八年级下学期5月份数学月考试卷 姓名 分数

合集下载

江西省抚州市第一中学2022-2023学年八年级下学期5月月考数学试卷(含解析)

江西省抚州市第一中学2022-2023学年八年级下学期5月月考数学试卷(含解析)

抚州一中2022-2023学年度下学期八年级5月月考数学试卷考试时长:120分钟分值:120分一、单选题(每小题3分,共18分)1. 下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个答案:C解析:根据轴对称图形和中心对称图形的概念可判定第一个,第二个,第四个图形既是轴对称图形又是中心对称图形,故选C.2. 已知a>b,则下列结论错误的是( )A. a+2>b+2B. ﹣a<﹣bC. a﹣3>b﹣3D. 1﹣2a>1﹣2b答案:D解析:A.,a+2>b+2 ,A选项正确,不符合题意;B.,﹣a<﹣b,B选项正确,不符合题意;C.,a﹣3>b﹣3,C选项正确,不符合题意;D. ,1﹣2a<1﹣2b,D选项错误,符合题意.故选D.3. 下列从左到右变形中是因式分解的有( )①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;②x3+x=x(x2+1);③(x﹣y)2=x2﹣2xy+y2;④x2﹣9y2=(x+3y)(x﹣3y).A. 1个B. 2个C. 3个D. 4个答案:B解析:①没把一个多项式转化成几个整式积的形式,故①不是因式分解;②把一个多项式转化成几个整式积的形式,故②是因式分解;③整式的乘法,故③不是因式分解;④把一个多项式转化成几个整式积的形式,故④是因式分解;故选B4. 如图,若一次函数与的交点坐标为,则的解集为()A. B. C. D.答案:A解析:解:观察函数图象,可知:当x<3时,直线在直线的下方,∴不等式的解集为.故选:A.5. 如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A 同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ 为底的等腰三角形时,运动的时间是()秒A. 2.5B. 3C. 3.5D. 4答案:D解析:设运动的时间为x秒,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是以PQ为底的等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=4故选:D.6. 如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD 的长为( )A. B. 4 C. 3 D.答案:A解析:解:如图,连接FC,则.,.在与中,,,,,.在中,,,,.故选:A.二、填空题(每小题3分,共18分)7. 分解因式:4a3﹣a=____.答案:a(2a+1)(2a﹣1).解析:4a3﹣a=a(4a2﹣1)=a(2a+1)(2a﹣1).8. 点向右平移3个单位长度后,正好落在y轴上,则________.答案:-5解析:解:点P(a+2,2a+1)向右平移3个单位长度后,得到(a+5,2a+1),由题意,a+5=0,∴a=−5.故答案为:−5.9. 某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千克,每千克y元,如果把这两种糖果混合后销售,保本价是_________元/千克.答案:解析:解:甲种a千克,每千克x元,乙种b千克,每千克y元,保本价,故答案为.10. 已知关于x的方程=3的解是正数,则m的取值范围为____.答案:且解析:解:解得:关于x的方程=3的解是正数,且解得:且故答案为:且11. 若不等式组恰有两个整数解,则的取值范围是__________.答案:解析:解得不等式组的解集为,又∵不等式组恰有两个整数解,∴,解得:,故答案为.12. 如图,点O是等边△ABC内一点,∠AOB=110°.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.当α为______度时,△AOD是等腰三角形?答案:110°或125°或140°解析:解:由旋转得OC=DC,∠OCD=60°,∠ADC=∠BOC=α,∴△OCD等边三角形,∴∠ODC=∠COD=60°,①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,∴190°-α=α-60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,∴α-60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠AOD=360°-110°-60°-α=190°-α,∠OAD==120°-,∴190°-α=120°-,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.故答案为:110°或125°或140°.三、解答题(每小题6分,共30分)13. 分解因式:(1);(2).答案:(1);(2).小问1解析:解:原式;小问2解析:解:原式.14. 解不等式组:,并把不等式组解集在数轴上表示出来.答案:0<x≤4解析:由不等式①得:由不等式②得:5x−3+4>3x,2x>0,x>0.将不等式①,不等式②的解集在数轴上表示如下:∴原不等式组的解集为:15. 如图,和为等腰三角形,,BE是AD边上的高,请仅用左刻度的直尺分别按下列要求画图:(1)在图1中,作的边BD上的中线EF;(2)在图2中,作的边AB上的高DG.小问1解析:解:如图所示:为所求;小问2解析:如图所示:为所求.16. 如图,在中,,于点D.(1)若,求的度数;(2)若点E在边上,交的延长线于点.求证:.答案:(1)(2)见解析小问1解析:解:,,,,;小问2解析:证明:,,,,是的角平分线,,,.17. 近年来我国非常重视中学生的身体素质,体育成了中考的必考项目.如图是抚州某校一次体育训练中小强与小明两人的对话,请根据对话,求出小明这次训练中跑步的平均速度.小明,今天的1000米测试我刚好比你提前40秒跑完为你的平均速度是我的倍点赞!我要加强训练…答案:米秒解析:解:设小明的平均速度为米秒,则小强的平均速度为米秒,根据题意:,解得:,经检验,是原方程的解,即小明的平均速度为米秒.四、解答题(每小题8分,共24分)18. 如图,在平面直角坐标系中,的三个顶点分别是.(1)将以点为旋转中心旋转,画出旋转后对应的:(2)平移,若点A的对应点的坐标为,画出平移后对应的;(3)将以点为旋转中心顺时针旋转,画出旋转后对应:(4)若将绕某一点旋转可以得到,请直接写出旋转中心的坐标为.答案:(1)见解析;(2)见解析;(3)见解析;(4)解析:解:(1)如图所示,根据旋转的性质画出的即为所求;(2)如图所示,根据平移的性质,点A向下平移2个单位,向左平移4个单位得到点,画出即为所求;(3)如图所示,即为所求;(4)如图,连接和,交点为旋转中心为,故答案为:.19. 化简求值:,再从-1、0、1、2中选取一个你喜欢的a的值代入求值.答案:解析:解:原式======,且且∴当时,上式=.20. 在中,,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:;(2)连接CD,若,求CD的长.答案:(1)见解析(2)CD=3小问1解析:证明:如图,连接BE,∵∠ACB=90°,∠A=30°,∴∠ABC=180°−∠ACB−∠A=60°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=30°,∴∠CBE=∠ABC−∠ABE=30°,又∵在Rt△CBE中,∠EBC=30°,∴CE=BE,∴CE=AE,即AE=2CE.小问2解析:解:如图,连接CD、BE,由(1)知,∠DBE=∠CBE,∵∠ACB=90°,∴EC⊥BC,又∵∠DBE=∠CBE,ED⊥AB,EC⊥BC,∴,∵在Rt△BDE和Rt△BCE中,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC,由(1)知∠ABC=60°,∴△BDC是等边三角形,∴CD=BC,在Rt△EBC中,∠BCA=90°,∠EBC=30°,∴CE=BE,∴BE=2CE=,∵△EBC是直角三角形,∴,∴.五、解答题(每小题9分,共18分)21. 阅读与思考:分组分解法指通过分组分解的方式来分解用提公因式法和公式法无法直接分解的多项式,比如:四项的多项式一般按照“两两”分组或“三一”分组,进行分组分解.例1:“两两分组”:解:原式例2:“三一分组”:解:原式归纳总结:用分组分解法分解因式要先恰当分组,然后用提公因式法或运用公式法继续分解.请同学们在阅读材料的启发下,解答下列问题:(1)分解因式:①;②;(2)已知的三边满足,试判断的形状.答案:(1)①;②;(2)是等腰三角形.解析:解:(1)①;②;(2),,,,,,是的三边,,,,,即是等腰三角形.22. 某工厂每天生产,两种款式的布制环保购物袋共5000个,已知种购物袋成本为2元/个,售价为2.4元/个;种购物袋成本为2.8元/个,售价为3.4元/个.设该工厂每天生产种购物袋个,每天共需成本元,共获利元.(1)求与之间的函数表达式;(2)求与之间的函数表达式;(3)如果该工厂每天最多投入成本12000元,那么每天最多获利多少元?答案:(1);(2)与之间的函数表达式为;(3)每天最多获利2500元解析:解:(1)由题意,得∴与之间的函数关系式为:;(2)由题意,得,∴与之间的函数表达式为;(3)根据题意,得,解之,得,在中,∵,∴的值随着值的增大而减小.当时,有最大值,(元).∴如果该工厂每天最多投入成本12000元,那么每天最多获利2500元.六、解答题(本大题12分)23. 如图,A(6, 0),B(0, 4),点B关于x轴的对称点为C点,点D在x轴的负半轴上,△ABD的面积是30.(1)求点D坐标.(2)若动点P从点B出发,沿射线BC运动,速度为每秒1个单位,设P的运动时间为t秒,△APC的面积为S,求S与t的关系式.(3)在(2)的条件下,同时点Q从D点出发沿x轴正方向以每秒2个单位速度匀速运动,若点R在过A点且平行于y轴的直线上,当△PQR为以PQ为直角边的等腰直角三角形时,求满足条件的t值,并直接写出点R的坐标.答案:(1)(-9,0);(2)当0<t≤8时,S=×(8-t)×6=-3t+24;当t>8时,S=×(t-8)×6=3t-24;(3)t=10秒或11秒时,△PQR是等腰直角三角形.解析:解:(1)∵A(6,0),B(0,4),△ABD的面积是30,∴•AD•BO=30,∴•AD•4=30,∴AD=15,∴OD=9,∴点D坐标为(-9,0).(2)∵点B(0,4)关于x轴的对称点为C点,∴点C坐标(0,-4),∴当0<t≤8时,S=×(8-t)×6=-3t+24,当t>8时,S=×(t-8)×6=3t-24.(3)①如图1中,图1当∠QPR=90°,PQ=PR时,作RH⊥OP于H,∵∠QPO+∠RPH=90°,∠QPO+∠PQO=90°,∴∠PQO=∠RPH,在△PQO和△RPH中,∴△PQO≌RPH,∴RH=PO,∵四边形AOHR是矩形,∴RH=AO=6,∴OP=6,∴t-4=6,∴t=10.②如图2中,图2当∠PQR=90°,QR=PQ时,∵∠RQA+∠OQP=90°,∠OQP+∠OPQ=90°,∴∠RQA=∠OPQ,在△ARQ和△OQP中,∴△ARQ≌△OQP,∴OP=AQ,∴t-4=2t-15,∴t=11.综上所述t=10秒或11秒时,△PQR是等腰直角三角形.。

河南省济源市2023-2024学年八年级下学期5月月考数学试卷(含答案)

河南省济源市2023-2024学年八年级下学期5月月考数学试卷(含答案)

八年级数学(测试范围:16章到第19章注意事项:1.本试卷共6页,三大题,满分120分,测试时间100分钟。

2.请用蓝、黑色钢笔或圆珠笔写在试卷或答题卡上。

3.答卷前请将密封线内的项目填写清楚。

题号一二三总分分数一、选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是()A.B.C.D.2.以下列长度的线段为边,不能构成直角三角形的是()A.2、3、4 B.1、1、C.3、4、5 D.5、12、133.直线与x轴的交点是(1,0),则k的值是()A.3 B.2 C.D.4.如图,在中,,若,则正方形ADEC和正方形BCFG的面积和为()A.225 B.200 C.150 D.无法计算5.如图,在菱形ABCD中,对角线AC、BD相交于点O,,则的度数是()A.B.C.D.6.如图,在矩形ABCD中,,,则AC的长为()A.B.8 C.D.47.在中,,,,则()A.5 B.C.3 D.8.已知一次函数的函数值y随x的增大而减小,则该函数的图象大致是()A.B.C.D.9.如图,正方形ABCD的边长为,N为AD上一点,连接BN,于点M,连接CM,且,若,则的面积为()A.4 B.6 C.8 D.1610.如图1,在等腰中,,于点D.动点P从点A出发,沿着A→D→C 的路径以每秒1个单位长度的速度运动到点C停止,过点P作于点E,作于F.在此过程中四边形CEPF的面积y与运动时间x的函数关系图象如图2所示,则AB的长是()A.4 B.C.D.3二、填空题(每小题3分,共15分)11.若计算的结果为正整数,则无理数m的值可以是________(写出一个符合条件的即可).12.如图,在中,,点D是AB的中点,且,则________cm.13.如图,在□ABCD中,,点E、F分别是BD,CD的中点,则________cm.14.如图,直线与相交于点P,点P的横坐标为,则关于x的不等式的解集________.15.在平面直角坐标系中,点A的坐标为(12,8),过点A分别作轴于点B,轴于点C,已知经过点P(4,6)的直线将矩形OBAC分成的两部分面积比为时,则k的值为________.三、解答题(共8题,共75分)16.(10分)计算:(1);(2).17.(9分)已知函数(m是常数).(1)m为何值时,y随x的增大而增大?(2)m满足什么条件时,该函数是正比例函数?(3)当时,函数图象交y轴于点A,交x轴于点B,求的面积.18.(9分)如图,已知E,F是平行四边形ABCD对角线BD上的点,.(1)求证:;(2)求证:四边形AECF是平行四边形.19.(9分)如图,在中,,,,DE是的边AB上的高,E为垂足,且,.(1)试判断.的形状,并说明理由;(2)求DE的长.20.(9分)有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.如图所示是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了________小时;开挖6小时时,甲队比乙队多挖了________米;(2)请你写出:①甲队在的时段内,y与x之间的函数关系式________;②乙队在的时段内,y与x之间的函数关系式________;(3)开挖6小时后,甲、乙两个工程队的挖掘效率不变,如果两段河渠长度都为80米时,请计算说明甲比乙早几小时完工?21.(9分)如图,在中,,,,动点P从点B出发,沿射线BC以的速度移动,设运动的时间为t(s).(1)求BC边的长.(2)当为直角三角形时,求t的值.22.(10分)如图,中,,,D是BC边上一动点,交AB于E,交AC于F.(1)若,判断四边形AEDF的形状并证明;(2)在(1)的条件下,若四边形AEDF是正方形,求BD的长;(3)若,四边形AEDF是菱形,则________.23.(10分)如图,在平面直角坐标系中,已知点A(a,0),B(0,b),且满足,点D(,n)在直线AB上.(1)求直线AB表达式;(2)过点D作y轴平行线l,交x轴于点C,求;(3)点E是x轴上一动点,当是直角三角形时,求点E的坐标.八年级数学一、选择题(每小题3分,共30分)1.C 2.A 3.D 4.A 5.C 6.B 7.B 8.B 9.C 10.B 二、填空题(每小题3分,共15分)11.(答案不唯一)12.10 13.5 14.15.或三、解答题(共8题,共75分)16.解:(1)原式;(2)原式.17.解:(1)∵,y随x的增大而增大,∴,解得,即当时,y随x的增大而增大;(2)∵,该函数是正比例函数,∴且,解得,即当时,该函数是正比例函数;(3)当时,,∴当时,;当时,;∴点A的坐标为(0,),点B的坐标为(2,0),∴,,∴的面积为:.18.(1)证明:∵四边形ABCD是平行四边形,∴,,∴.∵,∴.在和中,∴(AAS),∴;(2)证明:∵,∴.∵,∴,∴四边形AECF是平行四边形.19.解:(1)是直角三角形,理由如下:∵,,,∴,∵,∴是直角三角形,(2)∵是直角三角形,,,∴的面积,∴.20.解:(1)2,10.(2)①.②.(3),解得,∴当河渠长度为80米时,甲需要8小时可以完工.设乙队在的时段内,y与x之间的函数关系式为(、b为常数,且).将,和,代入,得,解得,∴乙队在的时段内,y与x之间的函数关系式为.,解得,∴当河渠长度为80米时,乙需要12小时可以完工.(小时),∴如果两段河渠长度都为80米时,甲比乙早4小时完工.21.解:(1)在中,由勾股定理得(cm),∴.(2)由题意知.①当时,如图1,点P与点C重合,,∴.②当时,如图2,,.在中,,在中,,因此,解得.综上所述,当为直角三角形时,t的值为4或.22.解:(1)四边形AEDF是矩形,理由如下∵,由勾股定理得∵、,∴四边形AEDF是平行四边形,又∵,∴四边形AEDF是矩形;(2)由(1)得,当时,四边形AEDF是正方形.设,建立面积方程;即:,解得:,∴,,在中,由勾股定理得:;(3).【提示】依题意得,当AD是角平分线时,四边形AEDF是菱形.过点B作AC的垂线段交于点G,又∵,∴,,,由勾股定理得:,∵AD平分,∴,即.∴,故答案为:.23.解:(1)∵,∴,,解得,,A(,0),B(0,3),设直线AB表达式为,∴,解得,∴直线AB解析式;(2)当时,,∴D(,),∴轴,∴C(,0),∴;(3)设E(x,0),当时,轴,E的坐标为(,0);当时,,∴,解得,∴E的坐标为(,0);∴当E的坐标为(,0)或(,0)时,是直角三角形.。

2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)+答案解析

2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)+答案解析

2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.二次根式有意义的条件是()A. B. C. D.2.下列各组线段中,不能构成直角三角形的是()A. B.7,24,25 C.5,12,13 D.3.如图,下列的四个图象中,不表示y是x的函数图象的是()A. B. C. D.4.已知直线经过点,则a的值是()A.2B.3C.4D.55.若一次函数的函数值y随x的增大而增大,则m的取值范围是()A. B. C. D.6.菱形的对角线长分别为6和8,则此菱形的面积为()A.48B.40C.24D.207.在中,点D,E分别是AB,AC上的点,且,点F是DE延长线上一点,连接添加下列条件后,不能判断四边形BCFD是平行四边形的是()A.B.C.D.8.清明期间,甲、乙两人同时登云雾山,甲、乙两人距地面的高度米与登山时间分之间的函数图象如图所示,且乙提速后乙的速度是甲的3倍.则下列说法错误的是()A.乙提速后每分钟攀登30米B.乙攀登到300米时共用时11分钟C.从甲、乙相距100米到乙追上甲时,乙用时分钟D.从甲、乙相距100米到乙追上甲时,甲、乙两人共攀登了330米.9.一次函数和,与x的部分对应值如表,与x的部分对应值如表:则当时,x的取值范围是()x…01…x…01……35……0…A. B. C. D.10.如图所示,在四边形A中,,,,,E,F分别是AD,BC边的中点,则EF的长为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。

11.25的平方根是______.12.如图所示,,,,则BC的长为______.13.已知一次函数的图象经过点,且与直线平行,则一次函数的表达式为______.14.如图,在四边形ABCD中,,,,E为BC的中点,连接DE,如果,则______15.如图,直线与的交点的横坐标为下列结论:①,;②直线一定经过点;③当时,;④m与n满足其中正确的有______只填序号16.如图,直线分别与x轴、y轴交于点A、B,点C在线段OA上,线段OB沿BC翻折.点O落在AB边上的点D处.则点D的坐标为______.三、解答题:本题共8小题,共72分。

苏科版八年级数学下册第二学期5月月考测试卷

苏科版八年级数学下册第二学期5月月考测试卷

苏科版八年级数学下册第二学期5月月考测试卷一、解答题1.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.2.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.3.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.4.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160*********摸到黑球的频率mn0.230.210.300.260.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.5.如图,在正方形ABCD内有一点P满足AP AB=,PB PC=.连接AC、PD.(1)求证:APB DPC∆∆≌;(2)求PAC∠的度数.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.7.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了名学生;(2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为︒;(4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.8.先化简,再求代数式(1﹣32x+)÷212xx-+的值,其中x=4.9.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.求证:四边形ABCD为菱形.10.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?11.如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合)连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.12.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.13.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?14.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由; (3)如果在第二象限内有一点3,P m ⎛⎫⎪ ⎪⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值? 15.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB=BC ,∠ABC =120゜,∠MBN=60゜,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),试猜想线段AE 、CF 、EF 之间存在的数量关系为 .(不需要证明);(2)当∠MBN 绕B 点旋转到AE ≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE 、CF 、EF 又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)a =8,b =0.08;(2)作图见解析;(3)14. 【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可; (2)直接根据(1)中的结果补全频数分布直方图即可; (3)根据89.5~100.5这一组的人数及概率公式求解即可. 【详解】解:(1)由题意得a =50-2-20-16-4=8,b =1-0.04-0.16-0.40-0.32=0.08; (2)如图所示:(3)由题意得张明被选上的概率是14. 【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.2.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析 【分析】(1)根据正方形的性质和三角形的内角和解答即可; (2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可. 【详解】解:(1)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°; (2)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =∠ADF =90°, ∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=, ∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α; (3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI . ∵四边形ABCD 是正方形, ∴AD =AB ,∠ADF =∠ABC =90°, ∴∠ABI =90°, 又∵BI =DF ,∴△DAF ≌△BAI (SAS ), ∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF , 又∵AE 是△EAI 与△EAF 的公共边, ∴△EAI ≌△EAF (SAS ), ∴∠BEA =∠FEA . 【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解. 3.(1)见解析;(2)152【分析】(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可. 【详解】(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD , ∴∠DFO =∠BEO . 在△DOF 和△BOE 中DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ). ∴DF =BE .又∵DF∥BE,∴四边形BEDF是平行四边形.(2)解:∵DE=DF,四边形BEDF是平行四边形,∴四边形BEDF是菱形.∴DE=BE,EF⊥BD,OE=OF.设AE=x,则DE=BE=8-x,在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2,∴x2+62=(8-x)2.解得x=74.∴DE=8-74=254.在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2,∴BD=10.∴OD=12BD=5.在Rt△DOE中,根据勾股定理,有DE2-OD2=OE2,∴OE=154.∴EF=2OE=152.【点睛】考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.4.(1)0.25;(2)3个.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)列用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,11x+=0.25,解得x=3.答:估计袋中有3个白球,故答案为:(1)0.25;(2)3个.【点睛】本题主要考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.5.(1)见解析;(2)15°【分析】(1)根据PB=PC 得∠PBC=∠PCB ,从而可得∠ABP=∠DCP ,再利用SAS 证明即可; (2)由(1)得△PAD 为等边三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD ,因此可得结果. 【详解】解:(1)∵四边形ABCD 为正方形, ∴∠ABC=∠DCB=90°,AB=CD , ∵BP=PC , ∴∠PBC=∠PCB , ∴∠ABP=∠DCP , 又∵AB=CD ,BP=CP , 在△APB 和△DPC 中,AB CD ABP DCP BP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△APB ≌△DPC (SAS ); (2)由(1)得AP=DP=AB=AD , ∴△PAD 为等边三角形, ∴∠PAD=60°,∠PAB=30°,在正方形ABCD 中,∠BAC=∠DAC=45°, ∴∠PAC=∠PAD-∠CAD=60°-45°=15°. 【点睛】本题考查了全等三角形的判定定理,正方形的性质,以及等腰三角形的性质,熟练掌握全等三角形的几种判定方法是解答的关键. 6.(1)k =1;(2)证明见解析. 【分析】(1)把x =1代入方程,即可求得k 的值; (2)求出根的判别式是非负数即可. 【详解】(1)把x =1代入方程x 2﹣(k +3)x +3k =0得1﹣(k ﹣3)+3k =0, 1﹣k ﹣3+3k =0 解得k =1; (2)证明:1,(3),3a b k c k ==-+= 24b ac ∆=-∴ △=(k +3)2﹣4•3k =(k ﹣3)2≥0,所以不论k 取何实数,该方程总有两个实数根. 【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键. 7.(1)200;(2)图见解析;(3)144;(4)6 500人 【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出; (4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可. 【详解】(1)本次调查共随机抽取了:50÷25%=200(名); (2)课外阅读时长“2~4小时”的有:200×20%=40(人), 课外阅读时长“4~6小时”的有:200-30-40-50=80(人), 故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%, 课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°; (4)10000×(1-20%-15%)=6500(人). 【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键. 8.11x +;15【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可. 【详解】解:原式=()()232211x x x x x +-+⋅++- ()()12211x x x x x -+=⋅++-11x =+ 当x =4时,原式=15. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则. 9.详见解析. 【分析】先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DAC ,得出CD =AD =AB ,证出四边形ABCD 是平行四边形,再由AD =AB ,即可得出结论. 【详解】证明:∵AB ∥CD , ∴∠OAB =∠DCA , ∵AC 平分∠BAD . ∴∠OAB =∠DAC , ∴∠DCA =∠DAC , ∴CD =AD =AB , ∵AB ∥CD ,∴四边形ABCD 是平行四边形, ∵AD =AB ,∴四边形ABCD 是菱形. 【点睛】本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大. 10.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小. 【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案. 【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小. 【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键. 11.(1)见解析;(2)32;(3)见解析 【分析】(1)根据同角的余角相等得到∠GCB =∠FBA ,利用ASA 定理证明△ABF ≌△BCE ; (2)根据全等三角形的性质得到BF =CE =8,根据三角形的面积公式计算,得到答案; (3)作DH ⊥CE ,设AB =CD =BC =2a ,根据勾股定理用a 表示出CE ,根据三角形的面积公式求出BG ,根据勾股定理求出CG ,证明△CHD ≌△BGC ,得到CH =BG ,证明CH =GH ,根据线段垂直平分线的性质证明结论. 【详解】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE =90°=∠A ,BC =AB ,∴∠FBA +∠CBG =90,∴∠GCB =∠FBA ,在△ABF 和△BCE 中,A CBE AB BCABF BCE ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△BCE (ASA );(2)解:∵△ABF ≌△BCE ,∴BF =CE =8,∴四边形BEFC 的面积=△BCE 的面积+△FCE 的面积 =12×CE ×FG +12×CE ×BG =12×CE ×(FG +BG ) =12×CE ×BF =12×8×8 =32;(3)证明:如图3,过点D 作DH ⊥CE 于H ,设AB =CD =BC =2a ,∵点E 是AB 的中点,∴EA =EB =12AB =a , ∴CE=,在Rt △CEB 中,12BG •CE =12CB •EB , ∴BG=CB EB a CE ⋅=, ∴CGa =, ∵∠DCE +∠BCE =90°,∠CBF +∠BCE =90°,∴∠DCE =∠CBF ,∵CD =BC ,∠CHD =∠CGB =90°,∴△CHD≌△BGC(AAS),∴CH=BG=25a,∴GH=CG﹣CH=25a=CH,∵CH=GH,DH⊥CE,∴CD=GD;【点睛】本题通过正方形动点问题引入,考查了三角形全等、勾股定理和垂直平分线定理的应用.12.(1)m≤14;(2)m=14.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b2-4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x12-x22=0得x1+x2=0或x1-x2=0;当x1+x2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m的值.【详解】解:(1)由题意有△=(2m-1)2-4m2≥0,解得m≤14,即实数m的取值范围是m≤14;(2)由两根关系,得根x1+x2=-(2m-1),x1•x2=m2,由x12-x22=0得(x1+x2)(x1-x2)=0,若x1+x2=0,即-(2m-1)=0,解得m=12,∵12>14,∴m=12不合题意,舍去,若x1-x2=0,即x1=x2∴△=0,由(1)知m=14,故当x 12-x 22=0时,m =14. 【点睛】 本题考查一元二次方程根的判别式,根与系数的关系,熟练掌握公式正确计算是本题的解题关键.13.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭ 化简得2281920x x -+=,解得112x =,216x =又8860%x -<⨯12.8x ∴≤16x ∴=不合题意,舍去12x ∴=, ∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.14.(12)存在.(0,2Q 或()2或(0,或3⎛⎫ ⎪ ⎪⎝⎭;(2)PHOB S 梯形=,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形=,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 33m =-,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()()11,0,0,3A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:233a =, 11223232233ABC S AC AB ∆∴==⨯⨯=; ()2存在设()0,Q a ,则(2224,3AB BQ a ==-,221AQ a =+, ①当AB BQ =时,即22AB BQ =,(243a ∴=-,解得:123a =232a =, (()120,23,32Q Q ∴==;②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =3a =B 重合),(30,3Q ∴;③当BQ AQ =时,即22BQ AQ =, (2231,32a a a ∴=+=,解得:33a =, 430,3Q ⎛⎫∴= ⎪ ⎪⎝⎭, 综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,P m ⎛ ⎝⎭,(),0H m ∴,3,1OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形, ()1332m =⨯⨯-⎭334m =, 11313222AOB S OA OB ∆==⨯⨯=, ()113122APH S AH PH m ∆==⨯-)31m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)33331424m m =+--=, ABP ABC S S ∆∆=,+=, ∴112243m =-, 解得:56m =-,即S =梯形PHOB ,当56m =-时,ABC ABP S S ∆∆=. 【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.15.(1)AE+CF=EF ;(2)如图2,(1)中结论成立,即AE+CF=EF ;如图3,(1)中结论不成立,AE=EF+CF .【分析】(1)根据题意易得△ABE ≌△CBF ,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC 到H ,使CH=AE ,连接BH ,根据题意可得△BCH ≌△BAE ,则有BH=BE ,∠CBH=∠ABE ,进而可证△HBF ≌△EBF ,推出HF=EF ,最后根据线段的等量关系可求解;如图3,在AE 上截取AQ=CF ,连接BQ ,根据题意易得△BCF ≌△BAQ ,推出BF=BQ ,∠CBF=∠ABQ ,进而可证△FBE ≌△QBE ,推出EF=QE 即可.【详解】解:(1)如图1,AE+CF=EF ,理由如下:∵AB ⊥AD ,BC ⊥CD ,∴∠A=∠C=90°,∵AB=BC ,AE=CF ,∴△ABE ≌△CBF (SAS ),∴∠ABE=∠CBF ,BE=BF ,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°, ∴11,22AE BE CF BF ==, ∵∠MBN=60°,BE=BF ,∴△BEF 是等边三角形, ∴1122AE CF BE BF BE EF +=+==,故答案为AE+CF=EF;(2)如图2,(1)中结论成立;理由如下:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。

人教版八年级下学期数学5月月考试卷(含答案)

人教版八年级下学期数学5月月考试卷(含答案)

孝感高新区龙店中学2013——2014学年度下学期五月月考八年级数学试卷温馨提示:1.答题前,考生务必将自己的学校、班级、姓名、考号填写在试卷上指定的位置. 2.选择题选出答案后,请填写在选择题答题卡中,答在本卷上无效;非选择题的答案直接写在相应的题目位置.3.本试卷满分120分,考试时间120分钟,考试结束后,只上交第Ⅱ卷.第Ⅰ卷(选择题 36分)一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不选、选错或选的代号超过一个,一律得0分) 1.要使1321x x -+-有意义,则x 应满足A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 2.下列运算错误的是A .235+=B .236⋅=C .6÷23=D .2(22-=)3.一个圆桶底面直径为24cm ,高为32cm ,则桶内所能容下的最长木棒为A .20 cmB .40 cmC .45 cm .D .50 cm4.若△ABC 的三边a b c 、、满足(a b -)222(+=a b -c )0,则△ABC 是A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 5.如图所示,已知四边形ABCD 为平行四边形,下列结论不正确的是A .当AB =BC 时,它是菱形 B .当A C ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形D .当AC =BD 时,它是正方形6.如图,在菱形ABCD 中,∠A=110°,E 、F 分别是边AB 和BC 的中点,EP ⊥CD 于点P,则∠FPC 等于A .45°B .35°C .55°D .50°八年级数学试题·第1页(共6页)7.设min {x,y }表示x,y 两个数中的最小值,例如min {0,2}=0,min {12,8}=8,则关于x 的函数y = min {2x ,x +2}可以表示为A .2(+22)y x x x =⎧⎨≥⎩<2)(x B .+2(22)y x x x =⎧⎨≥⎩<2)(x C .2y x =D .2y x =+8.如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 A .7 B .8 C .11 D .109.直线3122y x =+上有一点A 到y 轴的距离为1,则点A 的纵坐标为 A .2或0B .-2或1C .2或-1D .1或-310.在同一坐标系中,正比例函数y kx =与一次函数y x k =-的图象大致应为A .B .C .D .11.如图,在矩形ABCD 中,AB =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积y 与点P 运动的路程x 之间的函数图象大致是A .B .C .D .12.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为 A .23 B .26 C .3D .6(第8题图)(第6题图)AB CDO(第5题图)(第12题图)八年级数学试题·第2页(共6页)孝感高新区龙店中学2013——2014学年度下学期五月月考八年级数学试卷登分栏题号 一 二三总分1920 21 22 23 24 25 得分第Ⅰ卷答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 答案第Ⅱ卷(非选择题 84分)二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在横线上) 13.计算:18﹣32﹢2=.14. 命题“两个全等三角形的面积相等”的逆命题是 . 15.已知矩形两对角线夹角为60°,对角线长为2cm ,则矩形面积为 .16. 一次函数1y mx m =+-的图像过点(0,2)且y 随x 的增大而增大,则m = . 17.如图,直线y kx b =+经过A (3,1)和B (6,0)两点,则不等式组0<kx b +<13x 的解集为 .18.在直线l 上依次摆放着七个正方形(如图所示)。

2023-2024学年安徽省芜湖市无为市多校八年级(下)月考数学试卷(5月份)+答案解析

2023-2024学年安徽省芜湖市无为市多校八年级(下)月考数学试卷(5月份)+答案解析

2023-2024学年安徽省芜湖市无为市多校八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列选项中,y是x的函数的是()A. B. C. D.2.向湖中扔一个小石子,湖中会荡起层层涟漪.若圆形水波的半径为r,面积为对于函数关系式,下列判断正确的是()A.2是变量B.是变量C.r是变量D.S是常量3.下列化简中,正确的是()A. B.C. D.4.在正比例函数的图象上的点是()A. B. C. D.5.如图,在四边形ABCD中,E、F分别是边AB、AD的中点,且,,,若,则的度数是()A.B.C.D.6.过,两点的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.一种弹簧秤最大能称不超过12kg的物体,不挂物体时弹簧的长为10cm,每挂重1kg物体,弹簧伸长,在弹性限度内,挂重后弹簧的长度与所挂物体的质量之间的函数关系式为()A. B. C. D.8.菱形OABC在平面直角坐标系中的位置如图所示,,,则点B的坐标为()A.B.C.D.9.在同一平面直角坐标系中,正比例函数为常数且和一次函数的图象大致是()A. B.C. D.10.如图,四个全等的直角三角形围成一个大正方形ABCD,中间是一个小正方形该图形是我国汉代数学家赵爽在注解《周髀算经》时给出的,被称为“赵爽弦图”.若AE平分,的面积是mn,正方形EFGH的面积是,则大正方形ABCD的面积是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

11.若是正比例函数,则a的值是______.12.若直线向上平移3个单位长度后经过点,则m的值为______.13.如图,一次函数的图象与正比例函数的图象相交于点A,已知点A的纵坐标是2,则关于x的不等式的解集是______.14.如图,在矩形ABCD中,,,P是对角线BD上的一动点,作,垂足为M,作,垂足为N,连接当P是BD的中点时,线段MN的长度是______.线段MN长度的最小值是______.三、解答题:本题共9小题,共90分。

山东省德州市陵城区江山实验学校2022-2023学年八年级下学期5月份月考数学试卷

山东省德州市陵城区江山实验学校2022-2023学年八年级下学期5月份月考数学试卷

2022-2023学年第二学期月考试题 (八年级)(数学 科目)考试时间:120分钟 分值:150分 第I 卷(选择题) 一、选择题(本大题共12小题,共48分) 1. 在函数y = x +4x 中,自变量x 的取值范围是( ) A. x >0B. x ≥−4C. x ≥−4,且x ≠0D. x >0,且x ≠−1 2. 下列曲线中,表示y 是x 的函数的是( ) A. B. C. D. 3. 已知点(−2,y 1),(−1,y 2),(1,y 3)都在直线y =−x +7上,则y 1,y 2,y 3的大小关系是( ) A. y 1>y 2>y 3 B. y 1<y 2<y 3 C. y 3>y 1>y 2 D. y 3<y 1<y 2 4. 某工程队承建一条长30km 的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y (km )与施工时间x (天)之间的关系式为( ) A. y =30−14x B. y =30+14x C. y =30−4x D. y =14x5. 根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是−3,若输入x 的值是−8,则输出y 的值是( )A. 10B. 14C. 18D. 22学校:姓名:班级:考号: 密封线6. 函数y=(m−n+1)x|n−1|+n−2是正比例函数,则m,n应满足的条件是( )A. m≠−1,且n=0B. m≠1,且n=0C. m≠−1,且n=2D. m≠1,且n=27. 对于函数y=−k2x(k是常数,k≠0),下列说法不正确的是( )A. 图象是一条直线B. 图象过点(1k,−k)C. 图象经过第一、三象限或第二、四象限D. y随着x的增大而减小8. 正比例函数y=1−2m x的图象经过点A x1,y1,B x2,y2,当x1<x2时,y1>y2,则m的取值范围是( )A. m=12B. m≥12C. m>12D. m<129. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形EFGD,动点P从点A出发,沿A→E→F→G→C→B的路线,绕多边形的边匀速运动到点B时停止,则△ABP的面积S随着时间t变化的函数图象大致是( )A. B. C. D.10. 如图,已知直线l1:y=k1x与直线l2:y=k2x+b在同一直角坐标系中的图象,则关于x的不等式k1x>k2x+b的解集为( )A. x>−1B. x<−1C. x<−2D. 无法确定11. 在同一平面直角坐标系中,直线y=−x+4与y=2x+m相交于点P3,n,则关于x,y的方程组x+y−4=0,2x−y+m=0的解为( )A. x=−1y=5 B.x=1y=3 C.x=3y=1 D.x=9y=−512. 在2021年端午节举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )A. 这次比赛的全程是1000米B. 乙队先到达终点C. 比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快D. 乙与甲相遇时乙的速度是375米/分钟第II卷(非选择题)二、填空题(本大题共6小题,共24分)13. 将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数解析式是.14. 已知一次函数y=2x+a,y=−x+b的图象都经过点A(−2,0),且与y轴分别相交于B,C两点,则△ABC的面积为.15. 汽车由A地驶往相距120kmm的B地,它的平均速度是30km/ℎ,则汽车距B地路程s(km)与行驶时间t(ℎ)的函数关系式及自变量t的取值范围是____________.16. 甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(ℎ)的关系如图所示,那么乙的速度是______km/ℎ.17. 已知一次函数y=kx+b(k≠0)的图象经过点A(−2,3),且与x轴的交点B到坐标原点的距离为1,则这个一次函数的表达式为·18. 一个空水池,现需注满水,水池深4.9 m,现以均匀的流量注水,水的深度和注水时间如下表所示.由上表提供的信息,我们可以推断出注满水池所需的时间是ℎ.三、解答题(本大题共7小题,共78分。

人教版八年级数学第二学期5月份月考测试卷含答案

人教版八年级数学第二学期5月份月考测试卷含答案

一、选择题1.如图,在△ABC中,BF平分∠ABC,过A点作AF⊥BF,垂足为F并延长交BC于点G,D为AB中点,连接DF延长交AC于点E。

若AB=12,BC=20,则线段EF的长为()A.2 B.3 C.4 D.52.如图,菱形ABCD的周长为24,对角线AC、BD交于点O,∠DAB=60°,作DH⊥AB于点H,连接OH,则OH的长为()A.2 B.3 C.23D.433.如图,在菱形ABCD中,两对角线AC、BD交于点O,AC=8,BD=6,当△OPD是以PD 为底的等腰三角形时,CP的长为()A.2 B.185C.75D.524.正方形ABCD,正方形CEFG如图放置,点B、C、E在同一条直线上,点P在BC边上,PA=PF,且∠APF=90°,连接AF交CD于点M.有下列结论:①EC=BP;②AP=AM:③∠BAP=∠GFP;④AB2+CE2=12AF2;⑤S正方形ABCD+S正方形CGFE=2S△APF,其中正确的是()A .①②③B .①③④C .①②④⑤D .①③④⑤ 5.如图,E 是边长为2的正方形ABCD 的对角线AC 上一点,且AE AB =,F 为BE 上任意一点,FG AC 于点G ,FH AB ⊥于点H ,则FG FH +的值是( )A .22B .2C .2D .16.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,依此下去,第n 个正方形的面积为( )A .(2)n ﹣1B .2n ﹣1C .(2)nD .2n7.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若BF =3,AB =2.5,则AE 的长为( )A .2B .4C .8D .5 8.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )A.2B.2 C.1.5 D.39.如图,在正方形ABCD中,AB=4,E是CD的中点,将BCE沿BE翻折至BFE,连接DF,则DF的长度是()A.55B.255C.355D.45510.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B.22C.2.4 D.3.5二、填空题11.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是直线AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连结AM、MN,若AC=6,AB=5,则AM-MN的最大值为________.12.如图,正方形ABCD中,DAC的平分线交DC于点E,若P,Q分别是AD和AE上的动点,则DQ+PQ能取得最小值4时,此正方形的边长为______________.13.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.14.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.15.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.16.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.17.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.18.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.19.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.22.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.23.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.24.综合与探究如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.25.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.26.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).27.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD AG +=.28.问题背景 若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.29.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.30.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由直角三角形的性质可求得DF=BD=12AB,由角平分线的定义可证得DE∥BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【详解】解:∵AF⊥BF,D为AB的中点,∴DF=DB=12AB=6,∴∠DBF=∠DFB,∵BF平分∠ABC,∴∠DBF=∠CBF,∴∠DFB=∠CBF,∴DE∥BC,∴DE为△ABC的中位线,∴DE=12BC=10,∴EF=DE−DF=10−6=4,故选:C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得△DBF为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为△ABC的中位线,从而计算出DE,继而求出EF.2.B解析:B【解析】【分析】由菱形四边形相等、OD=OB,且每边长为6,再有∠DAB=60°,说明△DAB为等边三角形,由DH⊥AB,可得AH=HB(等腰三角形三线合一),可得OH就是AD的一半,即可完成解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下学期5月份数学月考试卷
姓名 分数
一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1、如果a >b,那么下列不等式中不成立的是 ( ) A . a ―3>b ―3 B . ―3a >―3b C .
3a >3
b
D . ―a <―b 2、两相似三角形的最短边分别为5cm 和3cm ,它们的面积之差为32cm 2,那么小三角形的面积为( )
A 、10cm 2
B 、14cm 2
C 、16cm 2
D 、18cm 2
3、下列等式从左到右的变形是因式分解的是( ) A 、12a 2b =3a ·4ab
B 、(x +3)(x -3)=x 2-9
C 、ax -ay =a (x -y )
D 、4x 2+8x -1=4x (x +2)-1
4、在x 1,5
2ab ,37.0y xy +-,m n m +,a c
b +-5, 中,是分式的有( )
A 、2个
B 、3个
C 、4个
D 、5个
5、为了了解某校初三年级400名学生的体重情况, 从中抽查了50名学生的体重进行统计分析, 在这个问
题中, 总体是指( )
A 、400名学生的体重
B 、被抽取的50名学生
C 、400名学生
D 、被抽取的50名学生的体重
6、鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105km ,在一张比例尺为1:2000000的交通旅游
图上,它们之间的距离大约相当于( ) A 、一根火柴的长度 B 、一支钢笔的长度 C 、一支铅笔的长度 D 、一根筷子的长度
7、甲、乙两名学生在参加今年体育考试前各做了5次立定跳远测试,两人的平均成绩相同,其中甲所测得成绩的方差是0.005,乙所测得的成绩如下:2.20 m ,2.30 m ,2.30 m ,2.40 m ,2.30 m,那么甲、乙的成绩比较( ) A.甲的成绩更稳定 B.乙的成绩更稳定 C.甲、乙的成绩一样稳定 D.不能确定谁的成绩更稳定
8、有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间线段最短;③相等的角是对顶角;④两锐角的和是锐角;⑤同角或等角的补角相等。

其中是真命题的个数是( )
A .5个
B .4个
C .3个
D .2个
二、填空题(本大题共7个小题,每小题3分,满分21分)
9、如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB 长为20米,试计算主持人应走到离
A 点至少 米处,就能处在比 较得体的位置。

(结果精确到0.1米)
10、如图,在△ABC 中,AB =4cm ,AC =2cm ,在AB 上取一点D , 当AD =___________ cm 时,△ACD ∽△ABC.。

B
A
D B
C
A
11、已知,边长分别为a 、b 的矩形,它的周长为14,面积为10,则2
2ab b a +的值为 。

12、如右图:AB ∥CD ,直线HE ⊥MN 交MN 于E ,∠1=130º, 则∠2等于 度。

13、31=+a a ,则=+2
21a a。

14形中需
要黑色瓷砖__________块(用含n 的代数式表示).
15、“直角三角形的两锐角互余”这个命题的条件是 ,结论是 。

三、解答题(本大题共7个小题,满分55分)
16、(6分)先化简)---(2422a a a ×a
a 24
+2,然后再取一个你喜欢且使原式有意义的a 值代入求值。

17、(6分)解方程:11
4
112
=---+x x x
(1) (2) (3)
18、(7分)解不等式组:
20
3121
23
x
x x
+≥


-+

<
⎪⎩
,并写出该不等式组的最小整数解。

19、(8分)计算:某校为了让学生了解环保知识,增强环保意识,举行了一次“保护家乡”的环保知识竞赛,共有900名学生参加这次竞赛。

为了解本次竞赛的情况,从中抽取了部分学生的成绩(得分均为正整数,满分为100分)进行统计:
请根据上面提供的信息, 回答下列问题:(1)填充频率分布表中的空格;(分)
频率分布表
(2)补全频率分布直方图;
(3)在该问题中,样本容量是
(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?
(5)若成绩在90分以上(不含90分)可以获奖,在全校参加竞赛的学生中,有多少学生获奖? ;
20、(10分)如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上,若这个矩形的长PN 是宽PQ 的2倍,求长、宽各是多少?
21、(8分)如图,ABC △在方格纸中
(1)请在方格纸上建立平面直角坐标系,使(23)(62)A C ,,
,,并写出B 点坐标是 。

(2)以原点O 为位似中心,相似比为2
,在第一象限内将ABC △放大,画出放大后的图形△DEF. (3)计算△DEF.的面积S .
A B
C
22、(10)在“云南盈江地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务。

(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30m2或乙种板材20m2,应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?
(2)某灾民安置点计划用该企业生产的这批板材搭建A、B两种型号的板房共400间,在搭建过程中,
至少要建A型板房多少间?
(3)这400间板房最多能安置多少灾民?。

相关文档
最新文档