2019-2020年濮阳市濮阳县九年级上册期末模拟数学试卷(含解析)【最新版】

合集下载

【数学】九年级上册濮阳数学全册期末复习试卷练习(Word版 含答案)

【数学】九年级上册濮阳数学全册期末复习试卷练习(Word版 含答案)

【数学】九年级上册濮阳数学全册期末复习试卷练习(Word 版 含答案)一、选择题1.方程 x 2=4的解是( ) A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-42.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.3.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .4.若25x y =,则x yy+的值为( ) A .25 B .72C .57D .755.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°6.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 8.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:19.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .2310.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 11.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断12.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差B .众数C .平均数D .中位数13.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134…y … 2 4 2 ﹣2 …则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间15.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____. 17.已知∠A =60°,则tan A =_____.18.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 19.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km . 20.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.21.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________. 24.一组数据:2,5,3,1,6,则这组数据的中位数是________.25.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).26.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)27.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.28.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.29.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.三、解答题31.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标. (1)用适当的方法写出点A (x ,y )的所有情况. (2)求点A 落在第三象限的概率.32.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE=23∠DPA=45°.(1)求⊙O 的半径;(2)求图中阴影部分的面积.33.解方程: (1)x 2-8x +6=0 (2)(x -1)2 -3(x -1) =034.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,35.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交抛物线于点D ,交线段AB 于点E .设运动时间为(0)t t >秒. ①当t 为何值时,线段DE 长度最大,最大值是多少?(如图1)②过点D 作DF AB ⊥,垂足为F ,连结BD ,若BOC 与BDF 相似,求t 的值(如图2)四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD=;(2)若O的半径为8,弧BD的度数为120︒,求四边形ABCD的面积;(3)如图2,作OM BC⊥于M,请猜测OM与AD的数量关系,并证明你的结论.37.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.38.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.39.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax 2+c=0(a≠0)的方程可变形为2=cx a-,当a 、c 异号时,可利用直接开平方法求解. 2.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.C解析:C 【解析】 【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可. 【详解】 由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8), 故选:C. 【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.4.D解析:D 【解析】 【分析】由已知可得x 与y 的关系,然后代入所求式子计算即可. 【详解】 解:∵25x y =, ∴25x y =,∴2755y yx y y y ++==.故选:D. 【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.5.C解析:C 【解析】 【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可. 【详解】解:∵四边形ABCD 内接于⊙O , ∴∠C+∠A=180°, ∵∠A=80°, ∴∠C=100°, 故选:C . 【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.6.D解析:D 【解析】 【分析】 只要证明AC ABAE AD=,即可解决问题. 【详解】 解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定 B.2ECAC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2ABAD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D.2AC ABAE AD ==,可得DE//BC , 故选D. 【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 8.B解析:B【解析】【分析】可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD 为平行四边形,∴DC ∥AB ,∴△DFE ∽△BFA ,∵DE :EC=3:1,∴DE :DC=3:4,∴DE :AB=3:4,∴S △DFE :S △BFA =9:16.故选B .9.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D .【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.10.D解析:D【解析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.11.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.12.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故正确;C 、是轴对称图形,不是中心对称图形.故错误;D 、不是轴对称图形,也不是中心对称图形.故错误.故选B .点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:1x =,2x =∵3102--<,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.15.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题16.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案. 由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A =tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.19.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴圆锥的底面半径为cm ,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,6=cm ,∴底面周长为2π×6=12πcm ,即这张扇形纸板的弧长是12πcm ,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长. 22.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 23.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.24.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.25.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).26.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2. 故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键. 27.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 28.【解析】【分析】先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,【解析】 【分析】先在CB 上取一点F ,使得CF=12,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答. 【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF , ∵∠DCE=90°,DE=4,DP=PE , ∴PC=12DE=2, ∵14CF CP =,14CP CB = ∴CF CPCP CB= 又∵∠PCF=∠BCP , ∴△PCF ∽△BCP , ∴14PF CF PB CP == ∴PA+14PB=PA+PF ,∵PA+PF≥AF ,==∴PA+14∴PA+14PB故答案为2.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.29.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.30.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.三、解答题31.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)2 9 .【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:1 (﹣7,1) (﹣1,1) (3,1) 6(﹣7,6)(﹣1,6)(3,6)(2)∵点A 落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况, ∴点A 落在第三象限的概率是29. 32.(1) 2 ;(2)π-2. 【解析】 【分析】(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得 【详解】解:(1)∵直径AB ⊥DE∴132CE DE == ∵DE 平分AO∴1122CO AO OE == 又∵90OCE ︒∠= ∴30CEO ︒∠= 在Rt △COE 中,2OE = ∴⊙O 的半径为2 (2)连结OF在Rt △DCP 中, ∵45DPC ︒∠= ∴904545D ︒︒︒∠=-= ∴290EOF D ︒∠=∠= ∵2902360OWF S ππ=⨯⨯=扇形∴S 阴影=2π- 【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系. 33.(1)x 1=104+,x 2=-104+(2) x 1=1,x 2=4. 【解析】 【分析】(1)根据配方法即可求解; (2)根据因式分解法即可求解. 【详解】 (1)x 2-8x +6=0 x 2-8x +16=10 (x-4)2=10 x-4=±10∴x 1=104+,x 2=-104+ (2)(x -1)2 - 3(x -1) =0 (x -1)(x -1-3)=0 (x -1)(x-4)=0 ∴x-1=0或x-4=0 解得x 1=1,x 2=4. 【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人;扇形统计图中,选“D 一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数(1)200;72(2)60(人),图见解析(3)1050人.【解析】 【分析】(1)由A 类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D 人数占总人数的比例可得;(2)首先求得C 项目对应人数,即可补全统计图; (3)总人数乘以样本中B 、C 人数所占比例可得. 【详解】(1)∵A 类有20人,所占扇形的圆心角为36°, ∴这次被调查的学生共有:20÷36360=200(人); 选“D 一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°, 故答案为:200、72;(2)C 项目对应人数为:200−20−80−40=60(人); 补充如图.(3)1500×8060200+=1050(人), 答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 34.(1)b=2或b=10-;(2)x 1=x 2=2; 【解析】 【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案. 【详解】解:(1)由题意可知:△=(b+2)2-4(6-b )=0, ∴28200b b +-= 解得:b=2或b=10-. (2)当b=2时,此时x 2-4x+4=0, ∴2(2)0x -=, ∴x 1=x 2=2; 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.35.(1)2,3,()1,0-;(2)①32t =时,DE 长度最大,最大值为94;②32t =或52t =【解析】 【分析】(1)先求得坐标(3,0),(0,3)A B ,把(3,0),(0,3)A B 代入2y x bx c =-++中,利用待定系数法求得系数得出解析式,进一步求解C 点坐标即可;(2)①由题知()2(,0),,23P t D t t t -++、(,3)E t t -+;()223(3)DE t t t =-++--+将函数化为顶点式,即可得到最大值.)②将BF 、DF 用含有t 的代数式表示,分类讨论当BDF CBO △∽△相似,则BF OC DF OB=)2312t t -=,求得t ,当BDF BCO △∽△相似,则BF OB DF OC =()2312t t -=,求得t 即可. 【详解】解:(1)在3y x =-+中令0x =,得3y =,令0y =,得3x =,∴(3,0),(0,3)A B ,把(3,0),(0,3)A B 代入2y x bx c =-++中,得:93010b c b c -++=⎧⎨--+=⎩,解得23b c =⎧⎨=⎩,∴抛物线的解析式为2y x 2x 3=-++, ∴C 点坐标为()1,0-;(2)①由题知()2(,0),,23P t D t t t -++、(,3)E t t -+;∴()223(3)DE t t t =-++--+23t t =-+239()24t =--+∴当32t =时,DE 长度最大,最大值为94.②∵()()3,0,0,3A B , ∴OA OB =, ∴45BAO ∠=︒,在Rt PAE 中,45PAE ∠=︒,)AE t ==-;在Rt DEF △中,45DEF ∠=︒,2)DF EF t t ===-;∴))22)322BF AB AE EF t t t t t =--=---=- 若BDF CBO △∽△相似,则BF OC DF OB =)231t t -=, 解得:0t =(舍去),32t =; 若BDF BCO △∽△相似,则BF OB DF OC =)2312t t -=,解得:0t =(舍去),52t =;综上,32t =或52t =时,BOC 与BDF 相似.【点睛】本题考查了二次函数的综合运用以及相似三角形性质.求出二次函数解析式,研究二次函数的顶点坐标及相关图形的特点,是解题的关键.四、压轴题36.(1)见解析;(2)96;(3)AD=2OM ,理由见解析 【解析】 【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD 的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD ,根据题意计算即可;(3)连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图3,根据垂径定理得到AE=DE ,再利用圆周角定理得到∠BOM=∠BAC ,∠AOE=∠ABD ,再利用等角的余角相等得到∠OBM=∠AOE ,则可证明△BOM ≌△OAE 得到OM=AE ,证明结论. 【详解】解:(1)证明:∵AC=BD , ∴AC BD =, 则ABDC ,∴AB=CD;(2)如图1,连接OB 、OD ,作OH ⊥BD 于H , ∵弧BD 的度数为120°, ∴∠BOD=120°, ∴∠BOH=60°, 则BH=3OB=43, ∴BD=83, 则四边形ABCD 的面积=12×AC×BD=96;(3)AD=2OM ,连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图2, ∵OE ⊥AD , ∴AE=DE , ∵∠BOC=2∠BAC , 而∠BOC=2∠BOM , ∴∠BOM=∠BAC , 同理可得∠AOE=∠ABD , ∵BD ⊥AC , ∴∠BAC+∠ABD=90°, ∴∠BOM+∠AOE=90°, ∵∠BOM+∠OBM=90°, ∴∠OBM=∠AOE , 在△BOM 和△OAE 中,OMB OEA OBM OAE OB OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BOM ≌△OAE (AAS ), ∴OM=AE , ∴AD=2OM .。

濮阳市九年级上学期数学期末考试试卷

濮阳市九年级上学期数学期末考试试卷

濮阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·平谷模拟) 如果,那么代数式的值为()A .B . -2C .D . 22. (2分)(2020·龙泉驿模拟) 如图,A,B,C是⊙O上的三点,已知∠O=60º,则∠C=()A . 20ºB . 25ºC . 30ºD . 45º3. (2分) (2019九上·宝山月考) 下列各组图形中,一定相似的是()A . 两个矩形B . 两个菱形C . 两个正方形D . 两个等腰三角形4. (2分)从一副未曾启封的扑克牌中取出1张红桃、2张黑桃,共3张,洗匀后,从这3张牌中任取一张牌,恰好是黑桃的概率是()A .B .C .D . 15. (2分) (2019九上·湖州月考) 将二次函数y=2x2的图象向右平移4个单位,再向上平移5个单位后,所得图象的函数表达式是()A . y=2 -5B . y=2 +5C . y=2 +5D . y=2 -56. (2分)若正方形的对角线长为2,则这个正方形的面积为()A . 2B . 4C .D . 27. (2分) (2019九上·道里期末) 已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;方程的解是,;,其中结论错误的个数是A . 1B . 2C . 3D . 48. (2分) (2019八下·松滋期末) 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AD,AC的中点,若CB=4,则EF的长度为()A . 2B . 1C .D . 29. (2分) (2018九上·绍兴期中) 已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A . <m<3B . <m<2C . ﹣2<m<3D . ﹣6<m<﹣210. (2分)(2020·路桥模拟) 如图,在矩形ABCD中,将△ABE沿着BE翻折,使点A落在BC边上的点F处,再将△DEG沿着EG翻折,使点D落在EF边上的点H处. 若点A,H,C在同一直线上,AB=1,则AD的长为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2019九上·义乌月考) 函数y=x2+2x﹣8与y轴的交点坐标是________.12. (1分) (2017八下·桥东期中) 已知a,b可以取﹣2,﹣1,1,2中任意一个值(a≠b),则直线y=ax+b 的图象经过第四象限的概率是________.13. (1分) (2016九上·鼓楼期末) 若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为________cm(结果保留根号).14. (1分)如图,反比例函数y= 的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=________.15. (1分)(2020·宽城模拟) 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千。

河南省濮阳县区联考2019-2020学年中考数学模拟试卷

河南省濮阳县区联考2019-2020学年中考数学模拟试卷

河南省濮阳县区联考2019-2020学年中考数学模拟试卷一、选择题1.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为估计白球数,小刚向其中放入8个黑球摇匀后,从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球200次,其中44次摸到黑球,你估计盒中大约有白球( )A.20个B.28个C.36个D.无法估计2.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G 2,对于这两个图象,有以下几种说法:①当G 1与G 2有公共点时,y 1随x 增大而减小;②当G 1与G 2没有公共点时,y 1随x 增大而增大;③当k =2时,G 1与G 2平行,且平行线之间的距离为.下列选项中,描述准确的是( )A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确 3.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=- 4.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为( )A .3π2B .πC .2πD .3π5.下列运算正确的是( )A .325()a a =B .325a a a +=C .32()a a a a -÷=D .331a a ÷= 6.下列运算正确的是( ) A .ab•ab=2abB .(3a )3=9a 3C .3(a≥0)D = 7.如图,矩形ABCD 中,AB =7,BC =4,按以下步骤作图:以点B 为圆心,适当长为半径画弧,交AB ,BC 于点E ,F ;再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠ABC 内部相交于点H ,作射线BH ,交DC 于点G ,则DG 的长为( )A .2B .3C .4D .58.点(-2,1)y ,(1,0),(3,2)y 在函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( )A .102<y <yB .120y y <<C .120y y <<D .102y <<y 9.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图所示,这个不等式组是( )A .23x x ≥⎧⎨>-⎩B .23x x ⎧⎨<-⎩…C .23x x ≥⎧⎨<-⎩D .23x x ⎧⎨>-⎩… 10.下列运算正确的是( )A .x ﹣2x =﹣1B .2x ﹣y =xyC .x 2+x 2=x 4D .(﹣2a 2b )3=﹣8a 6b 3 11.下列计算正确的是( )A .2242a a a ⋅=B .236()a a -=-C .222363a a a -=D .22(2)4a a -=- 12.若一元二次方程26-0x kx +=的一个根是2x =,则原方程的另一个根是( )A .3x =B .3x =-C .4x =D .4x =-二、填空题13.如果正多边形的一个外角为72°,那么它的边数是______.14.36的算术平方根是 .15.如图,//AB CD ,EF AB ⊥于E ,EF 交CD 于F ,已知15812'∠=︒,则2∠=___.16.如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是______.17.关于x 的函数y =(k ﹣1)x 2﹣2x+1与x 轴有两个不同的交点,则实数k 的取值范围是_____.18.已知扇形的弧长为4π,半径为8,则此扇形的面积为_____.三、解答题19.如图,在正方形ABCD 中,E 是BC 延长线上一点,连接AE ,交CD 于点F ,过点C 作CG ⊥AE ,垂足为G ,连接DG ,(1)若BC =6,CF =2,求CE 的长;(2)猜想:AG 、CG 、DG 之间有何数量关系,并证明.20.已知矩形ABCD ,作∠ABC 的平分线交AD 边于点M ,作∠BMD 的平分线交CD 边于点N .(1)若N 为CD 的中点,如图1,求证:BM =AD+DM ;(2)若N 与C 点重合,如图2,求tan ∠MCD 的值;(3)若12CN DN =,AB =6,如图3,求BC 的长.21.从甲市到乙市乘坐高铁列车的路程为180千米,乘坐普通列车的路程为240千米,高铁列车的平均速度是普通列车的平均速度的3倍,高铁列车的乘车时间比普通列车的乘车时间缩短了2小时.(1)求高铁列车的平均速度是每小时多少千米;(2)某日王老师要去距离甲市大约405m 的某地参加14:00召开的会议,如果他买到当日10:40从甲市至该地的高铁票,而且从该地高铁站到会议地点最多需要1.5h ,试问在高铁列车准点到达的情况下他能在开会之前到达吗?22()10120196cos603π-⎛⎫-+- ⎪⎝⎭. 23.如图,抛物线y=-x 2+4x-1与y 轴交于点C ,CD ∥x 轴交抛物线于另一点D ,AB ∥x 轴交抛物线于点A ,B ,点A 在点B 的左侧,且两点均在第一象限,BH ⊥CD 于点H .设点A 的横坐标为m .(1)当m=1时,求AB 的长.(2)若(CH-DH ),求m 的值.24.先化简,再求值:(x+1)(x ﹣1)﹣x (x ﹣1),其中x =13. 25.如图1,在平面直角坐标系中,AB =OB =8,∠ABO =90°,∠yOC =45°,射线OC 以每秒2个单位长度的速度向右平行移动,当射线OC 经过点B 时停止运动,设平行移动x 秒后,射线OC 扫过Rt △ABO 的面积为y .(1)求y 与x 之间的函数关系式;(2)当x =3秒时,射线OC 平行移动到O′C′,与OA 相交于G ,如图2,求经过G ,O ,B 三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在△POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.【参考答案】***一、选择题13.514.15.3148'︒16.5 717.k<2且k≠118.16π三、解答题19.(1)3(2)DC【解析】【分析】(1)根据正方形的性质和相似三角形的判定和性质解答即可;(2)在AE上截取AH=CG,连接DH,利用全等三角形的判定和性质以及勾股定理解答即可.【详解】(1)在正方形ABCD中,∵AB∥DC,AB=BC,∴△CEF∽△BEA,∴CE CF BE AB=,∵BC=6,CF=2,BE=BC+CE,∴2 66 CECE=+,解得:CD=3;(2)猜想:AG、CG、DG之间的数量关系为:AG CG=+,证明如下:在AE上截取AH=CG,连接DH,∵四边形ABCD 是正方形,∴AD ∥BC ,AD =DC ,∠ADC =∠BCD =90°,∴∠DAE =∠E ,∠DCG+∠GCE =90°,∵CG ⊥AE ,∴∠E+∠GCE =90°,∴∠DCG =∠E =∠DAE ,在△ADH 与△CDG 中AD CD DAH DCG AH CG =⎧⎪∠=∠⎨⎪=⎩,∴△ADH ≌△CDG (SAS ),∴DH =DG ,∠ADH =∠CDG ,∵∠ADC =∠ADH+∠HDC =90°,∴∠HCD+∠GDC =∠HDG =90°,∴HG,∵AG =AH+HG ,AH =CG ,∴AG =DG .【点睛】此题考查了相似三角形的性质,正方形的性质、勾股定理等知识的应用,关键是利用全等三角形的判定和性质以及勾股定理解答.20.(1)详见解析;(2)2+;【解析】【分析】(1)如图1,作辅助线,构建全等三角形,证明△DNM ≌△CNE (AAS ),得DM=CE ,证明∠BMN=∠E=67.5°,可得结论;(2)如图2,当N 与C 重合时,BC=BM ,设AB=x ,则x ,表示DM 的长,根据三角函数定义可得结论;(3)如图3,延长MN 、BC 交于点G ,根据等腰直角三角形定义可得BM 的长,即是BG 的长,设CG=m ,则DM=2m ,表示BC 的长,列方程可得结论.【详解】(1)证明:如图1,延长MN 、BC 交于点E ,∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC ,∠ABC =90°,∴∠D =∠NCE ,∠DMN =∠NEC ,∵N 是DC 的中点,∴DN =CN ,∴△DNM ≌△CNE (AAS ),∴DM =CE ,∵BM 平分∠ABC ,∠ABC =90°,∴∠ABM =∠MBE =45°,∵AD ∥BC ,∴∠AMB =∠EBM =45°,∴∠BMD =180°﹣45°=135°,∵MN 平分∠BMD ,∴∠BMN =∠DMN =67.5°,∴∠E =∠DMN =67.5°,∴∠BMN =∠E =67.5°,∴BM =BE =BC+CE =AD+DM ;(2)解:如图2,当N 与C 重合时,由(1)知:∠BMC =∠DMN =∠BCM ,∴BC =BM ,设AB =x ,则BM =BC x ,∵AD =BC ,∴DM x ﹣x ,Rt △DMC 中,tan ∠MCD =1DM DC ==; (3)解:如图3,延长MN 、BC 交于点G ,∵四边形ABCD 是矩形,∴CD =AB =6, ∵12CN DN =, ∴CN =2,DN =4,∵△ABM 是等腰直角三角形,∴BM =,由(1)知:BM =BG =,∵DM ∥CG ,∴△DMN ∽△CGN , ∴422DN DM CN CG ===, 设CG =m ,则DM =2m ,=6+2m+m ,m =﹣2,∴BC =6+2m =【点睛】本题是四边形的综合题,考查了矩形的性质的运用,等腰三角形的判定,勾股定理的运用,相似三角形的性质的运用,平行线和角平分线的性质的运用,三角函数的定义的运用,解答时合理运用角平分线的定义和矩形的性质求解是关键.21.(1)270(2)他能在开会之前到达【解析】【分析】(1)设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】(1)设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米, 根据题意得,2401803x x-=2, 解得:x =90,经检验,x =90是所列方程的根,则3x =3×90=270.答:高速列车平均速度为每小时270千米;(2)405÷270=1.5,则坐车共需要1.5+1.5=3(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.【解析】【分析】分别根据算术平方根、零指数幂,负整数指数幂运算法则以及特殊角三角函数值代入进行运算求值即可.【详解】原式162-⨯=【点睛】本题主要考查了实数的混合运算,熟练掌握算术平方根、零指数幂,负整数指数幂运算法则是解题关键.23.(1)2;(2)3m =-【解析】【分析】(1)因为A 在抛物线上,则把m=1代入二次函数解析式y=-x 2+4x-1解得y=2,令-x 2+4x-1=2解得的两个根分别是A 、B 两点的横坐标.由于B 点在A 点右边,用B 点横坐标减去A 点横坐标所得的数值就是AB 线段的长度.(2)根据题意以及抛物线的对称性分析可得AB=CH-DH ,若(CH-DH ),实际上AB ,此时△ABH 应为等腰直角三角形,∠B 为直角,AB=BH ,用待定系数法设点A 的坐标为(m ,-m 2+4m-1),再利用等腰三角形边比数量关系设出B 点坐标,由于A 、B 两点关于对称轴直线x=2对称,建立方程求解即可得m 的值.【详解】(1)∵m=1,∴A 的横坐标为1,代入y=-x 2+4x-1得,y=2,∴A (1,2),把y=2代入y=-x 2+4x-1得,2=-x 2+4x-1,解得x 1=1,x 2=3,∴B (3,2),∴AB=3-1=2.(2)∵AB ∥x 轴交抛物线于点A ,B ,∴A 、B 两点关于对称轴对称,∴CH-DH=AB ,∵CH-DH ),∴,∴2AB AH = ∴∠BAH=45°,∴AB=BH ,由A 在抛物线上,则设A (m ,-m 2+4m-1),则B (-m 2+5m ,-m 2+4m-1).∴对称轴h=()2542(1)2m m m +-+-=⨯- ∴整理得,m 2-6m+4=0解得,或又∵A 点在对称轴左边∴m <2∴【点睛】本题考查了数形结合的思想以及用待定系数法设点的坐标并建立方程求解的能力.24.x ﹣1,﹣23【解析】【分析】原式利用平方差公式,以及单项式乘多项式法则计算得到最简结果,把x 的值代入计算即可求出值.【详解】原式=x 2﹣1﹣x 2+x=x ﹣1,当x =13时, 原式=13﹣1=﹣23. 【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.(1)y =x 2;(2)y =﹣15x 2+85x ;(3)点P 的坐标为(4,2)或(,2)或(4﹣,﹣2)或(,﹣2)时,△POB 的面积S =8.【解析】【分析】(1)判断出△ABO 是等腰直角三角形,根据等腰直角三角形的性质可得∠AOB =45°,然后求出AO ⊥CO ,再根据平移的性质可得AO ⊥C′O′,从而判断出△OO′G 是等腰直角三角形,然后根据等腰直角三角形的性质列式整理即可得解;(2)求出OO′,再根据等腰直角三角形的性质求出点G 的坐标,然后设抛物线解析式为y =ax 2+bx ,再把点B 、G 的坐标代入,利用待定系数法求二次函数解析式解答;(3)设点P 到x 轴的距离为h ,利用三角形的面积公式求出h ,再分点P 在x 轴上方和下方两种情况,利用抛物线解析式求解即可.【详解】(1)∵AB =OB ,∠ABO =90°,∴△ABO 是等腰直角三角形,∴∠AOB =45°,∵∠yOC =45°,∴∠AOC =(90°﹣45°)+45°=90°,∴AO ⊥CO ,∵C′O′是CO 平移得到,∴AO ⊥C′O′,∴△OO′G 是等腰直角三角形,∵射线OC 的速度是每秒2个单位长度,∴OO′=2x ,∴其以OO′为底边的高为x ,∴y =12×(2x )•x=x 2; (2)当x =3秒时,OO′=2×3=6, ∵12×6=3, ∴点G 的坐标为(3,3),设抛物线解析式为y =ax 2+bx ,则9336480a b a b +=⎧⎨+=⎩, 解得1585a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为y =21855x x -+; (3)设点P 到x 轴的距离为h ,则S △POB =12×8h=8, 解得h =2, 当点P 在x 轴上方时,21855x x -+=2, 整理得,x 2﹣8x+10=0,解得x 1=4,x 2=,此时,点P 的坐标为(4,2)或(,2);当点P 在x 轴下方时,21855x x -+=﹣2, 整理得,x 2﹣8x ﹣10=0,解得x 1=4,x 2=,此时,点P 的坐标为(4,﹣2)或(,﹣2),综上所述,点P 的坐标为(4,2)或(,2)或(4,﹣2)或(,﹣2)时,△POB 的面积S =8.【点睛】本题是二次函数综合题型,主要利用了等腰直角三角形的判定与性质,待定系数法求二次函数解析式,二次函数与坐标轴的交点,三角形的面积,平移的性质,二次函数图象上点的坐标特征,(3)要注意分情况讨论.。

河南省濮阳市九年级上学期数学期末考试试卷

河南省濮阳市九年级上学期数学期末考试试卷

河南省濮阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列事件不可能发生的是()A . 打开电视机,CCTV – 1正在播放新闻B . 我们班的同学将来会有人当选为劳动模范C . 在空气中,光的传播速度比声音的传播速度快D . 若实数C<0,则3C>2C2. (2分) (2019九上·长春月考) 如图,已知中,,,,则的值为()A .B .C .D .3. (2分) (2017八下·仁寿期中) 若点(x1 , y1)、(x2 , y2)和(x3 , y3)分别在反比例函数的图象上,,则下列判断中正确的是()A .B .C .D .4. (2分)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB 长100m,测得圆周角,则这个人工湖的直径AD为()A . 50mB . 100mC . 150mD . 200m5. (2分) (2017九上·汝州期中) 如图,正方形 ABCD中AB= 3,点B在边CD上,且 CD=3DE. 将△ADE沿AE对折至△AFE,延长EF交边BC 于点G,连接AG,CF下列结论:①点G是BC的中点;②FG=FC;③ GAE=45º;④GE=BG+DE.其中正确的是()A . ①②B . ①③④C . ②③D . ①②③④6. (2分)若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的表达式为()A . y=-x2+2x+4B . y=-ax2-2ax-3(a>0)C . y=-2x2-4x-5D . y=ax2-2ax+a-3(a<0)7. (2分)如图,白云湖水库堤坝横断面迎水坡AB的斜面坡度是1:,堤坝高BC=50m,则迎水坡面AB 的长度是()A . 100mB . 2400mC . 400mD . 1200m8. (2分)(2017·诸城模拟) 已知一次函数y1=kx+b(k<0)与反比例函数y2= (m≠0)的图像相交于A、B两点,其横坐标分别是﹣1和3,当y1>y2 ,实数x的取值范围是()A . x<﹣1或0<x<3B . ﹣1<x<0或0<x<3C . ﹣1<x<0或x>3D . 0<x<39. (2分)如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为()A .B .C .D . 无法确定10. (2分)已知函数,则使y=k成立的x值恰好有三个,则k的值为A . 0B . 1C . 2D . 3二、填空题 (共5题;共5分)11. (1分) (2016八上·鞍山期末) 将抛物线图象向右平移2个单位再向下平移3个单位,所得图象的解析式为________.12. (1分) (2017八上·兴化期末) 某事件经过500000000次试验,出现的频率是0.3,它的概率估计值是________.13. (1分) (2019九上·孝感月考) 已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为________.14. (1分)如图,在△ABC中,D、E分别是AB、AC的中点,若BC=10,则DE=________ .15. (1分) (2017八下·无棣期末) 如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3 .若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.三、解答题 (共9题;共64分)16. (1分)(2011·南京) 如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB的最大值为________.17. (6分) (2017八上·启东期中) 作图题:(不写作法,但要保留痕迹)如图1,已知点C、D和∠AOB,求作一点P,使P到点C、D的距离相等,且到∠AOB的两边的距离相等.在图2中直线m上找到一点Q,使它到A、B两点的距离和最小.18. (2分)(2017·丹东模拟) 有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.19. (2分)在2015年4月18日潍坊国际风筝节开幕上,小敏同学在公园广场上放风筝,如图风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小亮同学,发现自己的位置与风筝和广场边旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B 之间的距离;(2)在(1)的条件下,若在A处背向旗杆又测得风筝的仰角为75°,绳子在空中视为一条线段,求绳子AC 为多少米?(结果保留根号)20. (10分) (2016七下·黄陂期中) 长方形ABCD放置在如图所示的平面直角坐标系中,点A(2,2 ),AB∥x轴,AD∥y轴,AB=3,AD= .(1)分别写出点B,C,D的坐标;(2)在x轴上是否存在点P,使三角形PAD的面积为长方形ABCD面积的?若存在,请求出点P的坐标;若不存在,请说明理由.21. (8分) (2019九上·宜兴期中) 如图(1)如图1,网格中每个小正方形的边长为1,点A,B均在格点上.则线段AB的长为________.请借助网格,仅用无刻度的直尺在AB上作出点P,使AP= .(2)⊙O为△ABC的外接圆,请仅用无刻度的直尺,依下列条件分别在图2,图3的圆中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法,请下结论注明你所画的弦).①如图2,AC=BC;②如图3,P为圆上一点,直线l⊥OP且l∥BC.22. (10分)(2017·达州模拟) 如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠CBF= ∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF= ,求BC和BF的长.23. (15分) (2019九上·长春期末) 某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系y =mx2+20x+n,其图象如图所示.(1) m=________,n=________.(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(3)该种商品每天的销售利润不低于16元时,直接写出x的取值范围.24. (10分) (2016九上·中山期末) 如图(1),将线段AB绕点A逆时针旋转2α(0°<α<90°)至AC,P是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共64分)16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

最新河南省濮阳市濮阳县2020届最新九年级上期末模拟数学试卷(含答案)(已审阅)

最新河南省濮阳市濮阳县2020届最新九年级上期末模拟数学试卷(含答案)(已审阅)

2019-2020学年河南省濮阳市濮阳县九年级(上)期末模拟数学试卷一、单选题(共10题;共30分)1.将抛物线y=5x2向下平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=5(x+2)2-3B. y=5(x+2)2+3C. y=5(x-2)2-3D. y=5(x-2)2+32.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A. s=﹣3x2+24xB. s=﹣2x2﹣24xC. s=﹣3x2﹣24xD. s=﹣2x2+24x3.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.4.一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是xcm.根据题意,得()A. (150+x)(100+x)=150×100×2B. (150+2x)(100+2x)=150×100×2C. (150+x)(100+x)=150×100D. 2(150x+100x)=150×1005.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A. 4B.C.D.6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A. AE=OEB. CE=DEC. OE=CED. ∠AOC=60°7.关于x的方程x2﹣4x+4a=0有两个实数根,则a的取值范围是()A. a<1B. a>1C. a≤1D. a≥18.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A. 25%B. 50%C. 75%D. 100%9.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A. 2条B. 3条C. 4条D. 5条10.下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形D. 矩形二、填空题(共8题;共24分)11.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.12.若最简二次根式与是同类二次根式,则a=________.13.要使代数式有意义,则x的取值范围是________.14.反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=________15.二次函数y=x2﹣4x﹣3的顶点坐标是________.16.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是________18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.三、解答题(共6题;共36分)19.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)20.如图,已知圆的半径为r,求外接正六边形的边长.21.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.22.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.24.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.四、综合题(共10分)25.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.2019-2020学年河南省濮阳市濮阳县九年级(上)期末模拟数学试卷参考答案与试题解析一、单选题1.【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】∵抛物线y=5x2向下平移3个单位,向左平移2个单位,∴平移后的抛物线的顶点坐标为(-2,-3),∴平移得到的抛物线的解析式为y=5(x+2)2-3.故答案为:A.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减并确定出平移后的抛物线的顶点坐标是解题的关键2.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】S=(24﹣3x)x=24x﹣3x2.故选:A.【分析】AB为x m,则BC为(24﹣3x)m,利用长方体的面积公式,可求出关系式.3.【答案】B【考点】垂径定理【解析】【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=∴sin∠ECB=故选:B.【分析】根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.4.【答案】B【考点】一元二次方程的应用【解析】【解答】解:设四周垂下的边宽度为xcm,桌布的长为(150+2x),宽为(100+2x),根据桌布面积是桌面的2倍可得:(150+2x)(100+2x)=150×100×2,故选B.【分析】设四周垂下的边宽度为xcm,求得桌布的面积,根据桌布面积是桌面的2倍列方程解答时即可.5.【答案】B【考点】等腰三角形的性质,三角形的外接圆与外心【解析】【解答】解:∵⊙O的半径为5,DE=3,∴AE=10﹣3=7,∵AD是直径,∴∠ACD=90°,∴CD=6,∵AB=AC,∴∠ACE=∠D,又∠DAC=∠CAE,∴△AEC∽△ACD,∴= ,即= ,解得,EC= ,故选:B.【分析】根据勾股定理求出CD,证明△AEC∽△ACD,根据相似三角形的性质列出比例式,计算即可.6.【答案】B【考点】垂径定理【解析】【分析】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。

濮阳市濮阳县2019届九年级上期末模拟数学试卷含答案解析

濮阳市濮阳县2019届九年级上期末模拟数学试卷含答案解析

2019-2019学年河南省濮阳市濮阳县九年级(上)期末模拟数学试卷一、单选题(共10题;共30分)1.将抛物线y=5x2向下平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=5(x+2)2-3B. y=5(x+2)2+3C. y=5(x-2)2-3D. y=5(x-2)2+32.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A. s=﹣3x2+24xB. s=﹣2x2﹣24xC. s=﹣3x2﹣24xD. s=﹣2x2+24x3.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.4.一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是xcm.根据题意,得()A. (150+x)(100+x)=150×100×2B. (150+2x)(100+2x)=150×100×2C. (150+x)(100+x)=150×100D. 2(150x+100x)=150×1005.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A. 4B.C.D.6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A. AE=OEB. CE=DEC. OE=CED. ∠AOC=60°7.关于x的方程x2﹣4x+4a=0有两个实数根,则a的取值范围是()A. a<1B. a>1C. a≤1D. a≥18.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A. 25%B. 50%C. 75%D. 100%9.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A. 2条B. 3条C. 4条D. 5条10.下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形D. 矩形二、填空题(共8题;共24分)11.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.12.若最简二次根式与是同类二次根式,则a=________.13.要使代数式有意义,则x的取值范围是________.14.反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=________15.二次函数y=x2﹣4x﹣3的顶点坐标是________.16.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是________18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.三、解答题(共6题;共36分)19.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)20.如图,已知圆的半径为r,求外接正六边形的边长.21.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.22.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.24.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.四、综合题(共10分)25.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.2019-2019学年河南省濮阳市濮阳县九年级(上)期末模拟数学试卷参考答案与试题解析一、单选题1.【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】∵抛物线y=5x2向下平移3个单位,向左平移2个单位,∴平移后的抛物线的顶点坐标为(-2,-3),∴平移得到的抛物线的解析式为y=5(x+2)2-3.故答案为:A.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减并确定出平移后的抛物线的顶点坐标是解题的关键2.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】S=(24﹣3x)x=24x﹣3x2.故选:A.【分析】AB为x m,则BC为(24﹣3x)m,利用长方体的面积公式,可求出关系式.3.【答案】B【考点】垂径定理【解析】【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=∴sin∠ECB=故选:B.【分析】根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.4.【答案】B【考点】一元二次方程的应用【解析】【解答】解:设四周垂下的边宽度为xcm,桌布的长为(150+2x),宽为(100+2x),根据桌布面积是桌面的2倍可得:(150+2x)(100+2x)=150×100×2,故选B.【分析】设四周垂下的边宽度为xcm,求得桌布的面积,根据桌布面积是桌面的2倍列方程解答时即可.5.【答案】B【考点】等腰三角形的性质,三角形的外接圆与外心【解析】【解答】解:∵⊙O的半径为5,DE=3,∴AE=10﹣3=7,∵AD是直径,∴∠ACD=90°,∴CD=6,∵AB=AC,∴∠ACE=∠D,又∠DAC=∠CAE,∴△AEC∽△ACD,∴= ,即= ,解得,EC= ,故选:B.【分析】根据勾股定理求出CD,证明△AEC∽△ACD,根据相似三角形的性质列出比例式,计算即可.6.【答案】B【考点】垂径定理【解析】【分析】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。

河南省濮阳市2019-2020学年中考数学模拟试题含解析

河南省濮阳市2019-2020学年中考数学模拟试题含解析

河南省濮阳市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A .B .C .D .2.已知⊙O 的半径为3,圆心O 到直线L 的距离为2,则直线L 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定3.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( )A .3k =B .3k <-C .3k >D .33k -<<4.已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:95.左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )A .B .C .D .6.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A.12m B.13.5m C.15m D.16.5m7.若代数式11xx+-有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠18.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<09.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-210.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.512.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于_____.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x 是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.15.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.16.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.17.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC 交弧BD于点E,则弧BE的长为_____.18.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.20.(6分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(3,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.21.(6分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1322.(8分)计算:31|+(﹣1)2018﹣tan60°23.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.(10分)如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=32交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.(10分)已知:如图,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG=EF.(1)求证:四边形ABED 是菱形;(2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED = .26.(12分)先化简,再求值:(x ﹣3)÷(21x -﹣1),其中x=﹣1. 27.(12分)如图,在平面直角坐标系中,已知抛物线y=x 2+bx+c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上.(1)b =_________,c =_________,点B 的坐标为_____________;(直接填写结果)(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.3.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.根据题意,画出图形,如图:当3k =时,两条直线无交点;当3k >时,两条直线的交点在第一象限.故选:C .【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.4.A【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2,11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==V V , 故选A.点睛:角平分线上的点到角两边的距离相等.5.A【解析】试题分析:根据几何体的主视图可判断C 不合题意;根据左视图可得B 、D 不合题意,因此选项A 正确,故选A .考点:几何体的三视图6.D【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm , ∴200.30.4BC =, ∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.7.D【解析】试题分析:∵代数式11x +- ∴10{0x x -≠≥,解得x≥0且x≠1.故选D .考点:二次根式,分式有意义的条件.8.C【解析】【分析】直接利用a ,b 在数轴上的位置,进而分别对各个选项进行分析得出答案.【详解】选项A ,从数轴上看出,a 在﹣1与0之间,∴﹣1<a <0,故选项A 不合题意;选项B ,从数轴上看出,a 在原点左侧,b 在原点右侧,∴a<0,b>0,∴ab<0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,∴a<b,即a﹣b<0,故选项C符合题意;选项D,从数轴上看出,a在﹣1与0之间,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故选项D不合题意.故选:C.【点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.9.B【解析】【分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴,解得,∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.10.B【解析】【分析】依题意在同一坐标系内画出图像即可判断.【详解】根据题意可作两函数图像,由图像知交点在第二象限,故选B.【点睛】此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.11.B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B12.C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误. 故选C.考点:中心对称图形;轴对称图形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【详解】解:∵四边形ABCD 是平行四边形, ∴BC ∥AD 、BC=AD , 而CE=2EB ,∴△AFD ∽△CFE ,且它们的相似比为3:2, ∴S △AFD :S △EFC =(32)2, 而S △AFD =9, ∴S △EFC =1. 故答案为1. 【点睛】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解. 14.﹣1 【解析】 【分析】根据题意可以得到交换函数,由顶点关于x 轴对称,从而得到关于b 的方程,可以解答本题. 【详解】由题意函数y=1x 1+bx 的交换函数为y=bx 1+1x .∵y=1x 1+bx=222()48b b x +-,y=bx 1+1x=211()b x bb+-, 函数y=1x 1+bx 与它的交换函数图象顶点关于x 轴对称,∴﹣4b =﹣22b 且218b b-=,解得:b=﹣1. 故答案为﹣1. 【点睛】本题考查了二次函数的性质.理解交换函数的意义是解题的关键. 15.x 2+7x-4 【解析】 【分析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可. 【详解】解:设他所捂的多项式为A ,则根据题目信息可得22(53)(221),A x x x x =-+-++- 2253221,x x x x =-+-++- 27 4.x x =+-他所捂的多项式为27 4.x x +- 故答案为27 4.x x +- 【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算; 16.小李. 【解析】 【分析】 【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李. 故答案为:小李. 17.23π 【解析】 【分析】延长ME 交AD 于F ,由M 是BC 的中点,MF ⊥AD ,得到F 点为AD 的中点,即AF=12AD ,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE 的长. 【详解】延长ME 交AD 于F ,如图,∵M 是BC 的中点,MF ⊥AD ,∴F 点为AD 的中点,即AF=12AD . 又∵AE=AD ,∴AE=2AF ,∴∠AEF=30°,∴∠BAE=30°,∴弧BE 的长=304180π⋅⋅=23π. 故答案为23π.【点睛】本题考查了弧长公式:l=180n Rπ⋅⋅.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度. 18.18 1 【解析】 【分析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多. 【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18; 按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n 的最大值为1.故答案为:18;1. 【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1);(2)①证明见解析;②;(3).【解析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF ⊥EG ,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC ,得出△APE ∽△BCP ,得出对应边成比例即可求出AE 的长; (2)①A 、P 、O 、E 四点共圆,即可得出结论; ②连接OA 、AC ,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O 在AC 上,当P 运动到点B 时,O 为AC 的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.20.(1)详见解析;(2)(233,1).【解析】【分析】(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E 的坐标.【详解】(1)∵点A3,0)与点B(0,﹣1),∴3OB=1,∴22(3)1+,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB=33OBOA==∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC=12ABO∠=30°,∴OC=OB•tan30°=1×33 33,∴AC=OA﹣OC=23,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=233,∴AF=12AE=33,EF=32AE=1,∴OF=OA﹣AF=23,∴点E的坐标为(23,1).【点睛】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.21.-4【解析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式=-4+1-2×33点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.22.1【解析】【分析】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】1|+(﹣1)2118﹣tan61°=1+1=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.x=;(2)原分式方程中“?”代表的数是-1.23.(1)0【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()x+-=-5321x=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()+-=-m x321x=是原分式方程的增根,由于2x=代入上面的等式得所以把2()3221m+-=-m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.24.(1)213222y x x =-++ ;(1)132,E (1,1);(3)存在,P 点坐标可以为(1+7,5)或(3,5). 【解析】 【分析】(1)设B (x 1,5),由已知条件得21322x -+= ,进而得到B (2,5).又由对称轴2ba-⨯求得b .最终得到抛物线解析式.(1)先求出直线BC 的解析式,再设E (m ,=﹣12m+1.),F (m ,﹣12m 1+32m+1.)求得FE 的值,得到S △CBF ﹣m 1+2m .又由S 四边形CDBF =S △CBF +S △CDB ,得S 四边形CDBF 最大值, 最终得到E 点坐标.(3)设N 点为(n ,﹣12n 1+32n+1),1<n <2.过N 作NO ⊥x 轴于点P ,得PG =n ﹣1.又由直角三角形的判定,得△ABC 为直角三角形,由△ABC ∽△GNP , 得n =1+7或n =1﹣7(舍去),求得P 点坐标.又由△ABC ∽△GNP ,且OC PGOB NP=时, 得n =3或n =﹣2(舍去).求得P 点坐标. 【详解】解:(1)设B (x 1,5).由A (﹣1,5),对称轴直线x =32. ∴21322x -+= 解得,x 1=2. ∴B (2,5). 又∵3122()2b -=⨯-∴b =32. ∴抛物线解析式为y =213222x x -++ , (1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣12x+1.由E在直线BC上,则设E(m,=﹣12m+1.),F(m,﹣12m1+32m+1.)∴FE=﹣12m1+32m+1﹣(﹣12n+1)=﹣12m1+1m.由S△CBF=12 EF•OB,∴S△CBF=12(﹣12m1+1m)×2=﹣m1+2m.又∵S△CDB=12BD•OC=12×(2﹣32)×1=52∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+52.化为顶点式得,S四边形CDBF=﹣(m﹣1)1+132.当m=1时,S四边形CDBF最大,为132.此时,E点坐标为(1,1).(3)存在.如图1,由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣12n1+32n+1),1<n<2.过N作NO⊥x轴于点P(n,5).∴NP=﹣12n1+32n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC为直角三角形.当△ABC∽△GNP,且OC NPOB PG时,即,213222242n n n -++=- 整理得,n 1﹣1n ﹣6=5.解得,n =或n =1(舍去). 此时P 点坐标为(,5). 当△ABC ∽△GNP ,且OC PGOB NP=时, 即,222134222n n n -=-++ 整理得,n 1+n ﹣11=5. 解得,n =3或n =﹣2(舍去). 此时P 点坐标为(3,5).综上所述,满足题意的P 点坐标可以为,(,5),(3,5). 【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.25. (1)见解析;(2)见解析 【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形.再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EFAB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠=o ,90AFE o ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论.详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CFAD CA=. 同理EF CFAB CA = . 得:FG AD =EFAB∵FG EF =,∴AD AB =. ∴四边形ABED 是菱形. (2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE .得90DHE ∠=o .同理90AFE o ∠=.∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE . ∴EH DE EF AE =. ∴21·2AE EF ED =.点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.26.﹣x+1,2.【解析】【分析】先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.【详解】原式=(x ﹣2)÷(﹣)=(x ﹣2)÷=(x ﹣2)•=﹣x+1,当x=﹣1时,原式=1+1=2.【点睛】本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则. 27.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:210+,32-210-,32-) 【解析】【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标;(2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF=12OC=32, ∴点P 的纵坐标是32-, ∴23232x x --=-,解得:x=2102±, ∴当EF 最短时,点P 的坐标是:210+,32-)或(210-,32-).。

河南省濮阳市濮阳县2022-2023学年九年级数学第一学期期末综合测试试题含解析

河南省濮阳市濮阳县2022-2023学年九年级数学第一学期期末综合测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题3分,共30分)1.如图为二次函数y =ax 2+bx+c 的图象,在下列说法中①ac >0;②方程ax 2+bx+c =0的根是x 1=﹣1,x 2=3;③a+b+c<0;④当x >1时,y 随x 的增大而增大,正确的是( )A .①③B .②④C .①②④D .②③④2.对于二次函数y=2(x ﹣1)2﹣3,下列说法正确的是( )A .图象开口向下B .图象和y 轴交点的纵坐标为﹣3C .x <1时,y 随x 的增大而减小D .图象的对称轴是直线x=﹣13.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D .4.如图,在平面直角坐标系中,点A 、B 、C 为反比例函数k y x=(0k >)上不同的三点,连接OA 、OB 、OC ,过点A 作AD x ⊥轴于点D ,过点B 、C 分别作BE ,CF 垂直y 轴于点E 、F ,OB 与CF 相交于点G ,记四边形BEFG 、COG ∆、AOD ∆的面积分别为1S ,、2S 、3S ,则( )A .123S S S >>B .312S S S <=C .123S S S •<D .231SS >5.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .射击运动员射击一次,命中靶心C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是180°6.已知关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,并且关于m 的分式方程2119233km m m +-+=--有整数解,则同时满足两个条件的整数k 值个数有( ).A .2个B .3个C .4个D .5个7.如图,A 为反比例函数y=kx 的图象上一点,AB 垂直x 轴于B ,若S △AOB =2,则k 的值为( )A .4B .2C .﹣2D .18.如图,D ,E 分别是△ABC 的边AB ,AC 上的中点,CD 与BE 交于点O ,则S △DOE :S △BOC 的值为()A .12B .13 C .14 D .199.如图,⊙O 中弦AB =8,OC ⊥AB ,垂足为E ,如果CE=2,那么⊙O 的半径长是( )A .4B .5C .6D .1°10.在半径为6cm 的圆中,长为6cm 的弦所对的圆周角...的度数为( ) A .30° B .60° C .30°或150° D .60°或120°二、填空题(每小题3分,共24分)11.已知x =1是方程x 2﹣a =0的根,则a =__.12.如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,点D 在CE 上,且∠A =120°,B ,C ,G 三点在同一直线上,则BD 与CF 的位置关系是_____;△BDF 的面积是_____.13.如图,点P 在反比例函数2y x =的图象上,过点P 作坐标轴的垂线交坐标轴于点A 、B ,则矩形AOBP 的面积为_________.14.双曲线m 2y x-= 在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是__________ 15.用配方法解方程211022x x --=时,原方程可变形为 _________ . 16.如图,是一个半径为6cm ,面积为12πcm 2的扇形纸片,现需要一个半径为R 的圆形纸片,使两张纸片刚好能组合成圆锥体,则R 等于_____cm .17.如图是二次函数y =ax 2+bx +c 的图象,其对称轴为x =1,下列结论:①abc>0;②2a+b =0;③4a+2b +c <0;④若(-32,y 1),(103,y 2)是抛物线上两点,则y 1<y 2, 其中结论正确的是________.18.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +2=x 2,解得x 1=2,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=2时,9=2满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =2.运用以上经验,则方程x +5x +=1的解为_____.三、解答题(共66分)19.(10分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径3=OB cm ,高4OC cm =,求这个圆锥形漏斗的侧面积.20.(6分)如图,直径为AB 的⊙O 交Rt BCD ∆的两条直角边BC ,CD 于点E ,F ,且AF EF =,连接BF . (1)求证CD 为⊙O 的切线;(2)当CF =1且∠D =30°时,求⊙O 的半径.21.(6分)如图,抛物线y =ax 2+bx+c (a≠0)与y 轴交于点C (0,4),与x 轴交于A (﹣2,0),点B (4,0).(1)求抛物线的解析式;(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBC取得最大值时,求点M的坐标;(3)在直线的上方,抛物线是否存在点M,使四边形ABMC的面积为15?若存在,求出点M的坐标;若不存在,请说明理由.22.(8分)如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=43O到弦AB的距离.23.(8分)解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+624.(8分)“十一”黄金周期间, 西安旅行社推出了“西安红色游”项目团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元(每人收费不低于700元),设有x人参加这一旅游项目的团购活动.(1)当x=35时,每人的费用为______元.(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区参加此次“西安红色游”的人数.25.(10分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.26.(10分)工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?参考答案一、选择题(每小题3分,共30分)1、D【分析】①依据抛物线开口方向可确定a 的符号、与y 轴交点确定c 的符号进而确定ac 的符号;②由抛物线与x 轴交点的坐标可得出一元二次方程ax 2+bx+c=0的根;③由当x=1时y <0,可得出a+b+c <0;④观察函数图象并计算出对称轴的位置,即可得出当x >1时,y 随x 的增大而增大.【详解】①由图可知:0a >,0c <,0ac ∴<,故①错误;②由抛物线与x 轴的交点的横坐标为1-与3,∴方程20ax bx c ++=的根是11x =-,23x =,故②正确;③由图可知:1x =时,0y <,0a b c ∴++<,故③正确; ④由图象可知:对称轴为:1312x -+==, 1x ∴>时,y 随着x 的增大而增大,故④正确;故选D .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四条说法的正误是解题的关键.2、C【解析】试题分析:A、y=2(x-1)2-3,∵a=2>0,∴图象的开口向上,故本选项错误;B、当x=0时,y=2(0-1)2-3=-1,即图象和y轴的交点的纵坐标为-1,故本选项错误;C、∵对称轴是直线x=1,开口向上,∴当x<1时,y随x的增大而减少,故本选项正确;C、图象的对称轴是直线x=1,故本选项错误.故选:C.点睛:本题考查了二次函数的图象和性质的应用,主要考查学生的观察能力和理解能力,用了数形结合思想.3、C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选C.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、C【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可得到结论.【详解】解:∵点A、B、C为反比例函数kyx=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S3=12k,S△BOE=S△COF=12k,∵S△BOE-S OGF=S△CDF-S△OGF,∴S1=S2<S3,3S,故选:C.【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数的性质,正确的识别图形是解题的关键.5、D【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】A .购买一张彩票中奖,属于随机事件,不合题意;B .射击运动员射击一次,命中靶心,属于随机事件,不合题意;C .经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D .任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D .【点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.6、B【解析】关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,确定出k 的范围,根据分式方程整数解,确定出k 的值,即可求解.【详解】关于x 的二次函数()()21232y k x k x k =-+-++的图象在x 轴上方,则()()()210234120,k k k k ->⎧⎪⎨=---+<⎪⎩ 解得:17.16k > 分式方程去分母得:()212319km m ++-=,解得:121m k ,=+ 当2k =时,4m =;当3k =时,3m =(舍去);当5k =时,2m =;当11k =时,1m =;同时满足两个条件的整数k 值个数有3个.故选:B.【点睛】考查分式方程的解,二次函数的图象与性质,熟练掌握分式方程以及二次函数的性质是解题的关键.7、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=12|k|=2;又由于函数图象位于一、三象限,则k=4.故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.8、C【分析】DE为△ABC的中位线,则DE∥BC,DE=12BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=12 BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴214 DOEBOCS DES BC⎛⎫==⎪⎝⎭,故选:C.【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.9、B【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,设OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【详解】解:连接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,设OA=OC=x,则OE=OC-CE=x-2在Rt△AOE由勾股定理得:222OA AE OE =+即:2224(2)x x =+- ,解得:5x =,故选择:B【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 10、C【解析】试题解析:如图,弦AB 所对的圆周角为∠C ,∠D ,连接OA 、OB ,因为AB=OA=OB=6,所以,∠AOB=60°, 根据圆周角定理知,∠C=12∠AOB=30°, 根据圆内接四边形的性质可知,∠D=180°-∠C=150°, 所以,弦AB 所对的圆周角的度数30°或150°. 故选C .二、填空题(每小题3分,共24分)11、1【分析】把x =1代入方程x 2﹣a =0得1﹣a =0,然后解关于a 的方程即可.【详解】解:把x =1代入方程x 2﹣a =0得1﹣a =0,解得a =1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12、平行3【分析】由菱形的性质易求∠DBC=∠FCG=30°,进而证明BD∥CF;设BF交CE于点H,根据菱形的对边平行,利用相似三角形对应边成比例列式求出CH,然后求出DH以及点B到CD的距离和点G到CE的距离,最后根据三角形的面积公式列式进行计算即可得解.【详解】解:∵四边形ABCD和四边形ECGF是菱形,∴AB∥CE,∵∠A=120°,∴∠ABC=∠ECG=60°,∴∠DBC=∠FCG=30°,∴BD∥CF;如图,设BF交CE于点H,∵CE∥GF,∴△BCH∽△BGF,∴CHGF=BCBG,即3CH=223,解得:CH=1.2,∴DH=CD﹣CH=2﹣1.2=0.8,∵∠A=120°,∠ABC=∠ECG=60°,∴点B到CD的距离为2×32=3,点G到CE的距离为3×32=332,∴阴影部分的面积=1330.833 22.故答案为:平行;3.本题考查了菱形的性质,相似三角形的判定和性质以及解直角三角形,求出DH 的长度以及点B 到CD 的距离和点G 到CE 的距离是解题的关键.13、1【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值,即S=|k|.【详解】解:∵PA ⊥x 轴于点A ,PB ⊥y 轴于B 点,∴矩形AOBP 的面积=|1|=1.故答案为:1.【点睛】 本题考查了反比例函数k y x =(k ≠0)系数k 的几何意义:从反比例函数k y x=(k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.14、2m <【分析】根据反比例函数的性质可知 ,y 随x 的增大而增大则k 知小于0,即m-2<0,解得m 的范围即可.【详解】∵反比例函数y 随x 的增大而增大∴m-2<0则m <2【点睛】 本题考查了反比例函数k y x =的性质,函数值y 随x 的增大而增大则k 小于0,函数值y 随x 的增大而减小则k 大于0.15、()212x -=【分析】将常数项移到方程的右边,将二次项系数化成1,再两边都加上一次项系数一半的平方配成完全平方式后即可得. 【详解】∵211022x x --=, 方程整理得:221x x -=,配方得:22111x x -+=+,即()212x -=.故答案为:()212x -=.本题主要考查了解一元二次方程-配方法,熟练掌握完全平方公式的结构特点是解本题的关键.16、2.【解析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长⨯母线长2÷,得到圆锥的弧长=2扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长2π÷求解. 【详解】圆锥的弧长2126=4ππ⨯÷,∴圆锥的底面半径=42=2cm ππ÷,故答案为2.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.17、②④【解析】由抛物线开口方向得到a <0,有对称轴方程得到b=-2a >0,由∵抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=2时,y >0,于是可对③进行判断;通过比较点(-32,y 1)与点(103,y 2)到对称轴的距离可对④进行判断. 【详解】:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x= -2b a =1, ∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴abc<0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=2时,y >0,∴4a+2b+c>0,所以③错误;∵点(-32,y 1)到对称轴的距离比点(103,y 2)对称轴的距离远, ∴y 1<y 2,所以④正确.故答案为:②④.本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.18、x =﹣1【分析】根据等式的性质将x 移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x =1﹣x ,两边平方,得x +5=1﹣2x +x 2,解得x 1=4,x 2=﹣1,检验:x =4时,5,左边≠右边,∴x =4不是原方程的解,当x =﹣1时,﹣1+2=1,左边=右边,∴x =﹣1是原方程的解,∴原方程的解是x =﹣1,故答案为:x =﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.三、解答题(共66分)19、215cm π【解析】首先根据底面半径OB=3cm ,高OC=4cm ,求出圆锥的母线长,再利用圆锥的侧面积公式求出即可.【详解】解:根据题意,由勾股定理可知222BC BO CO =+. 5BC cm ∴=,∴圆锥形漏斗的侧面积215OB BC cm ππ==.【点睛】此题主要考查了圆锥的侧面积公式求法,正确的记忆圆锥侧面积公式是解决问题的关键.20、(1)证明见解析;(2.【分析】(1)连接OF,只要证明OF∥BC,即可推出OF⊥CD,由此即可解决问题;(2)连接AF,利用∠D=30°,求出∠CBF=∠DBF =30°,得出BF=2,在Rt AFB∆中利用勾股定理得出AB的长度,从而求出⊙O的半径.【详解】(1)连接OF,∵AF EF=,∴∠CBF=∠FBA,∵OF=OB,∴∠FBO=∠OFB,∵点A、O、B三点共线,∴∠CBF=∠OFB,∴BC∥OF,∴∠OFC+∠C=180°,∵∠C=90°,∴∠OFC=90°,即OF⊥DC,∴CD为⊙O的切线;(2) 连接AF,∵AB为直径,∴∠AFB=90°,∵∠D=30°,∴∠CBD=60°,∵AF EF=,∴∠CBF=∠DBF=12∠CBD=30°,在t R BCF∆中,CF=1,∠CBF=30°,∴BF=2CF=2,在Rt AFB∆中,∠ABF=30°,BF=2,∴AF=12 AB,∴AB2=(12AB)2+BF2,即34AB2=4,∴433AB ,⊙O的半径为233;【点睛】本题考查切线的判定、直角三角形30度角的性质、勾股定理,直径对的圆周角为90°等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21、(1)y=﹣12x2+x+4;(2)(2,4);(3)存在,(1,92)或(3,92)【分析】(1)抛物线的表达式为::y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),故-8a=4,即可求解;(2)根据题意列出S△MBC=12MH×OB=2(﹣12x2+x+4+x﹣4)=﹣x2+4x,即可求解;(3)四边形ABMC的面积S=S△ABC+S△BCM=126×4+(﹣x2+4x)=15,,即可求解.【详解】解:(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),故﹣8a=4,解得:a=﹣12,故抛物线的表达式为:y=﹣12x2+x+4;(2)过点M作MH∥y轴交BC于点H,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+4,设点M (x ,﹣12x 2+x+4),则点H (x ,﹣x+4), S △MBC =12MH×OB =2(﹣12x 2+x+4+x ﹣4)=﹣x 2+4x , ∵﹣1<0,故S 有最大值,此时点M (2,4);(3)四边形ABMC 的面积S =S △ABC +S △BCM =12×6×4+(﹣x 2+4x )=15, 解得:x =1或3,故点M (1,92)或(3,92). 【点睛】 本题考查的是二次函数综合运用,考查了一次函数、面积的计算等知识,其中面积的计算是解答本题的难点.22、(1)30°;(1)1【分析】(1)根据切线长定理及切线的性质可得PA=PB ,∠OAP=90°,由∠PAB=60°可证明△ABP 是等边三角形,可得∠BAP=60°,即可求出∠BAC 的度数;(1)连接OP ,交AB 于点D ,根据切线长定理可得∠APO =∠BPO=30°,即可得OP ⊥AB ,根据垂径定理可求出AD 的长,根据含30°角的直角三角形的性质可得OA=1OD ,利用勾股定理列方程求出OD 的长即可得答案.【详解】(1)∵PA ,PB 分别是⊙O 的切线∴PA=PB ,∠OAP =90°,∵∠APB =60°∴△ABP 为等边三角形∴∠BAP =60°∴∠BAC =90°﹣60°=30°(1)连接OP ,交AB 于点D .∵△ABP 为等边三角形∴BA=PB=PA=∵PA ,PB 分别是⊙O 的切线,∴∠APO =∠BPO=30°,∴OP ⊥AB ,∴AD =12AB= ∵∠ODA =90°,∠BAC =30°,∴OA=1 OD ,∵222OD AD OA ,∴222(23)(2)OD OD ,解得:OD=1,即点O 到弦AB 的距离为1.【点睛】本题考查切线的性质、切线长定理及含30°角的直角三角形的性质,圆的切线垂直于过切点的直径;从圆外可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角;30°角所对的直角边等于斜边的一半;熟练掌握相关定理及性质是解题关键.23、(1)x 1=-5,x 2=1;(2)x 1=-1.5,x 2=2【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【详解】解:(1)x²+4x-5=0 因式分解得, (x+5)(x-1)=0则,x+5=0或者x-1=0∴x 1=-5,x 2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移项得,x(2x+3)-2(2x+3)=0则,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x 1=-1.5,x 2=2.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法解方程.24、 (1)800;(2)该社区共有30人参加此次“西安红色游”【分析】(1)当x=35时,根据“若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元,(但每人收费不低于700元)”可得每人的费用为1000-(35-25)×20=800元; (2)该社区共支付旅游费用27000元,显然人数超过了25人,设该社区共有x 人参加此次“西安红色游”,则人均费用为[1000-20(x-25)]元,根据旅游费=人均费用×人数,列一元二次方程求x 的值,结果要满足上述不等式.【详解】解:(1)当x=35时,每人的费用为1000-(35-25)×20=800(元).(2)设该社区共有x 人参加此次“西安红色游”,∵1000×25=25000元<27000元, ∴x>25.由题意,得x[1000-20(x-25)]=27000,整理,得x 2-75x+1350=0,解得x 1=30,x 2=45.检验:当x=30时,人均旅游费用为1000-20×(30-25)=900元>700元,符合题意; 当x=45时,人均旅游费用为1000-20×(45-25)=600元<700元,不合题意,舍去, ∴x=30.答:该社区共有30人参加此次“西安红色游”.【点睛】本题考查了一元二次方程的应用.关键是设旅游人数,表示人均费用,根据旅游费=人均费用×人数,列一元二次方程.25、(1)50;(2)2【解析】(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.【详解】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)(2)设小明放入红球x 个.根据题意得:200.5100x x+=+ 解得:x =2(个).经检验:x =2是所列方程的根.答:小明放入的红球的个数为2.【点睛】本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.26、(1)进价为180元,标价为1元,(2)当降价为10元时,获得最大利润为4900元.【分析】(1)设工艺品每件的进价为x 元,则根据题意可知标价为(x+45)元,根据进价50件工艺品与销售40件工艺品的价钱相同,列一元一次方程求解即可;(2)设每件应降价a 元出售,每天获得的利润为w 元,根据题意可得w 和a 的函数关系,利用函数的性质求解即可.【详解】设每件工艺品的进价为x 元,标价为(x+45)元,根据题意,得:50x=40(x+45),解得x=180,x+45=1.答:该工艺品每件的进价180元,标价1元.(2)设每件应降价a元出售,每天获得的利润为w元.则w=(45-a)(100+4a)=-4(a-10)2+4900,∴当a=10时,w最大=4900元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,吃透题意,确定变量,建立函数模型是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省濮阳市濮阳县九年级(上)期末模拟数学试卷一、单选题(共10题;共30分)1.将抛物线y=52向下平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=5(+2)2-3B. y=5(+2)2+3C. y=5(-2)2-3D. y=5(-2)2+32.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为m,面积是s m2,则s与的关系式是()A. s=﹣32+24B. s=﹣22﹣24C. s=﹣32﹣24D. s=﹣22+243.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.4.一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是cm.根据题意,得()A. (150+)(100+)=150×100×2B. (150+2)(100+2)=150×100×2C. (150+)(100+)=150×100D. 2(150+100)=150×1005.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A. 4B.C.D.6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A. AE=OEB. CE=DEC. OE=CED. ∠AOC=60°7.关于的方程2﹣4+4a=0有两个实数根,则a的取值范围是()A. a<1B. a>1C. a≤1D. a≥18.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A. 25%B. 50%C. 75%D. 100%9.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A. 2条B. 3条C. 4条D. 5条10.下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形D. 矩形二、填空题(共8题;共24分)11.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B 逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.12.若最简二次根式与是同类二次根式,则a=________.13.要使代数式有意义,则的取值范围是________.14.反比例函数y=中,值满足方程2﹣﹣2=0,且当>0时,y随的增大而增大,则=________15.二次函数y=2﹣4﹣3的顶点坐标是________.16.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17.将抛物线y=2沿轴向右平移2个单位后所得抛物线的解析式是________18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.三、解答题(共6题;共36分)19.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)20.如图,已知圆的半径为r,求外接正六边形的边长.21.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.22.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为cm,求满足的方程.24.已知=﹣1是关于的方程2+2a+a2=0的一个根,求a的值.四、综合题(共10分)25.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.河南省濮阳市濮阳县九年级(上)期末模拟数学试卷参考答案与试题解析一、单选题1.【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】∵抛物线y=52向下平移3个单位,向左平移2个单位,∴平移后的抛物线的顶点坐标为(-2,-3),∴平移得到的抛物线的解析式为y=5(+2)2-3.故答案为:A.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减并确定出平移后的抛物线的顶点坐标是解题的关键2.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】S=(24﹣3)=24﹣32.故选:A.【分析】AB为m,则BC为(24﹣3)m,利用长方体的面积公式,可求出关系式.3.【答案】B【考点】垂径定理【解析】【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=,则OC=OD﹣CD=﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴2=42+(﹣2)2,解得:=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=∴sin∠ECB=故选:B.【分析】根据垂径定理得到AC=BC=AB=4,设AO=,则OC=OD﹣CD=﹣2,在Rt△ACO中根据勾股定理得到2=42+(﹣2)2,解得=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.4.【答案】B【考点】一元二次方程的应用【解析】【解答】解:设四周垂下的边宽度为cm,桌布的长为(150+2),宽为(100+2),根据桌布面积是桌面的2倍可得:(150+2)(100+2)=150×100×2,故选B.【分析】设四周垂下的边宽度为cm,求得桌布的面积,根据桌布面积是桌面的2倍列方程解答时即可.5.【答案】B【考点】等腰三角形的性质,三角形的外接圆与外心【解析】【解答】解:∵⊙O的半径为5,DE=3,∴AE=10﹣3=7,∵AD是直径,∴∠ACD=90°,∴CD=6,∵AB=AC,∴∠ACE=∠D,又∠DAC=∠CAE,∴△AEC∽△ACD,∴= ,即= ,解得,EC= ,故选:B.【分析】根据勾股定理求出CD,证明△AEC∽△ACD,根据相似三角形的性质列出比例式,计算即可.6.【答案】B【考点】垂径定理【解析】【分析】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。

【解答】∵直径AB⊥弦CD∴CE=DE故选B.【点评】本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成。

7.【答案】C【考点】根的判别式【解析】【解答】解:∵关于的方程2﹣4+4a=0有两个实数根,∴△=16﹣4×4a≥0,解得:a≤1,故选C.【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.8.【答案】A【考点】利用频率估计概率【解析】【解答】抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正,∴出现两个反面的概率为,∴抛掷多次以后,出现两个反面的成功率大约稳定在25%.故选A.【分析】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.抛掷两枚均匀的硬币,可能会出现四种情况,而出现两个反面的机会为四分之一.9.【答案】B【考点】圆的认识【解析】【解答】图中的弦有AB,BC,CE共三条,故选B.【分析】根据弦的定义进行分析,从而得到答案.10.【答案】D【考点】轴对称图形,中心对称及中心对称图形【解析】【分析】根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D选项既为中心对称图形又是轴对称图形【解答】A、是轴对称图形,不是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确.故选D.【点评】本题主要考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.二、填空题11.【答案】45【考点】旋转的性质【解析】【解答】解:作DH⊥BC于H,如图,∵AD∥BC,∠DAB=90°,∴四边形ABHD为矩形,∴BH=AD=1,AB=DH,∴HC=BC﹣BH=2﹣1=1,∵△ABD绕着点B逆时针旋转90°得到△EBF,∴∠FBD=90°,BF=BD,∴△BDF为等腰直角三角形,∵点F刚好落在DA的延长线上,∴BA⊥DF,∴AB=AF=AD=1,∴DH=1,∴△DHC为等腰直角三角形,∴∠C=45°.故答案为45°.【分析】作DH⊥BC于H,如图,易得四边形ABHD为矩形,则BH=AD=1,AB=DH,所以HC=BC ﹣BH=1,再根据旋转的性质得∠FBD=90°,BF=BD,则可判断△BDF为等腰直角三角形,所以BA⊥DF,根据等腰直角三角形的性质得AB=AF=AD=1,则DH=1,然后再判断△DHC为等腰直角三角形,于是可得∠C=45°.12.【答案】2【考点】最简二次根式,同类二次根式【解析】【解答】由题意,得7a﹣1=6a+1,解得a=2,故答案为:2.【分析】依据同类二次根式的被开放数相等列方程求解即可.13.【答案】≥﹣1且≠0【考点】分式有意义的条件,二次根式有意义的条件【解析】【解答】解:根据题意,得,解得≥﹣1且≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.14.【答案】-1【考点】解一元二次方程-因式分解法,反比例函数的性质【解析】【解答】解:∵反比例函数y=中,值满足方程2﹣﹣2=0,∴解方程得=2或=﹣1,∵当>0时,y随的增大而增大,∴<0,∴=﹣1.故答案为﹣1.【分析】根据函数当>0时,y随的增大而增大可以判断的符号,然后解方程求得的值即可.15.【答案】(2,﹣7)【考点】二次函数的三种形式【解析】【解答】解:∵y=2﹣4﹣3=2﹣4+4﹣7=(﹣2)2﹣7,∴二次函数y=2﹣4+7的顶点坐标为(2,﹣7).故答案为(2,﹣7).【分析】用配方法或代入顶点式法即可求出其顶点坐标。

相关文档
最新文档