高中数学复习课件1-3
合集下载
高中数学人教版必修三第3章 概率全章复习 课件(共17张PPT)

例题精讲之概率的性质 8.如图,在等腰直角△ABC中, (1)过直角顶点C在∠ACB内部随机地 作一条射线CM,与线段AB交于点M, 求AM<AC的概率; (2)若是直接在线段AB上随机找一点 C M,求AM<AC的概率。
答案:
2 (1)3/4;(2) 2
A
M
B
例题精讲之概率的性质
9、在圆x2+y2-2x-2y+1=0内随机投点, 求点与圆心距离小于1/3的概率。 解:圆化为标准形式为:(x-1)2+(y-1)2=1, 这是以点C(1,1)为圆心,半径为1的圆 设“点P与圆心的距离小于1/3”为事件A, 则A成立的对应的区域是以C为圆心,半 径为1/3的圆。 所以P(A)=1/9。
例题精讲之概率的性质 2.有一人在打靶中,连续射击2次, 事件“至少有1次中靶”的对立事 件是( ) C A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶
例题精讲之概率的性质
3、袋内分别有红、白、黑球各3、2、 1个,从中任取2个,则互斥而不对 D )。 立的两个事件是( A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.至少有一个白球;一个白球一个黑 球 D.至少有一个白球;红、黑球各一个
必修3第3章 概率全章复习
一、基础知识归纳 设Ω有n个基本事件,随机事件A包含m 个基本事件,则事件A的概率P(A)=m/n. 对任何事件A:0≤P(A)≤1.
1、古典概率定义
事件A包含的基本事件数 P(A)= 基本事件总数 当且仅当所描述的基本事件的出 现是等可能性时才成立
2、简单概率事件关系
12.若以连续掷两次骰子分别得到的点数m、n 作为P点的坐标,则点P落在圆x2+y2=16内的 概率是 ________
人教版高中数学必修二课件:1-3-2球的表面积和体积

球外接于正方体
两个几何体相接:一个几何体的所有顶点都在 另一个几何体的表面上。
例题讲解
例4:已知过球面上三点A、B、C的截面到球心O的距 离等于球半径的一半,且AB=BC=CA=2cm,求球的 体积,表面积.
解:如图,设球O半径为R, 截面⊙O′的半径为r,
O
OO R , ABC是正三角形,
圆柱 S 2r(r l) r r
圆台 S (r2 r 2 rl rl)
r 0 圆锥 S r(r l)
各面面积之和
复习旧知
柱体、锥体、台体的体积
柱体 V Sh
S S'
台体V 1 (S SS S)h
3
S' 0
锥体 V 1 Sh
①V 4 R3
3
②S 4R2
练习二
课堂练习
1.若球的表面积变为原来的2倍,则半径变为原来的__2_倍.
2.若球半径变为原来的2倍,则表面积变为原来的__4_倍.
3.若两球表面积之比为1:2,则其体积之比是__1_: 2___2.
4.若两球体积之比是1:2,则其表面积之比是__1_:_3__4.
课堂小结
了解球的体积、表面积推导的基本思路: 分割→求近似和→化为标准和的方法,是 一种重要的数学思想方法—极限思想,它 是今后要学习的微积分部分“定积分”内 容的一个应用; 熟练掌握球的体积、表面积公式:
一个圆锥形的空杯子上面放着一个半球形的 冰淇淋,如果冰淇淋融化了,会溢满杯子吗?
解:由图可知,半球的半径为4
半球的体积为 4 π43= 256 π
3
3
圆锥的体积为 1 πR2×12= 192 π
3
3
两个几何体相接:一个几何体的所有顶点都在 另一个几何体的表面上。
例题讲解
例4:已知过球面上三点A、B、C的截面到球心O的距 离等于球半径的一半,且AB=BC=CA=2cm,求球的 体积,表面积.
解:如图,设球O半径为R, 截面⊙O′的半径为r,
O
OO R , ABC是正三角形,
圆柱 S 2r(r l) r r
圆台 S (r2 r 2 rl rl)
r 0 圆锥 S r(r l)
各面面积之和
复习旧知
柱体、锥体、台体的体积
柱体 V Sh
S S'
台体V 1 (S SS S)h
3
S' 0
锥体 V 1 Sh
①V 4 R3
3
②S 4R2
练习二
课堂练习
1.若球的表面积变为原来的2倍,则半径变为原来的__2_倍.
2.若球半径变为原来的2倍,则表面积变为原来的__4_倍.
3.若两球表面积之比为1:2,则其体积之比是__1_: 2___2.
4.若两球体积之比是1:2,则其表面积之比是__1_:_3__4.
课堂小结
了解球的体积、表面积推导的基本思路: 分割→求近似和→化为标准和的方法,是 一种重要的数学思想方法—极限思想,它 是今后要学习的微积分部分“定积分”内 容的一个应用; 熟练掌握球的体积、表面积公式:
一个圆锥形的空杯子上面放着一个半球形的 冰淇淋,如果冰淇淋融化了,会溢满杯子吗?
解:由图可知,半球的半径为4
半球的体积为 4 π43= 256 π
3
3
圆锥的体积为 1 πR2×12= 192 π
3
3
新教材2023版高中数学章末复习课1第一章数列课件北师大版选择性必修第二册

章末复习课 1
考点一 传统文化中的数列问题 1.在以实用为主的古代数学中,数列是研究的热点问题. 2.通过对优秀传统文化的学习,提升学生的数学建模、数学运算素 养.
例1 (1)《九章算术》是我国古代内容极为丰富的数学名著,书中
有如下问题:“今有禀粟,大夫、不更、簪裹、上造、公士,凡五人,
一十五斗.今有大夫一人后来,亦当禀五斗.仓无粟,欲以衰出之,
项公式要分段表示. (3)求数列的前n项和,根据数列的不同特点,常有方法:公式法、裂项相
消法、错位相减法、分组求和法. (4)通过对数列通项公式及数列求和的考查,提升学生的逻辑推理、数学
运算素养.
例4 已知数列{an}的前n项和Sn满足2Sn=(n+1)an(n∈N*)且a1=2. (1)求数列{an}的通项公式; (2)设bn= an − 1 2an.求数列{bn}的前n项和Tn.
于织布,从第二天起,每天比前一天多织相同量的布,现在该女子一
个月(按30天计)共织布390尺,最后一天织布21尺,则该女子第一天织
布( )
A.3尺
B.4尺
C.5尺
D.6尺
答案:C
解析:由题意可设该女子第n天织布的数量为an,则数列{an}是等差数列,设其
21 公差为d.则ቐ390 =
= a1 30a1
2(an≠0)⇔{an}是等比数列.
(3)通项公式法:an=kn+b(k,b是常数)⇔{an}是等差数列;an=c·qn(c,q
为非零常数)⇔{an}是等比数列.
(4)前n项和公式法:Sn=An2+Bn(A,B为常数,n∈N*)⇔{an}是等差数列;
Sn=Aqn-A(A,q为常数,且A≠0,q≠0,q≠1,n∈N*)⇔{an}是等比数
考点一 传统文化中的数列问题 1.在以实用为主的古代数学中,数列是研究的热点问题. 2.通过对优秀传统文化的学习,提升学生的数学建模、数学运算素 养.
例1 (1)《九章算术》是我国古代内容极为丰富的数学名著,书中
有如下问题:“今有禀粟,大夫、不更、簪裹、上造、公士,凡五人,
一十五斗.今有大夫一人后来,亦当禀五斗.仓无粟,欲以衰出之,
项公式要分段表示. (3)求数列的前n项和,根据数列的不同特点,常有方法:公式法、裂项相
消法、错位相减法、分组求和法. (4)通过对数列通项公式及数列求和的考查,提升学生的逻辑推理、数学
运算素养.
例4 已知数列{an}的前n项和Sn满足2Sn=(n+1)an(n∈N*)且a1=2. (1)求数列{an}的通项公式; (2)设bn= an − 1 2an.求数列{bn}的前n项和Tn.
于织布,从第二天起,每天比前一天多织相同量的布,现在该女子一
个月(按30天计)共织布390尺,最后一天织布21尺,则该女子第一天织
布( )
A.3尺
B.4尺
C.5尺
D.6尺
答案:C
解析:由题意可设该女子第n天织布的数量为an,则数列{an}是等差数列,设其
21 公差为d.则ቐ390 =
= a1 30a1
2(an≠0)⇔{an}是等比数列.
(3)通项公式法:an=kn+b(k,b是常数)⇔{an}是等差数列;an=c·qn(c,q
为非零常数)⇔{an}是等比数列.
(4)前n项和公式法:Sn=An2+Bn(A,B为常数,n∈N*)⇔{an}是等差数列;
Sn=Aqn-A(A,q为常数,且A≠0,q≠0,q≠1,n∈N*)⇔{an}是等比数
高中数学1.3函数的基本性质 PPT课件 图文

f (x)
1、单调函数的图象特征; 2、函数单调性的定义; 3、证明函数单调性的步骤;
作业 1:证明函数 f(x)=x+4x在(0,1)上是减函数. 2、 证明函数f(x)=x 3 在(-∞,+∞)上是增函数.
思考:讨论函数 f(x )x22ax 3
在(-2,2)内的单调性.
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的
高中数学必修1复习 PPT课件 图文

x4 x0
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
高中数学必修1基本初等函数复习课件(上课)

已知f(x)=log4(2x+3-x2), 例3 • (1)求函数f(x)的单调区间; • (2)求函数f(x)的最大值,并 求取得最大值时的x的值.
•
涉及值域问题关键是画图像,若直接不能画出的换元之后画图。
课堂互动讲练
互动探究
1 在例 3 中若函数 f(x)=log (2x+3-x2),如 4 何回答例 3 的问题?
答案:(-3,2]
例4
当x∈[2,8]时,求函数 x x y log 2 log 2 的最大值和最小值 . 2 4
ymin 1 , ymax 2 4
例5 已知集合A={x|log2(-x)<x+1}, 函数f(x)=ln(2x+1)的定义域为集合B, 求A∩B.
1 [例 6] 求函数 y=2log x-log x +1 (4≤x≤4)的值域. 2 2
2-1) ;
0
(2)已知 10 =2,10 =3,求
lg 2+lg3-lg 10 (3)计算 . lg1.8
(4)
( 2a b
2 1 3 2
6a b ) (3a b )
1 1 2 3
1 5 6 6
3 (5)lg +lg70-lg3- lg23-lg9+1; 7 lg4-lg60 3 - (6)( ) -45×2 11. lg3+lg5
log10 N lg N
(2)自然对数:
(3 )
注意:
底数a的取值范围 (a>0, a≠1) ;
loge N ln N
(e 2.71828)
真数N的取值范围
N>0
4.积、商、幂的对数运算法则P65: 如果a>0,且a≠1,M>0,N>0有:
log a (MN ) log a M log a N (1) M log a log a M log a N (2) N n log a M n log a M (n R) (3)
高考数学复习考点知识讲解课件3 不等式性质 一元二次函数 方程和不等式

+c(a>0)的
图象
ax2+bx+c =0(a>0)的
根
有两个不相 等的实数根 x1,x2(x1<x2)
有两个相等 的实数根 x1 =x2=-2ba
没有实数根
— 返回 —
— 6—
(新教材) 高三总复习•数学
判别式 ax2+bx+ c>0(a>0)的
解集 ax2+bx+ c<0(a>0)的
解集
Δ>0 {x_|x_<_x_1_或__x_>_x_2}
— 2—
— 返回 —
基础知识夯实
01
(新教材) 高三总复习•数学
知识梳理 1.两个实数比较大小的方法
(1)作差法:aa--bb>=00⇔⇔aa_____>=_____bb,, a-b<0⇔a___<__b.
aba>∈1Ra∈,Rb>,0b,>0⇔a___>___b (2)作商法ab=1⇔a__=____ba,b≠0,
— 返回 —
— 8—
(新教材) 高三总复习•数学
— 返回 —
诊断自测 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若ab>1,则 a>b.( × ) (2)若 ab>0,则 a>b⇔1a<1b.( √ ) (3)若不等式 ax2+bx+c>0 的解集是(-∞,x1)∪(x2,+∞),则方程 ax2+bx+c=0 的 两个根是 x1 和 x2.( √ ) (4) 一 元 二 次 不 等 式 ax2 + bx + c≤0 在 R 上 恒 成 立 的 条 件 是 a<0 且 Δ = b2 - 4ac≤0.( √ )
人教版高中数学必修二课件:1-3-1柱体和椎体的表面积与体积

3
锥体V 1 Sh
3
6
10
3.14
10 2
2
10
=2956mm3 2.956cm3
螺帽个数:5.8×1000÷(7.8×2.956)≈252 答:这堆螺帽大约有252个。
• 练习:三棱锥P-ABC的高为6,底面 是边长为2的等边三角形,则三棱锥 P-ABC的体积为__2___3_.
h
a
bc
S直棱拄侧=(a b c) h ch
思考:把圆柱的侧面沿着一条母线展开,得到 什么图形?展开的图形与原图有什么关系?
r
l
长方形
宽= l
长=2r
S圆柱侧 S长方形=Cl=2 rl
把正三棱锥侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h' h'
S正棱锥侧=
1 2
高中数学课件
灿若寒星整理制作
学习目标
1.了解柱体、锥体、台体的表面积的计算公 式.提高学生的空间想象能力和几何直观能力 ,培养学生的应用意识,增加学生学习数学的 兴趣.
2.掌握简单几何体的表面积的求法,提高学生 的运算能力,培养学生转化、化归以及类比的 能力.
重点 了解柱体锥体的表面积计算公式.
结果精 确 到1毫升,可用计算器)?
解:花盆外壁的表面积: S (r'2 r 2 r'l rl )
S [(15)2 15 15 20 15] (1.5)2
20cm
22
2
2
1000(cm2 ) 0.1(m2 )
涂100个花盆需油漆: 0.1100100 1000 (毫升)
锥体V 1 Sh
3
6
10
3.14
10 2
2
10
=2956mm3 2.956cm3
螺帽个数:5.8×1000÷(7.8×2.956)≈252 答:这堆螺帽大约有252个。
• 练习:三棱锥P-ABC的高为6,底面 是边长为2的等边三角形,则三棱锥 P-ABC的体积为__2___3_.
h
a
bc
S直棱拄侧=(a b c) h ch
思考:把圆柱的侧面沿着一条母线展开,得到 什么图形?展开的图形与原图有什么关系?
r
l
长方形
宽= l
长=2r
S圆柱侧 S长方形=Cl=2 rl
把正三棱锥侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
h' h'
S正棱锥侧=
1 2
高中数学课件
灿若寒星整理制作
学习目标
1.了解柱体、锥体、台体的表面积的计算公 式.提高学生的空间想象能力和几何直观能力 ,培养学生的应用意识,增加学生学习数学的 兴趣.
2.掌握简单几何体的表面积的求法,提高学生 的运算能力,培养学生转化、化归以及类比的 能力.
重点 了解柱体锥体的表面积计算公式.
结果精 确 到1毫升,可用计算器)?
解:花盆外壁的表面积: S (r'2 r 2 r'l rl )
S [(15)2 15 15 20 15] (1.5)2
20cm
22
2
2
1000(cm2 ) 0.1(m2 )
涂100个花盆需油漆: 0.1100100 1000 (毫升)