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W=180250(元),最大值综上所述,放养55天时,W最大,最大值为180250元.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式,根据相等关系列出利润的函数解析式及二次函数的性质是解题的关键.26.(10分)如图,在直角坐标系中,O为坐标原点,A点坐标为(﹣3,0),B点坐标为(12,0),以AB的中点P为圆心,AB为直径作⊙P与y轴的负半轴交于点C,抛物线经过A,B,C三点,其顶点为M.(1)求此抛物线的解析式;(2)设点D是抛物线与⊙P的第四个交点(除A,B,C三点以外),判断直线MD与⊙P的位置关系,并说明理由;(3)点E是抛物线上的动点,在x轴上是否存在点F,使以A,D,E,F四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点的坐标;如果不存在,请说明理由.【分析】(1)由题意可得AP=BP=CP=,根据勾股定理可求OC的长度,用待定系数法可求解析式;(2)直线MD与⊙P的位置关系设直线DM和x轴交于E,连接PM则PM⊥OE,过P作PD ′⊥ME 于D ′,设y =0,则y =x ﹣=0,则可求出OE 的长,根据勾股定理求出ME ,在根据三角形的面积为定值可求出PD ′的长,和圆P 的半径比较大小即可判定直线MD 与⊙P 的位置关系;(3)此题要分两种情况:①以AD 为边,②以AD 为对角线.确定平行四边形后,可直接利用平行四边形的性质求出F 点的坐标.【解答】解:(1)连接CP∵A 点坐标为(﹣3,0),B 点坐标为(12,0),∴AB =15∵点P 是AB 中点∴AP ==BP =CP∵AO =3∴OP =在Rt △CPO 中,OC ==6 ∴点C 坐标为(0,﹣6)∴设抛物线解析式y =a (x +3)(x ﹣12)且过点C (0,﹣6)∴﹣6=﹣36a∴a =∴抛物线解析式y =(x +3)(x ﹣12)=x 2﹣x ﹣6,(2)∵y =x 2﹣x ﹣6=(x ﹣)2﹣;∴M (,﹣), ∵P 是圆的圆心,∴PM 是圆的对称轴,PM 是抛物线的对称轴,∵C (0,﹣6),∴D (9,﹣6),设直线MD 的解析式y =kx +b ,把D (9,﹣6)和M (,﹣)代入得:,解得:,∴y=x﹣;设直线DM和x轴交于E,连接PM,则PM⊥OE,过P作PD′⊥ME于D′,设y=0,则y=x﹣=0,∴x=17,∴OE=17,∴E(17,0),∴PE=17﹣4.5=12.5,∵PM=,∴ME==,∵PM•PE=PD′•EM,∴PD′==7.5,∴PD′等于圆的半径,∴直线MD与⊙P的位置关系是相切;(3)存在4个这样的点F,分别是F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0),①如图2,连接D与抛物线和y轴的交点C,那么CD∥x轴,此时AF=CD=9,因此F点的坐标是(﹣12,0);②如图3,AF=CD=9,A点的坐标为(﹣3,0),因此F点的坐标为(6,0);③如图4,此时D,E两点的纵坐标互为相反数,因此E点的纵坐标为6,代入抛物线中即可得出E点的坐标为(,6),∵直线AD的解析式为y=﹣x﹣,∵EF∥AD,因此可设直线EF的解析式为y=﹣x+h,将E点代入后可得出直线EF的解析式为y=﹣x+,因此直线EF与x轴的交点F的坐标为(,0);④如图5,同③可求出F的坐标为(,0).总之,符合条件的F点共有4个.【点评】本题考查了用待定系数法求一次函数和二次函数的解析式、二次函数的性质、顶点坐标的求法、一次函数和坐标轴的交点、圆的性质、切线的判定以及勾股定理的运用,题目的综合性很强,难度不小.。
【全国百强校】湖南省长沙市麓山国际实验学校2017届初三第一次适应性测试数学试题

一、选择题(每小题3分,共36分。
)1.长沙黄花国际机场正在进一步扩建,届时全世界最大的空客A380就能在该机场顺利起降,预计能满足约2800000人次的年吞吐量,将2800000用科学记数法表示为 A .28×106 B .2.8×107 C .2.8×105 D .2.8×1062.函数y =A .x >2B .x≠2C .x≥2D .x≥03.不等式组51x x ≤⎧⎨>⎩的解集在数轴上表示为4.下列图形中,既是轴对称图形,又是中心对称图形的是5.在①22x y =⎧⎨=⎩;②22x y =⎧⎨=-⎩;③21x y =⎧⎨=⎩;④16x y =⎧⎨=⎩中,是方程410x y +=的解的有A .1组B .2组C .3组D .4组6.下列因式分解正确的是A .2222()ax ay a x y -=+B .221(2)1x x x x ++=++C .22()()x y x y x y +-=-D .2244(2)x x x ++=+7.8名学生在一次数学测试中的成绩分别为80,82,79,69,74,78,x ,81,这组成绩的平均数是78,则x 的值为A .76B .74C .75D .81 8.下列命题正确的是A .一组对边平行且相等的四边形是平行四边形B .有一个角是直角的四边形是矩形C .对角线互相垂直的四边形是菱形D .邻边相等的四边形是正方形 9.下列各组数据能作为一个等腰三角形各边长的是A .1,1,2B .4,2,4C .2,3,4D .3,3,710.某河堤横断面如图所示,河堤高BC =8 m ,迎水坡坡角∠BAC =30°,则AB 的长为A .16 mB .C .D .11.如图,在矩形ABCD 中,AB =2,BC =1,动点P 从点A 出发,沿路线A →B →C 做匀速运动,那么△CDP 的面积S 与点P 运动的路程x 之间的函数图象大致是12.为执行“两免一补”政策,某地区2014年投入教育经费2500万元,预计到2016年,三年共投入8275万元.设投入教育经费的年平均增长率为x ,那么下列方程正确的是 A .22500=8275x B .22500(1%)=8275x +C .22500(1)=8275x +D .225002500(1)2500(1)=8275x x ++++二、填空题(每小题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
麓山国际实验学校2016-17-1初三第一次限时训练数 学 试 卷总 分:120 时 量:120分钟一、选择题(每小题3分,共36分) 1.下列函数:22,21,,3,1x y x y x k y x y xy =-====中,是y 关于x 的反比例函数的有( )个A . 1个B .2个C . 3个D .4个2. 在平面直角坐标系中,已知点A (-6,9)、B (-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(-2,3)B .(-18,27)C .(-18,27)或(18,-27)D .(-2,3)或(2,-3) 3. 下列说法中,正确的是( ) A . 三点确定一个圆B . 一组对边平行,另一组对边相等的四边形是平行四边形C . 对角线互相垂直的四边形是菱形D . 对角线互相垂直平分且相等的四边形是正方形4.2016年国庆假长沙县的旅游收入约为1900万,将1900用科学记数法表示应为( ) A .21910⨯ B .31.910⨯ C .41.910⨯D .40.1910⨯5. 如图,已知直线a ∥b ∥c ,直线m ,n 与直线a ,b ,c 分别交于点A 、C 、E 、B 、D 、F ,AC =4,CE =6,BD =3,则BF =( ) A .7 B .7.5 C .8 D .8.56. 4的算术平方根是 ( ) A . 2 B . ±2 C . -2 D .27.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( ) A .ABAD =AC AE B .AB AD =BCDEC .∠B =∠D D .∠C =∠AED8.某校学生参加体育测试,某小组10名同学的完成引体向上的个数如下表,这10名同学引体向上个数的众数与中位数依次是( ) A .7和7.5 B .7和8 C .7.5和9 D .8和99.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,如果∠BOC =70°, 那么∠BAD 等于( )A . 20°B . 30°C . 35°D .70°10. 在函数21y x =-x 的取值范围是( ) A .1x -≥ B .1x >-且12x ≠ C .1x ≥-且12x ≠ D .1x -≥ 11. 已知反比例函数),0(≠=k xky 当0<x 时,y 随x 的增大面增大,那么一次函数k kx y -=的图象经过的象限是( )A .一、二、三B .一、三、四C .一、二、四D .二、三、四 12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数6y x=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为( ) A .36B .12C .6D .3二、填空题(每小题3分,共18分)13. 分解因式:2312x -= . 14. 如图,点A 在双曲线xky =上,AB ⊥x 轴于点B ,且△AOB 的面积是2,则k 的值是 .15.在函数xa y 12--= (a 为常数)的图像上三点(—1,1y ),(41-,2y ),(21,3y )则函数值1y 、2y 、3y 的大小关系是__________________.16. 某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m ,影长是1m ,旗杆的影长是8m ,则旗杆的高度是 m .17.从1,2,4,5,6,8,9这七个整数中,任取一个数是奇数的概率是___________.18.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为.三、解答题(6分×2+8分×2+9分×2=46分)19.计算:201602(1)( 3.14)2π--+--20. 先化简再求值:22253()2442x x xx x x x+++÷++++,其中x=-1.21.已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD 垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.22. 麓山组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为100元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)假设售价与销售量始终满足(1)中所求函数关系,若商场计划每天的销售利润为3500元,则其单价应定为多少元?第18题第14题23.如图,一次函数y x m =+的图象与反比例函数ky x=的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1). (1)求m 及k 的值;(2)连接OA ,OB ,求△OAB 的面积; (3)结合图象直接写出不等式组0kx m x<+≤的解集.24. 已知锐角△ABC 中,边BC 长为12,高AD 长为8;(1) 如图,矩形EFGH 的边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K ; ① 求EFAK的值; ② 设EH =x ,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值;(2) 若AB =AC ,正方形PQMN 的两个顶点在△ABC 一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN 的边长.四、综合题(10分×2=20分)25.已知:如图所示,在平面直角坐标系中,函数my x=(x >0,m 是常数)的图象经过点A (1,4)、点B (a ,b ),其中a >1,直线AB 交y 轴于点E .过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,AC 与BD 相交于点M ,连接DC . (1)若△ABD 的面积为4,求点B 的坐标;(2)求证:四边形ACDE 为平行四边形; (3)若AD =BC ,求直线AB 的函数解析式.E26.如图,已知抛物线C:y=x2-3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.(1)求m的值;(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=-3x+b交于点P,且1 OA+1=2,求b的值;(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否存在实数k使S△APQ =S△BPQ,若存在,求k的值;若不存在,说明理由.2016—2017—1初三第一次限时训练数学参考答案 一、选择题二、填空题 13.3(x+2)(x-2) 14.-4 15. 312y y y << 16. 12 17. 37 三、解答题19. 原式=1+12+1-1944=;(每个式子1分,结果2分)20.23=2x x+原式 ………………4分 当x=﹣1时,原式=﹣3………………6分21.(1)证明:∵AB=AD=25,∴∠ABD=∠ADB , ∵AD ∥BC ,∴∠ADB=∠DBC , ∴∠ABD=∠DBC ,∵AE ⊥BD ,∴∠AEB=∠C=90°,∴△ABE ∽△DBC ;………………4分(2)解:∵AB=AD ,又AE ⊥BD ,∴BE=DE ,∴BD=2BE ,由△ABE ∽△DBC ,得,∵AB=AD=25,BC=32,∴,∴BE=20,∴AE=.………………8分22.解:(1)由表中数据得:xy=6000,∴y= ,∴y 是x 的反比例函数,故所求函数关系式为y= ;………………4分(2)由题意得:(x ﹣100)y=3500,把y=代入得:(x ﹣100)•=3500,解得:x=240;经检验,x=240是原方程的根。
答:若商场计划每天的销售利润为3500元,则其单价应定为240元.………………8分 23.解:(1)由题意可得:点A (2,1)在函数y=x+m 的图象上, ∴2+m=1即m=﹣1,………………1分∵A (2,1)在反比例函数的图象上,∴,∴k=2;………………3分(2)B(-1,-2) ………………4分 △OAB 的面积=1.5………………6分(3)∵一次函数解析式为y=x ﹣1,令y=0,得x=1,∴点C 的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.………………9分(没有等于号扣1分)24. (1)①∵矩形EFGH ∴EF ∥BC , ∴△AEF ∽△ABC ,AK ,AD 分别是EF ,BC 边上的高 ∴EF BC =AK AD ,即EF 12=AK 8 ∴EF AK =32.………3分(没说明AK ,AD 是对应边上的高即对应线段扣1分)②由题意知EH =KD =x ,AK =8-x .∵EF AK =32,∴EF 8-x =32,∴EF =32(8-x ),∴S =EF ·EH =32(8-x )x =-32(x -4)2+24,………………5分∴S 的最大值是24. ………………6分(2)正方形PQMN 的边长为4.8或24049.(只错1个扣1分)(i)两顶点在底边BC 上时,由(1)知PQ AK =32,∵四边形PQMN 是正方形,∴AK =AD -DK =AD -PQ =8-PQ , ∴PQ 8-PQ =32,∴PQ =4.8;………………8分 (ii)正方形两顶点M ,N 在腰AB 上时,作CH ⊥AB 于H ,交PQ 于G , 则CG =CH -HG =CH -PQ =9.6-PQ , 如图:∵AB =AC ,AD ⊥BC ,∴BD =6,又∵AD =8,∴AB =10,∴AB ·CH =BC ·AD ,∴CH =9.6. 由(1)知PQ CG =AB CH =2524,即PQ 9.6-PQ =2524,∴PQ =24049,综上,正方形PQMN 的边长为4.8或24049.………………9分25. (1)将A (1,4)代入函数my x中,m =4,所以y =;∵S △ABD =BD·AM=a (4-b )=4, B (a ,b )在函数y =的图象上,所以ab =4,∴a =3,b =, 即:点B (3,43);………………3分 (2)法一,面积法,△ADC 的面积=△BDC 的面积,证CD ∥AB 法二,证AB,CD 斜率相等 法三,证AC ∥DE,AC=DE法四,证△CDM ∽△ABM ………………6分 (3)设直线AB 的函数解析式为y=kx+b∵CD ∥AB,AD=BC ∴四边形ABCD 为平行四边形或等腰梯形 情况1:四边形ABCD 为平行四边形 则DM=MB ∴a-1=1,a=2 ∴B (2,2)∵A (1,4)、B (2,2)在直线AB 上, 解得:y=-2x+6………………8分 情况2:四边形ABCD 为等腰梯形,则AC=BD ∴a=4,∴B (4,1) ∵A (1,4)、B (4,1)在直线AB 上 解得:y=-x+5综上所述,直线AB 的函数解析式为y=-2x+6或y=-x+5.………………10分 26. 解:(1)∵当k =1时,抛物线C 与直线l 只有一个公共点,∴方程组23,y x x m y x⎧=-+⎨=⎩有且只有一组解.消去y ,得x 2-4x +m =0,所以此一元二次方程有两个相等的实数根. ∴△=0,即(-4)2-4m =0. ∴m =4.………………3分(2)如图,分别过点A ,P ,B 作y 轴的垂线,垂足依次为C ,D ,E , 则△OAC ∽△OPD ,∴OP =PD . 同理,OP OB =PD BE. ∵1OA +1OB =2OP ,∴OP OA +OP OB =2. ∴PD AC +PD BE=2. ∴1AC +1BE =2PD ,即AC BE AC BE +=2PD解方程组,3y kx y x b=⎧⎨=-+⎩得x =3b k +,即PD =3b k +.由方程组2,34y kx y x x =⎧⎨=-+⎩消去y ,得x 2-(k +3)x +4=0. ∵AC ,BE 是以上一元二次方程的两根,∴AC +BE =k +3,AC ·BE =4. ∴34k +=23bk +.解得b =8.………………7分答案图(3)不存在.………………8分理由如下:假设存在,则当S△APQ=S△BPQ时有AP=PB,于是PD-AC=BE-PD,即AC+BE=2PD.由(2)可知AC+BE=k+3,PD=83k+,∴k+3=2×83k+,即(k+3)2=16.解得k=1(舍去k=-7).当k=1时,A,B两点重合,△QAB不存在.∴不存在实数k使S△APQ=S△BPQ.………………10分(求出k=1,没舍去,回答存在的扣1分)。