高中数学 3.1.1随机事件的概率课件 新人教A版必修3

合集下载

高中数学人教A版必修三3.1.1随机事件的概率课件

高中数学人教A版必修三3.1.1随机事件的概率课件

不可能产生
定义1:在一定条件下必然要产生的事件叫必然事件。
例如:①木柴燃烧,产生热量;条件:木柴燃烧;结果:产生热量 ②抛一石块,下落. 条件:抛一石块;结果:下落
定义2:在一定条件下不可能产生的事件叫不可能事件。
例如:③在常温下,焊锡融化; 条件:常温下;结果:焊锡融化 ④在标准大气压下,且温度低于0℃时,冰融化. 条件:标准大气压下且温度低于0oC; 结果:冰融化
定义3:在一定条件下可能产生也可能不产生的事件 叫随机事件。
例如: ⑤抛一枚硬币,正面朝上; 条件:抛一枚硬币;结果:正面朝上 ⑥某人射击一次,中靶.等等. 条件:射击一次;结果:中靶
例1 指出下列事件是必然事件,不可能事件,还是 随机事件:
(1)某地明年1月1日刮西北风;
随机事件
(2)当x是实数时, x 2 0;
随机事件
(6)一个袋内装有形状大小相同的一个白球和一个黑球,从中任意
摸出1个球则为白球
随机事件
例3.对某电视机厂生产的电视机进行抽样检测的数据如下: 抽取台数 50 100 200 300 500 1000 优等品数 40 92 192 285 478 954 (1)计算表中优等品的各个频率; (2)该厂生产的电视机优等品的概率是多少?
(3)射击运动员射击一次命中10环。
(4)同时掷两颗骰子,出现的点数之和不超过12。
其中是随机事件的有
(C)
A、 (1) B、(1)(2) C、(1)(3) D、(2)(4)
练习2、下列事件:
(1)如果a、b∈R, 则a+b=b+a。
(2)如果a<b<0,则 1 > 1 。 ab
(3)我班有一位同学的年龄小于18且大于20。

人教A版必修三3.1.1《随机事件及其概率》ppt课件

人教A版必修三3.1.1《随机事件及其概率》ppt课件

跟踪 训练
解析:(1)由公式可计算出每场比赛运动员罚球进球的频率依次 6 3 8 4 9 3 7 7 12 3 为8=4,10=5,12=4,9,10,16=4. (2)由(1)知,每场比赛进球的频率虽然不同,但频率总是在34的附近摆
动,可知该运动员进球的概率约为34.
题型四 概率的应用
例4 在一场乒乓球比赛前,裁判员利用抽签器来 决定由谁先发球,请用概率的知识解释其公平性.
第三章 概 率
3.1 随机事件的概率 3.1.1 随机事件及其概率
1.了解随机事件、必然事件、不可能事件的概念.
2.正确理解事件A出现的频率的意义;正确理解概率 的概念,明确事件A发生的频率fn(A)与事件A发生的概率 P(A)的区别与联系.
3.利用概率知识正确理解现实生活中的实际问题.
基础梳理
2.此类题目的解题方法是:先利用频率的计算公式 依次计算出各个频率值,然后根据概率的定义确定频率的 稳定值即为概率.
跟踪 训练
3.某篮球运动员在最近几场大赛中罚球投篮的结果如下:
投篮次数 n 8 10 12 9 10 16
进球次数 m 6 8 m
进球频率n
9 7 7 12
(1)计算表中进球的频率. (2)这位运动员投篮一次,进球的概率大约是多少?
题型一 事件的概念 例1 给出下列五个事件: ①某地3月6日下雨;
②函数y=ax(a>0且a≠1)在定义域上是增函数;
③实数的绝对值小于0;
④a,b∈R,则ab=ba;
⑤某人射击8次恰有4次中靶. 其中必然事件是______,不可能事件是______,随机事件 是________.
解析:①是随机事件,某地3月6日可能下雨,也可
(2)“点数之和不大于7”这一事件,包含21个基本事 件:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2), (3,3),(3,4),(4,1),(4,2),(4,3),(5,1),(5,2), (6,1);

高中数学 3.1.1随机事件的概率(3)课件 新人教A版必修3

高中数学 3.1.1随机事件的概率(3)课件 新人教A版必修3
版本:人教版 学科:高中数学 课题名称:随机事件的概率
• 学习目标: • 1.了解随机事件、必然事件、不可能事件、
确定事件等基本概念. • 2.了解随机事件的发生存在着规律性和随机
事件概率的定义. • 3.理解频率与概率的区别与联系. • 学习重点: • 本节重点是随机事件、必然事件、不可能
事件、频率、概率等基本概念;
试一试:
请你列举出一件: (1)必然事件 (2)不可能事件 (3)随机事件
例1 : 指出下列事件是必然事件,不可 能事件,还是随机事件: (1)某地1月1日刮西北风; 随机事件
(2)当x是实数时 x 2 0; 必然事件
(3)手电筒的电池没电,灯泡发亮; 不可能事件
(4)一个电影院某天的上座率超过50%。 随机事件
二、实验及事件的概率 问:
想一想?
随机事件在一次试验中是否发生虽然不能事先 确定,但是在大量重复试验的情况下,它的发 生是否会呈现出一定的规律性呢?
大家一起来掷 硬币
两人一组: 每组抛掷硬币20次, 并统计正面朝上的次 数。
实例:
将一枚硬币抛掷 100 次、 200次、 300次、 400 次, 观察正面出现的次数及比例.
• 学习难点:对概率定义的理解
• 二、基本概念:
• 1、随机事件:在条件S下可能发生也可能 不发生的事件,叫做相对于条件S的随机事 件,简称随机事件。
• 2、确定事件:
• (1)必然事件:在条件S下,一定会发生的事 件,叫相对于条件S的必然事件 。
• (2)不可能事件:在条件S下,一定不会发生 的事件,叫相对于条件S的不可能事件;
抢答:
指出下列事件是必然事件,不可能事件,还是 随机事件? (1)如果a,b都是实数,那么a+b=b+a; (2)从分别标有号数1,2,3,4,5,6,7, 8,9,10的10张号签中任取一张,得到4号签;

人教A版高中数学必修三 3.1.1 随机事件的概率(共19张PPT)

人教A版高中数学必修三 3.1.1 随机事件的概率(共19张PPT)

小硬币 大学问
如果继续增加试验次数,正面朝 上的频率又有怎样的波动规律?
• 链接:电脑摸拟2000次抛硬币试验
随机事件的概率
• 定义:在大量重复进行同一实验时,事件A发生的频
nA 率 n
总是接近于某个常数p,在它附近摆动,这时就把
这个常数叫做事件A的概率。记作P (A)

P(A) = p .
• 0 P(A) 1 。
随机事件的概率
• (以上知识点可以用框图表示)
随机事件A进行 大量重复试验
随机事件A发生的
频率
估 计 随机事件A发生的 概率
判断正误
1.概率是随机的,不进行大量重复的随机试验,随
机事件的概率就不能确定。( X )
2.当试验次数增大到一定的数量时,随机事件的频
率会等于概率。( X )
3.随机事件A在n次试验中发生了m次,则事件A 的
有关概念
在一定条件下可能发生也可能不发生的事件叫 做 随机事件 ; 在一定条件下必然发生的事件,叫 必然事件 ; 在一定条件下不可能发生的事件叫 不可能事件 ;
必然事件与不可能事件统称为 确定事件 ;
确定事件与随机事件统称为 事件 ,用大写字母A, B,C……表示 如:
记 “掷一枚硬币,出现正面朝上”为事件A ; 记 “我购买的下一期福利彩票中奖”为事件B ;
事件出现的频数与频率概念
• 在相同的条件S下重复n次试验,观察某一
事件A是否出现,称n次试验中事件A出现 的次数 nA 为事件A出现的 频数 。
称事件A出现的比例 fn(A)=
nA n
为事件A
出现的 频率 。
实验及事件的概率
• 思考:随机事件的“可能发生,也可能不发生 ”是不是没有任何规律地的随意发生呢?

高中数学人教A版必修3课件:第三章3.1 3.1.1

高中数学人教A版必修3课件:第三章3.1 3.1.1

解析: 949÷1 006≈0.943 34,1 430÷1 500≈0.953 33,1 917 ÷2 015≈0.951 36, 2 890÷3 050≈0.947 54, 4 940÷5 200=0.95. 都稳定于 0.95,故所求概率约为 0.95.
பைடு நூலகம்
探究点一
事件类型的判断
指出下列事件是必然事件、 不可能事件, 还是随机事件. (1)2012 年奥运会在英国伦敦举行; (2)甲同学今年已经上高一,三年后他被北大自主招生录取; (3)A 地区在“十三五”规划期间会有 6 条高速公路通车; (4)在标准大气压下且温度低于 0 ℃时,冰融化. [解] (1)是必然事件,因事件已经发生.
能再连任下届总统,是不可能事件,④是必然事件.
3. 某出版公司对发行的三百多种教辅用书实行跟踪式问卷调查, 连续五年的调查结果如表所示: 发送问卷数 返回问卷数 1 006 949 1 500 1 430 2 015 1 917 3 050 2 890 5 200 4 940
则本公司问卷返回的概率约为( A ) A.0.95 C.0.93 B.0.94 D.0.92
(2)(3)是随机事件,其事件的结果在各自的条件下不确定. (4)是不可能事件,在本条件下,事件不会发生.
对事件分类的两个关键点 (1)条件:在条件 S 下事件发生与否是与条件相对而言的,没有 条件,就无法判断事件是否发生; (2)结果发生与否:有时结果较复杂,要准确理解结果包含的各 种情况.
1.(1)下面的事件: ①在标准大气压下, 水加热到 80℃时会沸腾; ②a, b∈R, 则 ab=ba; ③一枚硬币连掷两次, 两次都出现正面向上.其中是不可能事件的为( B A.② C.①② B.① D.③ )

高中数学【人教A版必修】3第三章-3.1.1 随机事件的概率 课件

高中数学【人教A版必修】3第三章-3.1.1 随机事件的概率 课件
灵保佑,雀跃欢呼,声震林野,士气大振。
你 能 用 概 率 知 识 分 析 这 个 典 故 么
确 必然事件:在一定条件下一定会发生的事件. 定
不可能事件:在一定条件下一定不会发生的事件.
事 件
随机事件:在事一件.定条件下,可能发生也可能不发生的
确定事件和随机事件统称为事件,一般用大 写字母A,B,C…表示.
德 . 摩根
蒲丰
皮尔逊
皮尔逊 维 尼 维 尼
高 中 数 学 【 人教A版 必修】 3第三 章-3.1 .1 随 机 事件的 概率 课 件 【 精品】
高 中 数 学 【 人教A版 必修】 3第三 章-3.1 .1 随 机 事件的 概率 课 件 【 精品】
探究结论:
随机事件A在一次试验中是否发生是 不能预知的,但是在大量重复实验后, 随着次数的增加,事件A发生的频率会 逐渐稳定在某个常数上.
思考 频率是否等同于概率呢?
高 中 数 学 【 人教A版 必修】 3第三 章-3.1 .1 随 机 事件的 概率 课 件 【 精品】
高 中 数 学 【 人教A版 必修】 3第三 章-3.1 .1 随 机 事件的 概率 课 件 【 精品】
探究:频率与概率的关系
1. 事件A发生的频率fn(A)是(不变,变化)的;
我来理解概率的定义:
(1)频率m/n总在P(A)附近摆动,当n越大时,摆动幅度越 小; (2)概率的范围 是 [0,1] ,不可能事件的概率为 0,必然事件为 1,随机事件的概率(0,1); (3)概率从数量上反映了一个事件发生的可能性的大小.
概率越大,表明事件A发生的频率越大 ,它发生的可能性越 大 ;概率越小 ,它发 生的可能性也越 小 . (4)大量重复进行同一试验时,随机事件及其概率呈现出规律性

高中数学(人教版A版必修三)配套课件:3.1.1随机事件的概率

高中数学(人教版A版必修三)配套课件:3.1.1随机事件的概率

答案
返回
题型探究
重点难点 个个击破
类型一 必然事件、不可能事件和随机事件的判定
例1 在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机 事件?
(1)如果a,b都是实数,那么a+b=b+a; (2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签; (3)铁球浮在水中; (4)某电话总机在60秒内接到至少15次传呼; (5)在标准大气压下,水的温度达到50 ℃时沸腾; (6)同性电荷,相互排斥.
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
答案
不可能事件:在条件S下,一定不会发生的
事件,叫做相对于条件S的不可能事件.
事件确定事件必叫 然事 做件 相: 对在 于条 条件 件SS下 的, 必然一事定件会.发生 的事件,
随机事件:在条件S下, 可能发生也可能不发生
的事件,叫做相对于条件S的随机事件.
答案
知识点二 频数与频率 思考 抛掷一枚硬币10次,正面向上出现了3次,则在这10次试验中, 正面向上的频数与频率分别是多少? 答案 频数为3,频率为130. 在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中 事件A出现的次数nA 为事件A出现的频数,称事件A出现的比例fn(A)=nnA为 事件A出现的频率.
第三章 § 3.1 随机事件的概率
3.1.1 随机事件的概率

高中数学必修三课件-3.1.1 随机事件的概率4-人教A版

高中数学必修三课件-3.1.1 随机事件的概率4-人教A版

4.任何事件的概率是0~1之间的一个确定的数, 小概率(接近0)事件很少发生,大概率(接近1) 事件则经常发生,知道随机事件的概率的大小有利 于我们作出正确的决策.
布置作业: P113 练习:1,2,3.
件、频数、频率、概率的概念.
2.概率是频率的稳定值,根据随机事件发生的 频率只能得到概率的估计值.
3.随机事件A在每次试验中是否发生是不能预 知的,但是在大量重复试验后,随着试验次数的增 加,事件A发生的频率逐渐稳定在区间[0,1]内的 某个常数上(即事件A的概率),概率就是用来度 量某事件发生的可能性大小的量.
3.1.1 随机事件的概率
事 随机事件 件 确定事件 必然事件
不可能事件
确定事件和随机事件统称为事件,一般用大 写字母A、B、C……表示.
如何度量随机事件发地时哪一 个面朝上:
姓名 试验次数 正面朝上的次数 正面朝上的比例
思考:通过试验,说说你的发现? Excel 统计分析
对于给定的随机事件A,发生的频率fn(A)是不是 不变的?事件A发生的概率P(A)是不是不变的?它 们之间有什么区别与联系?.
在实际问题中,随机事件A发生的概率往往是未 知的(如在一定条件下射击命中目标的概率),你如 何得到事件A发生的概率?
课堂练习:见导学案
小结 1.必然事件、不可能事件、确定事件、随机事
在相同的条件S下重复n次试验,观察某一事件A
是否出现,若某一事件A出现的次数为nA,则称nA为 事件A出现的频数,那么事件A出现的频率fn(A)等于 什么?
fn
A
nA n
【0,1】
试验表明: 随机事件A在每次试验中是否发生是不能预知的 大量重复后 随机事件A发生的频率稳定于【0,1】内某个常数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档