高二数学上学期期中考试模拟题(理)(含答案)

合集下载

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)
求直线被曲线 ′ 截得的最短的弦长;
(3) 已知点的坐标为(5,3),点在曲线 ′ 上运动,求线段的中点的轨迹方程.
22. (12 分)
如图,长方体 — 1 1 1 1 中, = 2 = 21 ,
点在棱上且1 丄平面1 1

(1)求 的值
21. ( 12 分)
已知两定点 (-4,0), (-1,0),动点 满足 | | = 2 ||,直线 :(2 + 1) + ( + 1) −
5 − 3 = 0.
(1) 求动点的轨迹方程,并说明轨迹的形状;
(2) 记动点的轨迹为曲线,把曲线向右平移 1 个单位长度,向上平移 1 个单位长度后得到曲线 ′ ,
反射光线所在直线的方程.
20. (12 分)
在直角梯形 中, //, = 2 = 2 =2 2,∠ = 900 如图(1). 把△沿
翻折,使得平面 ⊥平面,如图(2).
(1) 求证: ⊥ ;
(2) 若为线段的中点,求点到平面的距离.
所成角的余弦值为
A.
6
B.
3
3
C.
3
15
D.
5
10
5
12. 若圆 2 + 2 − 4 − 4 − 10 = 0至少有三个不同的点到直线: = 的距离为 2 2,则直线的倾斜角
的取值范围是



A.[ 12 , 4 ]
5
B. [ 12 , 12 ]


C. [ 6 , 3 ]
B. - 5
C. 10
D. -10
2.已知(4,1,9),(2,4,3),则线段的长为
A. 39
B.7

宁夏回族自治区银川一中2021-2022学年高二上学期期中考试数学(理)试题 Word版含答案

宁夏回族自治区银川一中2021-2022学年高二上学期期中考试数学(理)试题 Word版含答案

银川一中2021/2022学年度(上)高二期中考试数学试卷(理科)命题人:尹秀香 尹向阳一、选择题:本大题共12小题,每小题5分,共60分.1.将一个骰子先后抛掷2次,观看向上的点数,则两数之和是3的倍数的概率是( )A . 19B .16C .14D .132. 一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别为( )A. 57.2 3.6B. 57.2 56.4C. 62.8 63.6D. 62.8 3.63. 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中消灭乙级品的概率为0.03,丙级品的概率为0.01,则抽查一件产品抽得正品的概率为( ) A. 0.09B. 0.98C. 0.97D. 0.964.已知命题xx x p 32,)0,(:<-∞∈∃;命题)2,0(:π∈∀x q ,x x sin tan >.则下列命题为真命题的是 ( )A . q p ∧B . )(q p ⌝∨C .)(q p ⌝∧D .q p ∧⌝)(5.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上.假如线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( ) A .±34B .±32C .±22D .±346.“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件 C .既不充分也不必要条件7. 方程2|y|-1=1(1)x --表示的曲线是( )A . 一个椭圆 B. 一个圆 C. 两个圆 D. 两个半圆8.某学校对高二班级一次考试进行抽样分析. 右图是依据抽样分析后的考试成果绘制 的频率分布直方图,其中抽样成果的范围 是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[ 104,106]. 已知样本中成果小于100分的人数是36,则样本中成果大于或等于98分且小于104 分的人数是( ) A. 90 B. 75C. 60D. 459. 椭圆22221x y a b+=(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若21F F 是|AF 1|,|F 1B|的等比中项,则此椭圆的离心率为( )A .33B .55C .21D .210. 阅读程序框图,运行相应的程序,输出S 的值为( )A. 15B. 105C. 245D. 94511.已知椭圆1251622=+y x 的焦点分别为21,F F ,P 是椭圆上一点,若连接21,F F ,P 三点恰好能构成直角三角形,则点P 到y 轴的距离是( )A. 3B. 516C.53或165 D. 16312.如图,点A 为椭圆E :)0(12222>>=+b a b y a x 的右顶点,B ,C 在椭圆E 上,若四边形OABC 为平行四边形,且∠OAB=30°,则椭圆E 的离心率为( )A. 225B. 23 C. 235 D.223二、填空题(每小题5分,共20分)13. 一枚均匀的硬币连续掷三次,则至少消灭一次正面对上的概率是 14.若不等式a x <-|1||成立的充分条件是40<<x ,则实数a 的取值范围是__________.15.短轴长为25,离心率e=32的椭圆的两焦点为21,F F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆周长为_____________。

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪教版2020必修第三册第十~十一章。

5.难度系数:0.72。

一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。

2023-2024学年山东省济南市高二上学期期中数学质量检测模拟试题(含解析)

2023-2024学年山东省济南市高二上学期期中数学质量检测模拟试题(含解析)

2023-2024学年山东省济南市高二上册期中考试数学模拟试题一、单选题1.下列关于空间向量的说法中正确的是()A .方向相反的两个向量是相反向量B .空间中任意两个单位向量必相等C .若向量,AB CD 满足AB CD > ,则AB CD>D .相等向量其方向必相同【正确答案】D【分析】根据向量的相关概念逐一判断即可.【详解】相反向量指的是长度相等,方向相反的向量,故A 错误;单位向量指的是模为1的向量,方向未定,故B 错误;向量不能比较大小,故C 错误;相等向量其方向必相同,故D 正确;故选:D.2.两条直线1l :210x y --=与2l :3110x y +-=的交点坐标为().A .(32)--,B .(23)--,C .(2)3,D .(32),【正确答案】C【分析】联立两直线的方程,解方程组即可求解.【详解】因为直线1l :210x y --=,直线2l :3110x y +-=,由2103110x y x y --=⎧⎨+-=⎩,解得:23x y =⎧⎨=⎩,所以1l 与2l 两条直线的交点坐标为(2)3,,故选:C.3.已知(2,1)M 、(1,5)N -,则MN =().AB .4C .5D【正确答案】C【分析】利用两点间距离公式即可求解.【详解】因为(2,1)M 、(1,5)N -,所以5MN ==,故选:C.4.原点到直线250x y +-=的距离为()A .1BC .2D【正确答案】D【分析】利用点到直线的距离公式,求得所求的距离.【详解】由点到直线距离可知所求距离d ==故选:D本小题主要考查点到直线的距离公式,属于基础题.5.已知直线51230x y +-=与直线512100x y ++=平行,则它们之间的距离是()A .1B .2C .12D .4【正确答案】A【分析】直接利用两平行直线之间的距离公式计算即可.1=.故选:A.6.圆224240x y x y +-++=的半径和圆心坐标分别为A .1;(2,1)r =-B .2;(2,1)r =-C .2;(2,1)r =-D .1;(2,1)r =-【正确答案】D【详解】22(2)(1)1x y -++=∴ 半径和圆心坐标分别为()1;2,1r =-,选D7.椭圆22125169x y +=的焦点坐标为()A .(5,0),(5,0)-B .(05),(05)-,,C .(0,12),(0,12)-D .(12,0),(12,0)-【正确答案】C【分析】由方程可得22,a b ,结合椭圆中,,a b c 的关系及焦点位置可得焦点坐标.【详解】因为椭圆的方程为22125169x y +=,所以焦点在y 上,且22169,25a b ==,由22216925144c a b =-=-=可得12c =,所以焦点为(0,12),(0,12)-.故选:C.本题主要考查椭圆的焦点坐标,利用方程求解焦点时,一看焦点位置,二算焦距大小,侧重考查数学运算的核心素养.8.已知两个异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a •12b=-,则两直线的夹角为()A .30︒B .60︒C .120︒D .150︒【正确答案】B【分析】先求出向量,a b的夹角,再利用异面直线角的定义直接求解即可【详解】设两直线的夹角为θ,则由题意可得1×1×cos a <,12b =- >,∴cos a <,12b =->,∴a <,23b π=>,∴θ3π=,故选:B .本题主要考查两个向量的数量积的定义,注意两直线的夹角与a <,b>的关系,属于基础题.9.椭圆22125x y +=上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为()A .5B .6C .7D .8【正确答案】D【分析】由椭圆的定义可得点P 到两个焦点的距离之和为2a =10,再由点P 到一个焦点的距离为2,可得点P 到另一个焦点的距离.【详解】由椭圆22125x y +=,可得a =5、b =1,设它的两个焦点分别为F 、F ′,再由椭圆的定义可得|PF |+|PF '|=2a =10,由于点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为8,故选:D .本题主要考查椭圆的定义和标准方程的应用,属于中档题.10.若双曲线22:1916x y E -=的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于()A .11B .9C .5D .3【正确答案】B【分析】由双曲线的定义运算即可得解.【详解】由双曲线的定义得12||||26PF PF a -==,即23||6PF -=,因为2||0PF >,所以2||9PF =.故选:B.11.已知过点(2,)A m -和(,4)B m 的直线的斜率为2-,则m 的值为()A .8-B .0C .2D .10【正确答案】A【分析】利用直线的斜率公式求解即可.【详解】解: 过点(2,)A m -和(,4)B m 的直线的斜率为2-,422m m-∴=---,解得8m =-,故选:A.12.已知向量,m n 分别是直线l 与平面α的方向向量、法向量,若cos ,m n 〈〉=l 与α所成的角为()A .30︒B .60︒C .150︒D .120︒【正确答案】B【分析】根据直线l 的方向向量与平面α的法向量的夹角与线面角之间的关系,可得线面角的正弦值,即可求得答案.【详解】设直线l 与α所成的角为,090θθ≤≤ ,因为向量,m n 分别是直线l 与平面α的方向向量、法向量,且cos ,m n 〈〉=,故cos sin ,|2|m n θ〈〉==,即得60θ= ,故选:B13.如果直线1l 的斜率为2,12l l ⊥,则直线2l 的斜率为()A .12-B .2C .12D .-2【正确答案】A【分析】直接由两直线垂直则斜率乘积等于1-,计算可得2l 的斜率.【详解】由于直线1l 的斜率为2且12l l ⊥,所以直线2l 的斜率为12-.故选:A14.圆O 1:2220x y x +-=和圆O 2:2240x y y +-=的位置关系是A .相离B .相交C .外切D .内切【正确答案】B【详解】试题分析:由题意可知圆1O 的圆心()11,0O ,半径11r =,圆2O 的圆心()20,2O ,半径12r =,又211212r r O O r r -<=<+,所以圆1O 和圆2O 的位置关系是相交,故选B .圆与圆的位置关系.15.已知双曲线22x a -25y =1的右焦点为(3,0),则该双曲线的离心率等于A .14B .4C .32D .43【正确答案】C【详解】由题意知c =3,故a 2+5=9,解得a =2,故该双曲线的离心率e =ca =32.16.直线y=x+1与圆x 2+y 2=1的位置关系为A .相切B .相交但直线不过圆心C .直线过圆心D .相离【正确答案】B【详解】试题分析:求出圆心到直线的距离d ,与圆的半径r 比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案.解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心.所以直线与圆的位置关系是相交但直线不过圆心.故选B直线与圆的位置关系.二、多选题17.设抛物线的顶点在原点,焦点到准线的距离为4,则抛物线的方程是()A .28y x =-B .28y x=C .24y x=-D .24y x=【正确答案】AB【分析】根据焦点到准线的距离为p 求解.【详解】解:因为焦点到准线的距离为4,所以4p =,根据四个选项可得28y x =-,28y x =满足4p =,故选:AB 三、单选题18.已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =±D .y x=±【正确答案】C【详解】2c e a ==,故2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.本题考查双曲线的基本性质,考查学生的化归与转化能力.19.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x =()A .1B .2C .4D .8【正确答案】A 【分析】解方程001544x x +=即得解.【详解】解:由题得抛物线的准线方程为14x =-,则有014AF x =+,即有001544x x +=,解得01x =.故选:A20.若抛物线()20y ax a =>的焦点与椭圆2212x y +=的上顶点重合,则=a ()A .12B .14C .2D .4【正确答案】B分别求得椭圆的上顶点和抛物线的焦点坐标,再利用重合求解.【详解】椭圆2212x y +=的上顶点是()0,1抛物线()20y ax a =>的焦点10,4a ⎛⎫ ⎪⎝⎭因为两点重合所以114a=所以14a =故选:B本题主要考查了椭圆和抛物线的几何性质,还考查了运算求解的能力,属于基础题.四、多选题21.若1l 与2l 为两条不重合的直线,它们的倾斜角分别是12,αα,斜率分别为12,k k ,则下列命题正确的是()A .若斜率12k k =,则12l l ∥B .若121k k =-,则12l l ⊥C .若倾斜角12αα=,则12l l ∥D .若12παα+=,则12l l ⊥【正确答案】ABC【分析】根据两直线倾斜角和斜率与直线平行和垂直的关系分别判断选项ABC ,举反例可判断D.【详解】对于A,若两直线斜率12k k =,则它们的倾斜角12αα=,则12l l ∥,正确;对于B ,由两直线垂直的条件可知,若121k k =-,则12l l ⊥,正确;对于C,由两直线平行的条件可知,若倾斜角12αα=,则12l l ∥,正确;对于D,若12παα+=,不妨取12π2π33,αα==,则1122tan tan k k αα====121k k =-,12,l l 不垂直,D 错误,故选:ABC22.下列命题中,正确的命题为()A .若1n ,2n分别是平面α,β的法向量,则12////n n αβ⇔B .若1n ,2n分别是平面α,β的法向量,则120n n αβ⊥⇔⋅= C .若n 是平面α的法向量,a 是直线l 的方向向量,若l 与平面α平行,则//n aD .0PM PN MN -+= 【正确答案】BD【分析】由面面位置关系以及法向量的概念判断A 、B ;由法向量的概念和直线方向向量的定义判断C ,根据空间向量线性运算法则判断D.【详解】解:对于A ,若1n ,2n分别是两个不重合平面α,β的法向量,则12////n n αβ⇔ ,故A中平面α,β可能平行或重合,故A 错误;对于B ,若1n ,2n分别是平面α,β的法向量,则120n n αβ⊥⇔⋅= ,故B 正确;对于C ,若n是平面α的法向量,a 是直线l 的方向向量,l 与平面α平行,则n a ⊥ ,所以0n a ⋅= ,故C 错误;对于D ,0PM PN MN NM MN -+=+=,故D 正确.故选:BD .23.已知双曲线方程为22832x y -=,则()A .焦距为6B .虚轴长为4C .实轴长为D .离心率为4【正确答案】BCD【分析】求出双曲线的标准方程,得到a =2b =,6c =,对照选项即可求解.【详解】双曲线方程22832x y -=化为标准方程为:221324x y -=,可得:a =2b =,6c =,所以双曲线的焦距为212c =,虚轴长为24b =,实轴长为2a =,离心率4c e a ==,故选.BCD24.(多选)经过点P (4,-2)的抛物线的标准方程为()A .y 2=xB .y 2=8xC .y 2=-8xD .x 2=-8y【正确答案】AD【详解】当开口向右时,设抛物线方程为y 2=2p 1x (p 1>0),则(-2)2=8p 1,所以p 1=12,所以抛物线方程为y 2=x .当开口向下时,设抛物线方程为x 2=-2p 2y (p 2>0),则42=4p 2,p 2=4,所以抛物线方程为x 2=-8y .故选:AD25.已知(2,4)A --,(1,5)B 两点到直线:10l ax y ++=的距离相等,则实数a 的值可能为()A .3-B .3C .2-D .1【正确答案】AB【分析】由点到直线的距离公式可得关于a 的方程,解方程即可.【详解】解:因为(2,4)A --,(1,5)B 两点到直线:10l ax y ++=的距离相等,=即236a a +=+,化简得29a =,解得3a =±,所以实数a 的值可能为3±.故选:AB .五、填空题26.若直线的倾斜角为135︒,则直线的斜率为________.【正确答案】1-【分析】根据斜率和倾斜角的关系求得直线的斜率.【详解】依题意,直线的斜率为135tan 1k =︒=-.故1-27.已知平面α的法向量u =(1,0,-1),平面β的法向量v =(0,-1,1),则平面α与β的夹角为________.【正确答案】【详解】∵cos 〈u ,v 〉==-,∴〈u ,v 〉=π,∴平面α与β的夹角是.28.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为10,焦距为6,则此椭圆的标准方程为____________.【正确答案】2212516y x +=【分析】依题意可得22221026a c c a b =⎧⎪=⎨⎪=-⎩,解得a 、b ,即可得解.【详解】依题意,设椭圆方程为()222210,0y x a b a b +=>>,则22221026a c c a b =⎧⎪=⎨⎪=-⎩,解得534a c b =⎧⎪=⎨⎪=⎩,所以椭圆方程为2212516y x +=.故答案为.2212516y x +=29.以两点()2,0A -和()0,2B 为直径端点的圆的标准方程是___________.【正确答案】()()22112x y ++-=【分析】通过圆过定点A 和B ,以及线段AB 是直径,求出圆心和半径,即可求出圆的标准方程.【详解】解:由题意,在圆中,圆过()2,0A -和()0,2B ,且以AB 为直径,设圆心为C ,半径为r ,∴2012-+=-,0212+=,AB ==∴()1,1C -,12r AB =,∴以两点()2,0A -和()0,2B 为直径端点的圆的标准方程是:()()22112x y ++-=,故答案为.()()22112x y ++-=30.若经过点(),4m 和()22,m 的直线l 与斜率为1-的直线互相垂直,则m 的值是_______.【正确答案】3-【分析】分析可知,直线l 的斜率为1,利用斜率公式可得出关于实数m 的等式,解之即可.【详解】由题意可知,直线l 的斜率为2412m k m -==-且2m ≠,所以,21m --=,解得3m =-.故答案为.3-六、解答题31.如图所示,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,12AA =,点D 是BC 的中点.(1)求直线AC 与平面1C AD 所成角的正弦值;(2)求平面1C AD 与平面ABC 的夹角的余弦值.【正确答案】33(2)33【分析】(1)(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)解:在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,12AA =,点D 是BC 的中点.∴以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则()0,0,0A ,()0,2,0C ,()2,0,0B ,()10,2,2C ,()1,1,0D ,所以()0,2,0AC = ,()10,2,2AC = ,()1,1,0AD = ,设平面1C AD 的法向量(,,)n x y z = ,则10220n AD x y n AC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取1x =,则1y =-,1z =,得()1,1,1n =- ,设直线AC 与平面1C AD 所成角为θ,则3sin 323n AC n AC θ⋅===⨯⋅ 所以直线AC 与平面1C AD 33.(2)解:显然平面ABC 的一个法向量可以为()0,0,1m = ,设平面1C AD 与平面ABC 的夹角为α,则cos 3n m n mα⋅===⋅ ,所以平面1C AD 与平面ABC的夹角的余弦值为3.32.已知圆经过点()2,0P 和坐标原点,且圆心C 在直线0x y -=上(1)求圆的标准方程;(2)直线y x b =+与圆C 相交,求b 的范围.【正确答案】(1)()()22112x y -+-=(2)()2,2b ∈-【分析】(1)设圆的标准方程为()()()2220x a y b r r -+-=>,根据题意列出方程组,求出,,a b r ,即可得解;(2)根据直线与圆相交可得圆心到直线的距离d r <,结合点到直线的距离公式即可得解.【详解】(1)设圆的标准方程为()()()2220x a y b r r -+-=>,由题意得()22222220a b r a b r a b ⎧-+=⎪+=⎨⎪-=⎩,解得2112a b r =⎧⎪=⎨⎪=⎩,所以圆的标准方程为()()22112x y -+-=;(2)圆C 的圆心为()1,1,半径r =圆心()1,1到直线y x b =+的距离d ==因为直线y x b =+与圆C 相交,所以d r <,<,解得22b -<<,所以()2,2b ∈-.33.已知双曲线标准方程.2213y x -=(1)求此双曲线的渐近线方程;(2)求以原点为顶点,以此双曲线的右顶点为焦点的抛物线的标准方程,过抛物线的焦点且倾斜角为4π的直线与此抛物线交于两点,A B ,求弦AB 的长度.【正确答案】(1)y =(2)8【分析】(1)根据双曲线的标准方程,结合双曲线渐近线方程公式,可得答案;(2)根据双曲线的标准方程,求得其右顶点的坐标,利用抛物线的标准方程,由焦点可得方程,写出直线方程,联立写出韦达定理,结合弦长公式,可得答案.【详解】(1)由双曲线标准方程:2213y x -=,则1,a b =y =.(2)由双曲线标准方程:2213y x -=,则其右顶点坐标为()1,0,由题意可得抛物线的标准方程为24y x =,其该抛物线焦点且倾斜角为4π的直线方程为1y x =-,联立可得241y x y x ⎧=⎨=-⎩,整理可得2610x x -+=,设()()1122,,,A x y B x y ,则126x x +=,121=x x ,则128AB x =-===.34.已知F 1,F 2分别为椭圆2221100x y b +=(0<b <10)的左、右焦点,P 是椭圆上一点.(1)若∠F 1PF 2=60°,且 F 1PF 2,求b 的值;(2)求|PF 1|⋅|PF 2|的最大值.【正确答案】(1)8;(2)100.【分析】(1)利用 F 1PF 2的面积得到122563PF PF ⋅=,再利用余弦定理求解;(2)结合椭圆的定义,利用基本不等式求解.【详解】(1)解:由椭圆方程知2221100x y b+=,a =10,2210036c b =-=则1220PF PF +=,由 F 1PF 2的面积为121sin 602S PF PF =⋅⋅ 解得122563PF PF ⋅=,由余弦定理得2221212122cos 60F F PF PF PF PF =+-⋅⋅ ,()212123400256144PF PF PF PF =+-⋅=-=,即210036b -=,所以264b =,即8b =;(2)由基本不等式得()212121004PF PF PF PF +⋅≤=,当且仅当1210PF PF ==时,等号成立,所以12PF PF ⋅的最大值为100.。

2013学年高二上期中考试 数学(理)模拟试题 Word版含答案

2013学年高二上期中考试 数学(理)模拟试题 Word版含答案

XX 中学2013学年高二上期中考试数学模拟试题(理)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校共有学生2000名,各年级男、女生人数如下表。

已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19。

按年级分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A. 24B. 18C. 16D. 122.用“辗转相除法”求得459和357的最大公约数是 ( )A.3 B .9 C .17 D .513.不等式3|2|<++m y x 表示的平面区域包含点)0,0(和点),1,1(-则m 的取值范围是( ) A .32<<-m B .60<<m C .63<<-m D .30<<m 4.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x 5.在空间直角坐标系中,点(2,1,4)-关于x 轴的对称点的坐标为 ( )A .(2,1,4)--B .(2,1,4)-C .(2,1,4)--- D .(2,1,4)- 6.由上表可得回归直线方程 =0.56x + ,据此模型预报身高为172 cm 的男生的体重大约为( )A .70.09 KgB .70.12 KgC .70.55 KgD .71.05 Kg7.已知⎭⎬⎫⎩⎨⎧=++=01252x x x A ,B={}a y y x+=2,若实数a 可在区间[]3,3-内随机取值,则使∅≠B A 的概率为 ( )A.61 B. 125 C.127 D. 658.有一个如图所示的木质雕塑,它是由两个同样大小的333⨯⨯立方体重叠构成的,其中重叠的部分为232⨯⨯个小立方体.现将该雕塑外表均涂上油漆.然后按线条切割为111⨯⨯的小立方体.并装在一个暗箱子中经过搅拌后,从中抽取一个小立方体,那么取出的小立方体有两个面涂油漆的概率为 ( )A.72 B. 4213 C. 31 D. 218 9.在区间[-1,1]上随机取一个数x ,则c o s 2x π的值介于0到21之间的概率为 ( )A.31B.π2C.21D.32 10.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m n+的取值范围是( )A .]31,31[+- B.),31[]31,(+∞+⋃--∞ C.]222,222[+- D.),222[]222,(+∞+⋃--∞第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5小题,每小题5分,共25分.请将答案填在答题卡上)11.已知1b 是[]1,0上的均匀随机数,6)5.0(1*-=b b ,则b 是区间 上的均匀随机数.13. 已知曲线1C的方程是024=-+-k y kx ()R k ∈,曲线2C 的方程是142=-+-y x ,给出下列结论:①曲线1C 恒过定点()4,2; ②2C 的图形是一个圆;③⎪⎭⎫⎝⎛+∞∈,43k 时,1C 与2C 只有一个公共点; ④若0=k 时,则1C 与2C 必无公共点。

2022-2023学年内蒙古自治区包头市高二年级上册学期期中考试数学(理)试题【含答案】

2022-2023学年内蒙古自治区包头市高二年级上册学期期中考试数学(理)试题【含答案】

2022-2023学年内蒙古自治区包头市第一中学高二上学期期中考试数学(理)试题一、单选题1.命题“R x ∃∈,2210x x +-<”的否定是( ) A .R x ∀∈,2210x x +-≥ B .R x ∃∉,2210x x +-≥ C .R x ∃∈,2210x x +-≥ D .R x ∀∉,2210x x +-≥【答案】A【分析】将特称命题否定为全称命题即可. 【详解】命题“R x ∃∈,2210x x +-<”的否定是 “R x ∀∈,2210x x +-≥”, 故选:A.2.圆()()22341x y -+-=与圆2236x y +=的位置关系为( ) A .相离 B .内切 C .外切 D .相交【答案】B【分析】根据圆心距与21r r -的关系求得正确答案.【详解】圆()()22341x y -+-=的圆心为()3,4A ,半径11r =;圆2236x y +=的圆心为()0,0O ,半径26=r , 圆心距215OA r r ==-,所以两圆的位置关系是内切. 故选:B3.已知双曲线221x y m +=(m 为非零常数)的渐近线方程为y x =,则双曲线的虚轴长是( )A .-3B .3C .D 【答案】C【分析】根据双曲线的渐近线方程求得m ,进而求得双曲线的虚轴长. 【详解】双曲线221x y m+=,即221x y m -=-,双曲线的渐近线方程为y x =,3m ==-,所以双曲线方程为2213x y -=,所以b =2b =故选:C4.已知椭圆经过点(),且焦点分别为()10,1-F ,()20,1F ,则椭圆的离心率为( )A B C D 【答案】D【分析】根据已知条件求得,a c ,从而求得椭圆的离心率. 【详解】由于焦点()10,1-F , 所以焦点在y 轴上,且1c =,由于椭圆经过点(),所以b =所以a ==所以椭圆的离心率为c a =故选:D5.过抛物线22y x =的焦点作直线l ,交抛物线于,A B 两点,若线段AB 中点的横坐标为4,则AB 等于( ) A .10 B .9 C .6 D .5【答案】B【分析】利用抛物线的几何意义求解即可. 【详解】设()()1122,,,A x y B x y ,由题意得1242x x +=, 所以由抛物线的几何意义得1281922p pAB x x =+++=+=, 故选:B.6.已知空间四边形ABCO 中,OA a =,OB b =,OC c =,M 为OA 中点,点N 在BC 上,且2NB NC =,则MN 等于( )A .121233a b c -+-B .121233a b c -++C .111232a b c +- D .112233a b c -++【答案】D【分析】根据已知条件,结合空间向量的线性运算法则,即可求解. 【详解】如图所示:点N 在BC 上,且2NB NC =,∴2BN NC =, 由OB b =,OC c =,∴111212()333333ON OC CN OC CB OC OB OC OB OC b c =+=+=+-=+=+,M 为OA 中点,OA a =,1122OM OA a ==,∴11122233MN ON OM ON OA a b c =-=-=-++.故选:D .7.曲线()2216126x y m m m +=<--与曲线()2212828x y m m m+=<<--的( )A .焦距相等B .焦点相同C .离心率相等D .顶点相同【答案】A【分析】先分清两曲线分别是什么类型的曲线,再分别求出每个曲线的几何特征即可. 【详解】对于曲线()2216126x y m m m +=<-- ,1260m m ->-> ,是焦点在x 轴上的椭圆, 2222212,6,6,6a m b m c a b c =-=-=-==;对于曲线()2212828x y m m m +=<<-- ,20,80m m -<-> ,是焦点在y 轴上的双曲线, 222228,2,6,6a m b m c a b c =-=-=+== ;所以两曲线的焦距相同. 故选:A8.下列命题中的说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .命题“p q ∨”为真命题,则“命题p ”和“命题q ”均为真命题C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 不全为0,则220a b +≠”D .命题“若空间向量a b =,则a b =”的逆命题是真命题 【答案】C【分析】利用否命题、逻辑连接词、逆否命题和逆命题的定义判断各选项即可. 【详解】命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,选项A 错误;命题“p q ∨”为真命题,则“命题p ”和“命题q ”均为真命题或其中一个为真命题,选项B 错误; “220a b +=,则,a b 全为0”的逆否命题是“若,a b 不全为0,则220a b +≠”,选项C 正确; 命题“若空间向量a b =,则a b =”的逆命题为“若空间向量a b =,则a b =”,由于模长相等方向不一定相等,所以该命题为假命题,选项D 错误; 故选:C9.已知圆()22:316M x y ++=外一点()3,0N ,点P 是圆上任意一点,线段NP 的垂直平分线l 和直线MP 交于点Q ,则点Q 的轨迹方程为( ) A .22145x y -=B .2211620x y -=C .221167x y +=D .2213627x y +=【答案】A【分析】结合双曲线的定义求得正确答案. 【详解】圆M 的圆心为()3,0M -,半径4r =, 由于线段NP 的垂直平分线l 交直线MP 于Q , 所以QP QN =,所以4QN QM QP QM r MN -=-==<,所以Q 点的轨迹是双曲线,且3,24,2,c a a b === 所以Q 点的轨迹方程为22145x y -=. 故选:A10.椭圆22163x y +=中,以点11,2⎛⎫ ⎪⎝⎭为中点的弦所在直线斜率为( )A .1B .12C .-1D .12-【答案】C【分析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率.【详解】设弦的两端点为()11,A x y ,()22,B x y ,则12122,1x x y y +=+=,因为22112163⎛⎫ ⎪⎝⎭+<,所以点11,2⎛⎫ ⎪⎝⎭在椭圆22163x y +=内, 将()11,A x y ,()22,B x y 代入椭圆得22112222163163x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得()()()()12121212063x x x x y y y y -+-++=,即()()()()1212121263x x x x y y y y -+-+=-,即()()1212121236x x y y y y x x +--=+-, 即12123261y y x x -⨯-=⨯-, 即12121y y x x -=--, 所以弦所在的直线的斜率为1-. 故选:C .11.直线1ax by +=与圆221x y +=有公共点是点(),P a b 在该圆外的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】结合直线与圆的位置关系、点与圆的位置关系、充分和必要条件的知识确定正确答案. 【详解】圆221x y +=的圆心为()0,0,半径为1,当直线1,10ax by ax by +=+-=与圆221x y +=有公共点时,221,1a b ≤+≥,所以P 在圆上或圆外,所以直线1ax by +=与圆221x y +=有公共点是点(),P a b 在该圆外的必要不充分条件. 故选:B12.已知P 是抛物线24y x =上的一点,过点P 作直线2x =-的垂线,垂足为H ,设圆()()22:331C x y ++-=上任意一点Q ,则PQ PH +的最小值是( )A.1 B .5 C .6 D .4【答案】B【分析】结合抛物线的定义以及圆的几何性质求得正确答案. 【详解】抛物线24y x =的焦点()1,0F ,准线方程为=1x -, 根据抛物线的定义可知1PH PF =+,圆()()22:331C x y ++-=的圆心为()3,3C -,半径1r =,min 1PQ PC =-,5CF ==所以115PQ PH PC PF PC PF CF +≥-++=+≥=, 所以当,,F P C 三点共线时,PQ PH +取得最小值5. 故选:B二、填空题13.抛物线28y x =-的准线方程是________. 【答案】132y =【分析】先将抛物线方程化为标准形式,即可得出其准线方程.【详解】因为抛物线28y x =-的标准方程为:218=-x y ,因此128=p ,即116=p ;所以其准线方程为:132y =. 故答案为:132y =【点睛】本题主要考查求抛物线的准线方程,熟记抛物线的标准方程即可,属于基础题型.14.过点)的等轴双曲线,其焦点到渐近线的距离是______.【分析】根据点)求得等轴双曲线的方程,求得双曲线的焦点坐标以及渐近线方程,从而求得正确答案.【详解】当双曲线的焦点在x 轴上时,设等轴双曲线的方程为222x y a -=,由于等轴双曲线过点),所以2312a =-=,所以a b ==2c =双曲线方程为22122x y -=,渐近线方程为y x =±,即0x y ±=,双曲线其中一个焦点()2,0到其中一条渐近线0x y -=的距离为2022,根据对称性可知,双曲线焦点到渐近线的距离是2.当双曲线的焦点在y 轴上时,设等轴双曲线的方程为222y x a -=, 由于等轴双曲线过点()3,1,所以2122a =-=-,不符合题意.综上所述,该等轴双曲线的焦点到渐近线的距离是2. 故答案为:215.点P 是椭圆22149x y +=上的一点,则点P 到直线2150x y +-=的距离最大值是______.【答案】45【分析】设()2cos ,3sin P θθ,θ为OP 与x 轴正半轴的夹角,由点线距离公式及辅助角公式即可求化简大值.【详解】设()2cos ,3sin P θθ,θ为OP 与x 轴正半轴的夹角,则点P 到直线2150x y +-=的距离为()225sin 154cos 3sin 15521d θϕθθ+-+-==+,其中43sin ,cos 55ϕϕ==,故()5sin 155154555d θϕ+---=≤=.故答案为:4516.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.【答案】26米【详解】如图建立直角坐标系,设抛物线方程为2x my =, 将A (2,-2)代入2x my =, 得m=-2,∴22x y =-,代入B ()0,3x -得06x =, 故水面宽为26米,故答案为26米. 【解析】抛物线的应用17.已知2F 是双曲线()2222:10,0x yC a b a b-=>>的右焦点,P 是双曲线右支上的一点,且2PF x ⊥轴,点A 是双曲线的左顶点,若222PF AF =,则双曲线的离心率为______. 【答案】3【分析】根据22222PF AF a c ==+,得到1PF ,2PF ,进而利用勾股定理,得到2222211PF F F PF +=,列方程计算可得答案.【详解】如图,22222PF AF a c ==+,又122PF PF a -=,则有142PF a c =+, 且12PF F △为直角三角形,2222211PF F F PF ∴+=,列方程得, 222(42)4()4a c a c c +=++,化简得22320a ac c +-=,再整理得,2230e e --=,解得3e =或1e =-(舍去) 故答案为:318.已知曲线22:1C mx ny +=有如下命题:1p :若0m n >>,则C 是椭圆,其焦点在y 轴上2p :若0m n =>,则C3p :若0mn <,则C是双曲线,其渐近线方程为y =4p :若0m =,0n >,则C 是两条直线则下述命题中所有真命题的序号是______. ①14p p ∨②12p p ∧③()23p p ⌝∧④()()34p p ⌝∨⌝ 【答案】①③【分析】根据椭圆、圆、双曲线、直线的知识对四个命题进行分析,结合逻辑连接词的知识求得正确答案.【详解】依题意,曲线22:1C mx ny +=,1p :若0m n >>,则110m n<<, 曲线22:111x y C m n +=表示焦点在y 轴上的椭圆,1p 为真命题. 2:p 若0m n =>,则曲线221:C x y n+=,=的圆,2p 是假命题,2p ⌝是真命题. 3:p 若0mn <,则当00m n >⎧⎨<⎩时,曲线22:111x y C m n -=-表示焦点在x 轴上的双曲线, 由22220,m mx ny y x n +==-,所以双曲线的渐近线方程为y =当00m n <⎧⎨>⎩时,曲线22:111y x C n m-=-表示焦点在y 轴上的双曲线, 由22220,m mx ny y x n +==-,所以双曲线的渐近线方程为y =综上所述,3p 是真命题,3⌝p 是假命题.4:p 若0m =,0n >,C的方程为21,y y n ==所以C 是两条直线,所以4p 是真命题,4p ⌝是假命题, 所以①14p p ∨为真命题;②12p p ∧为假命题; ③()23p p ⌝∧为真命题;④()()34p p ⌝∨⌝为假命题.所以真命题的序号①③. 故答案为:①③三、解答题19.已知圆C 经过点()2,0A -,()6,0B ,且圆心C 在直线y x =上. (1)求圆C 的一般方程;(2)若线段OP 的端点P 在圆C 上运动,端点O 为坐标原点,求线段OP 的中点M 的轨迹方程. 【答案】(1)2244120x y x y +---= (2)222230x y x y +---=【分析】(1)利用待定系数法即可求得圆C 的一般方程; (2)利用直接代入法即可求得点M 的轨迹方程.【详解】(1)设所求圆的C 的一般方程为220x y Dx Ey F ++++=,则圆心,22D E C ⎛⎫-- ⎪⎝⎭,由题意得()2222066022D F D F E D ⎧⎪--+=⎪++=⎨⎪⎪-=-⎩,解得4412D E F =-⎧⎪=-⎨⎪=-⎩,所以圆的C 的一般方程为2244120x y x y +---=. (2)依题意,设(),M x y ,()00,P x y ,因为M 为线段OP 的中点,()0,0O ,所以002,2x x y y ==,又因为点P 在圆C 上运动,所以22000044120x y x y +---=,故()()()()22224242120x y x y +-⨯-⨯-=, 整理得:222230x y x y +---=,所以点M 的轨迹方程为222230x y x y +---=.20.在平面直角坐标系xOy 中,圆C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),直线l的参数方程为x y λ⎧=⎪⎨=⎪⎩(λ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设l 与C 交于P ,Q(1)求l 与C 的极坐标方程;(2)求PQ .【答案】(1)l 的极坐标方程为()π6θρ=∈R ,圆C 的极坐标方程为2cos 0ρθ-=;(2)PQ =【分析】(1)先把参数方程化为直角坐标方程,再化为极坐标方程;(2)求出直线l 、圆C 的直角坐标方程和交点坐标,再由两点间的距离公式计算即可.【详解】(1)l的直角坐标方程为y =,化为极坐标方程为()π6θρ=∈R , 将圆C 的参数方程1cos sin x y θθ=+⎧⎨=⎩平方相加得()2211x y -+=, 化为极坐标方程为2cos 0ρθ-=;(2)设()()1122,,,P x y Q x y ,由()2211y x x y ⎧=⎪⎨⎪-+=⎩得2203-=x x ,解得 1230,2x x ==, 当10x =时10y =,即()0,0P , 当232x =时2y =32Q ⎛ ⎝⎭, 所以==P Q 21.已知抛物线顶点在原点,焦点在x 轴上,又知此抛物线上一点()3,Q m 到焦点的距离为4.(1)求此抛物线的方程.(2)若此抛物线方程与直线2y kx =+相交于不同的两点A ,B ,且AB 中点横坐标为4,求k 的值.【答案】(1)24y x =(2)1k =-【分析】(1)结合抛物线的定义求得p ,进而求得抛物线的方程.(2)联立直线2y kx =+的方程与抛物线的方程,化简写出根与系数关系,根据AB 中点的横坐标求【详解】(1)依题意,抛物线焦点在x 轴,且()3,Q m 的横坐标为正数,所以抛物线开口向右,设抛物线的方程为()220y px p =>,由于抛物线上一点()3,Q m 到焦点的距离为4,所以34,22p p +==, 所以抛物线方程为24y x =. (2)由224y kx y x=+⎧⎨=⎩消去y 并化简得()224440k x k x +-+=, 则()220Δ44160k k k ≠⎧⎪⎨=-->⎪⎩,016320k k ≠⎧⎨->⎩, 解得12k <且0k ≠, 设()()1122,,,A x y B x y ,则12244k x x k -+=-, AB 中点横坐标为4,所以2224k k --=, 解得1k =-或12k =(舍去). 22.已知1F ,2F 椭圆()2222:10x y C a b a b+=>>的两个焦点,椭圆上的任意一点P 使得124PF PF +=,且1PF 的最大值为2(1)求椭圆的标准方程;(2)若直线l 与椭圆C 交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆经过椭圆的右顶点.求证直线l 过定点,并求出该定点的坐标.【答案】(1)22142x y += (2)证明详见解析,定点坐标为2,03⎛⎫ ⎪⎝⎭【分析】(1)根据已知条件求得,,a b c ,从而求得椭圆的标准方程.(2)对直线l 的斜率是否存在进行分类讨论,设出直线l 的方程并与椭圆的方程联立,化简写出根与系数关系,根据“以AB 为直径的圆经过椭圆的右顶点”列方程,由此求得定点坐标.【详解】(1)依题意,1242,2PF PF a a +===,由于1PF 的最大值为2a c +=c =所以b ==22142x y +=. (2)椭圆的右顶点为()2,0Q ,当直线l 的斜率不存在时,设直线l 的方程为()22x t t =-<<, 由22142x t x y =⎧⎪⎨+=⎪⎩得22221242t t y ⎛⎫=-=- ⎪⎝⎭, 设()()00,,,A t y B t y -,则22022t y =-, 由于以AB 为直径的圆经过椭圆的右顶点()2,0Q ,所以AQ BQ ⊥,()2002221222t y y t t t --⋅=-=----,解得23t =, 所以直线l 过2,03⎛⎫ ⎪⎝⎭. 当直线l 的斜率存在时,设直线l 的方程为y kx m =+, 由22142y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并化简得()222124240k x kmx m +++-=, ()()2222221641224328160k m k m k m ∆=-+-=-+>,即22420k m -+>①.设()()1122,,,A x y B x y ,则2121222424,1212km m x x x x k k --+==++, 由于以AB 为直径的圆经过椭圆的右顶点()2,0Q ,所以AQ BQ ⊥,()()1212121212222y y y y x x x x ⋅==-----, ()()121222y y x x =---,()()()()121222kx m kx m x x ++=--- ,()()221212121224k x x km x x m x x x x +++=+--,()()()2212121240k x x km x x m ++-+++=,()()2222224412401212m km k km m k k--+⋅+-⋅++=++, 整理得()()3220m k m k ++=,23m k =-或2m k =-, 若23m k =-,代入①得222432422099k k k -+=+>,成立, 若2m k =-,代入①得2244220k k -+=>成立,所以直线l 的方程为2233y kx k k x ⎛⎫=-=- ⎪⎝⎭,过点2,03⎛⎫ ⎪⎝⎭; 或()22y kx k k x =-=-,过点()2,0Q ,不符合题意,舍去.综上所述,直线l 过定点2,03⎛⎫ ⎪⎝⎭. 【点睛】求解直线过定点问题,关键点是研究直线方程中参数的关系,从而求得定点的坐标.有关直线和圆锥曲线相交的题目,要注意验证判别式是否成立.。

2022-2023学年四川省泸州市叙永第一中学校高二上学期期中考试数学(理)试题(解析版)

2022-2023学年四川省泸州市叙永第一中学校高二上学期期中考试数学(理)试题(解析版)

2022-2023学年四川省泸州市叙永第一中学校高二上学期期中考试数学(理)试题一、单选题1.已知直线10x ay ++=和直线210x y -+=互相平行,则a 的值为( ) A .2 B .2-C .12D .12-【答案】D【分析】直接利用两条直线平行的充要条件进行求解即可. 【详解】解:因为直线10x ay ++=和直线210x y -+=互相平行,所以1(1)201(1)10a a ⨯--=⎧⎨⨯--⨯≠⎩,解得12a =-.故选:D .2.若a b >,则下列结论正确的是( ) A .22a b > B .11a b> C .22a b > D .ln ln a b >【答案】C【分析】利用特殊值1a =-,4b =-判断选项A ,利用作差法判断选项B ,利用指数函数的单调性判断选项C ,利用对数的定义判断选项D ,【详解】解:因为a b >,若1a =-,4b =-,则22a b <,故选项A 错误; 因为11b a a b ab--=,当0ab >时,11a b <,故选项B 错误;因为2x y =在R 上为增函数,若a b >,则22a b >,故选项C 正确; 若0a b >>,则lna 和lnb 无意义,故选项D 错误. 故选:C .3.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高二学生中抽取的人数应为( ) A .10 B .9C .8D .7【答案】B【分析】由分层抽样的概念求解,【详解】设从高二学生中抽取的人数为x ,则7=210270x ,得9x =, 故选:B4.有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中()1,2,3,i i y x c i n =+=,c 为非零常数,则这两组样本数据( )A .平均数相同B .中位数相同C .标准差不相同D .极差相同【答案】D【分析】由各个统计量的概念判断, 【详解】对于A ,设12,,,n x x x 的平均数为x ,则12,,,n y y y 的平均数为x c +,对于B ,设12,,,n x x x 的中位数为m ,则12,,,n y y y 的中位数为m c +,对于C ,由方差与标准差的计算公式,可得12σσ=, 对于D ,max min max min x x y y -=-,两组样本数据极差相同 故选:D5.现有以下两项调查:①从100台刚出厂的电视机中抽取3台进行质量检查;②某社区有1000户家庭,其中高收入家庭100户,中等收入家庭820户,低收入家庭80户,为了调查家庭每年生活费的开支情况,计划抽取一个容量为50的样本,则完成这两项调查最适宜采用的抽样方法分别是( ) A .①②都采用简单随机抽样 B .①②都采用分层随机抽样C .①采用简单随机抽样,②采用分层随机抽样D .①采用分层随机抽样,②采用简单随机抽样 【答案】C【分析】根据简单随机抽样和分层抽样的特点,判断选项. 【详解】①的总体中的个体数较少,宜采用简单随机抽样,②中1000户家庭中收入存在较大差异,层次比较明显,宜采用分层抽样. 故选:C6.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖膳(biē nào ).如图,网格纸上小正方形的边长1,粗实线画出的是某鳖臑的三视图,则该鳖臑表面积为A .6B .21C .27D .54【答案】C【分析】结合三视图,还原直观图,计算表面积,即可. 【详解】结合三视图,还原直观图为已知3,4,3AB BC CD ===,则该四面体1111272222S AB BC AC CD AB BD BC CD =⋅+⋅+⋅+⋅=,故选C. 【点睛】本道题考查了三视图还原直观图,难度中等.7.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16B .13C .12D .23【答案】D【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==.故选:D.8.设,m n 是两条不同的直线,,αβ是两个不同的平面,由下列四个命题,其中正确的是( ) A .若,m m n α⊥⊥,则//n α B .若//,//m n αα,则//m n C .若//,m αβα⊂,则//m β. D .若//m β,m α⊂,则//αβ.【答案】C【解析】A 选项可能n ⊂α,B 选项两条直线位置关系不能确定,C 选项正确,D 选项两个平面相交也能满足//m β,m α⊂.【详解】A 选项,当,m m n α⊥⊥可能n ⊂α,所以该选项不正确;B 选项,平行于同一平面的两条直线可能平行,可能相交,可能异面,所以该选项不正确;C 选项,根据面面平行的性质,说法正确;D 选项,当两个平面相交,m α⊂且平行于交线,也满足//m β,m α⊂,所以不能推出面面平行. 故选:C【点睛】此题考查空间点线面位置关系的辨析,根据已知条件判断线面平行,线线平行和面面平行,关键在于熟练掌握相关定理公理.9.在一个实验中,某种豚鼠被感染A 病毒的概率均为40%,现采用随机模拟方法估计三只豚鼠中被感染的概率:先由计算机产生出[0,9]之间整数值的随机数,指定1,2,3,4表示被感染,5,6,7,8,9,0表示没有被感染.经随机模拟产生了如下20组随机数: 192 907 966 925 271 932 812 458 569 683 257 393 127 556 488 730 113 537 989 431 据此估计三只豚鼠都没被感染的概率为( ) A .0.25 B .0.4 C .0.6 D .0.75【答案】A【分析】求得三只豚鼠都没有被感染的数量,结合题意,求解即可.【详解】20组数据中,都不含1,2,3,4的数据有5个,分别是:907,966,569,556,989; 故三只豚鼠都没被感染的概率为:50.2520=. 故选:A .10.若正数x ,y 满足32x y xy +=,则34x y +的最小值是( ) A .245B .25C .5D .252【答案】D【分析】由基本不等式求解, 【详解】由题意得3132x y xy y x+=+=,则 31123()131323625(34)2222y xx y x y x y +++++=≥=,当且仅当123y x x y =即55,24x y ==时等号成立, 故选:D11.在如图的直角梯形ABCD 中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之和等于直角梯形面积”.可以简洁明了地推证出勾股定理,把这一证明方法称为“总统证法”.设15BEC ∠=︒,在梯形ABCD 中随机取一点,则此点取自等腰直角CDE 中(阴影部分)的概率是( )A .23B .34C 3D 2【答案】A【分析】根据()()()=ΩS A P A S 计算即可. 【详解】解:记此点取自等腰直角CDE 中(阴影部分)为事件A , 此点取自梯形ABCD 为事件Ω, 在Rt CEB △中,·sin b c CEB =∠,·cos a c CEB =∠,()22222232?sin cos ?sin 302a b c c CEB CEB c c c ∴+=+∠⋅∠=+︒=, 212△=⋅DCE S c ,()221324梯形=⋅+=ABCD S a b c ,()()()22122334∴===Ωc S A P A S c .故选:A .12.若,x y 满足221+-=x y xy ,则( )A .1x y +≥B .2x y +≥C .221x y +≤D .222x y +≤【答案】D【分析】由基本不等式求解,【详解】由题意得222x y xy ≤+,即222221x x y y -++≤,得222x y +≤,当且仅当1x y ==±时等号成立,故C 错误,而0,1x y ==-时满足题意,故A ,B 错误, 故选:D二、填空题13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.从甲、乙等5名同学中随机选3名组成校庆志愿小分队,则甲、乙都不入选的概率为 ________. 【答案】110##0.1 【分析】由组合数与古典概型求解,【详解】由题意得甲、乙都不入选的概率为3511C 10p ==, 故答案为:11015.某产品的广告费用x (万元)与销售额y (万元)的统计数据如下表:若x 与y 之间是线性关系,且根据上表可得回归直线方程ˆ68y x =+,现发现表中有一个数据模糊看不清,该数据是___________. 【答案】31【分析】根据回归方程过样本中心点可得答案. 【详解】设表中模糊不清数据为m ,由表知6345109: 4.5,44m x y ++++===, 代人回归方程ˆ68yx =+中,得1096 4.584m+=⨯+,解得31.m = 故答案为:31.16.在三棱锥ABCD -中,平面ABC ⊥平面BCD ,ABC 与BCD △都是边长为6的正三角形,则该三棱锥的外接球的体积为________. 【答案】【分析】取BC 的中点为,,M E F 分别是正三角形ABC 和正三角形BCD 的重心,O 是该三棱锥外接球的球心,连接,,,,,AM DM OF OE OM OB ,可证明AM DM ⊥,通过几何关系可得到外接球的半径为OB =【详解】取BC 的中点为,,M E F 分别是正三角形ABC 和正三角形BCD 的重心,O 是该三棱锥外接球的球心,连接,,,,,AM DM OF OE OM OB ,则,E F 分别在,AM DM 上,OF ⊥平面BCD ,OE ⊥平面ABC ,AM BC ⊥,DM BC ⊥, 因为平面ABC ⊥平面BCD ,AM BC ⊥,平面ABC ⋂平面BCD BC =,AM ⊂平面,ABC 所以AM ⊥平面BCD ,所以//AM OF ,同理可得//DM OE ,所以四边形OEMF 是平行四边形, 因为AM BC ⊥,DM BC ⊥,AMDM M =,,AM DM ⊂平面ADM ,所以BC ⊥平面ADM ,又OM ⊂平面ADM ,所以OM BC ⊥, 因为AM ⊥平面BCD ,DM ⊂平面BCD , 所以AM DM ⊥, ∵3633AM DM === ∴133EM FM AM ==∴四边形OEMF 为正方形,∴6OM = 在直角三角形OMB 中,球半径()22226315OB OM BM =++∴外接球体积为341520153ππ⨯=,故答案为:2015π三、解答题17.求下列不等式的解集: (1)2450x x -++<; (2)5131x x +<+. 【答案】(1){|1x x <-或5}x > (2){|11}x x -<<【分析】(1)由一元二次不等式的解法求解, (2)移项,通分后化简求解,【详解】(1)由2450x x -++<,得2450x x --> 解得1x <-或5x >.所以不等式的解集为{|1x x <-或5}x >; (2)由5131x x +<+,可得2201x x -<+, 等价于(1)(1)0x x -+<,解得11x -<<, 所以不等式的解集为{|11}x x -<<.18.某收费APP (手机应用程序)自上架以来,凭借简洁的界面设计、方便的操作方式和强大的实用功能深得用户的喜爱.该APP 所在的公司统计了用户一个月月租减免的费用x (单位:元)及该月对应的用户数量y (单位:万人),得到如下数据表格:已知x 与y 线性相关.(1)求y 关于x 的线性回归方程55211135,41.7i i i i i x x y ==⎛⎫== ⎪⎝⎭∑∑;(2)据此预测,当月租减免费用为10元时,该月用户数量为多少?参考公式:对于一组具有线性相关关系的数据(),(1,2,,)i i x y i n =,其回归直线y bx a =+的斜率和截距的最小二乘估计公式分别为()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx====---==--∑∑∑∑,a y bx =- 【答案】(1)0.320.06y x =- (2)3.14万人【分析】(1)根据已知数据,先求得,x y ,然后利用公式计算回归方程中的系数,得到回归方程; (2)利用回归方程估计.【详解】(1)解:由()13456755x =⨯++++=()11 1.1 1.5 1.9 2.2 1.54.5y =⨯++++=有241.755 1.54ˆ0.32, 1.540.3250.0613555ba -⨯⨯===-⨯=--⨯, 故y 关于x 的线性回归方程为0.320.06y x =-;(2)解:由(1)知回归方程为0.320.06y x =-,当10x =时,0.32100.06 3.14y =⨯-=, 所以预测该月的用户数量为3.14万人.19.已知某保险公司的某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的400名续保人在一年内的出险情况,得到下表:该保险公司这种保险的赔付规定如下:将所抽样本的频率视为概率.(1)求本年度续保人保费的平均值的估计值;(2)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付()2.5 1.5a a a ++元;若续保人在本年度内出险6次,则可获得赔付()2.5 1.50.5a a a a +++元;依此类推,求本年度续保人所获赔付金额的平均值的估计值.【答案】(1)1.035a ;(2)0.945a .【分析】(1)得出保费0.9a ,a ,1.5a ,2.5a ,4a 对应的概率,即可得出本年度续保人保费的平均值的估计值;(2)先计算出每个赔偿金额对应的概率,然后按照平均值的计算公式得出本年度续保人所获赔付金额的平均值的估计值;【详解】(1)由题意可得保费(元)0.9a a 1.5a 2.5a4a概率0.7 0.2 0.06 0.03 0.01本年度续保人保费的平均值的估计值为0.90.70.2 1.50.06 2.50.0340.01 1.035⨯+⨯+⨯+⨯+⨯=a a a a a a(2)由题意可得赔偿金额(元)0 2.5a4a5a 5.5a概率0.7 0.2 0.06 0.03 0.01本年度续保人所获赔付金额的平均值的估计值⨯+⨯+⨯+⨯+⨯=a a a a a00.7 2.50.240.0650.03 5.50.010.94520.某学校为了了解高二年级学生数学运算能力,对高二年级的200名学生进行了一次测试.已知参x i=全部介于45分到95分之间,该校将所有分数分成5组:加此次测试的学生的分数(1,2,3,,200)i[45,55),[55,65),⋯,[85,95],整理得到如下频率分布直方图(同组数据以这组数据的中间值作为代表).(1)求m的值,并估计此次校内测试分数的平均值x;x i=的方差2s,并判断此次得分为52分和94分的两名(2)试估计这200名学生的分数(1,2,3,,200)i同学的成绩是否进入到了[2,2]x s x s -+范围内?(参考公式:2211()n i i i s f x x n ==-∑,其中i f 为各组频数;参考数据:12911.4)≈【答案】(1)m 0.024=,75(2)129,进入【分析】(1)由各组的频率和为1,可求出m 的值,再根据平均数的定义可求出x ;(2)利用方差公式求出方差2s ,然后计算出[2,2]x s x s -+,再判断即可.【详解】(1)(0.0060.014++m 0.0360.020)101++⨯=.∴m 0.024=.∴该次校内考试测试分数的平均数的估计值为:500.06600.14700.24800.36900.275⨯+⨯+⨯+⨯+⨯=分.(2)2211()n i i i s f x x n ==-∑ 222220.06(5075)0.14(6075)0.24(7075)0.36(8075)0.2(9075)=⨯-+⨯-+⨯-+⨯-+⨯-129=.∴s 12911.4=≈,∴252.2,297.8x s x s -=+=.∴得分为52分的同学的成绩没有进入到[52.2,97.8]内,得分为94分的同学的成绩进入到了[52.2,97.8]内.21.如图,四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,2PD AB ==,E 为PC 中点.(1)求证:DE ⊥平面PCB ;(2)求二面角E BD P --的余弦值.【答案】(1)证明见解析6【分析】(1)根据条件先证BC ⊥平面PCD ,得到BC ⊥DE ,再由DE ⊥PC ,即可证明DE ⊥平面PCB .(2)以点D 为坐标原点,分别以直线DA ,DC ,DP 为x 轴,y 轴,z 轴,建立空间直角坐标系,分别求出平面BDE ,平面PDB 的法向量,即可求得二面角的余弦值.【详解】(1)证明:PD ⊥平面ABCD ,∴PD ⊥BC ,又∵正方形ABCD 中,CD ⊥BC ,PD CD =D ,∴BC ⊥平面PCD ,又∵DE ⊂平面PCD ,∴BC ⊥DE ,∵PD =CD ,E 是PC 的中点,DE ⊥PC ,PC BC =C ,且PC ⊂面PCB ,BC ⊂面PCB∴DE ⊥平面PCB(2)以点D 为坐标原点,分别以直线DA ,DC ,DP 为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,由题意知:()()()()0,0,0,0,0,2,2,2,0,0,1,1,D P B E则()()2,2,0,0,1,1DB DE ==,设平面BDE 的法向量为(),,n x y z =,则220000x y n DB y z n DE ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩, 令1z =,得到1,1y x =-=,()1,1,1n ∴=-又()()0,2,0,2,0,0C A ,则()2,2,0AC =-,且AC ⊥平面PDB ,∴平面PDB 的一个法向量为()1,1,0m =-,设二面角E BD P --的平面角为α,则1cos cos ,m n α+=<>== 所以二面角E BD P -- 22.已知函数()2()22f x ax a x =-++,a R ∈(1)求关于x 的不等式()0f x ≥的解集;(2)若存在0m >使关于x 的方程(21)xf -11m m=++有四个不同的实根,求实数a 的取值范围. 【答案】(1)答案见解析 (2)(,4-∞--【分析】(1)对a 进行讨论,分别求出其解集即可;(2)先令11t m m =++ 由0m >,则可得3t ≥,再将关于x 的方程1(||)1f x m m=++有四个不同的实根,转化为2(2)20ax a x t -++-= 有两个不同正根,结合根与系数的关系,即可求解.【详解】(1)当a<0时,不等式的解集为或2{|1}x x a≤≤; 当0a =时,不等式的解集为 {|1}x x ≤;当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a ≤或1}x ≥; (2)当 0m > 时,令 1113s m m =++≥=,当且仅当1m =时取等号,设 |21|x t -=,则原方程可化为2()(2)20g t at a t s =-++-=.由题意知()0g t =在(0,1)有两个不等的实根.因为(0)20g s =-<,(1)0g s =-<,固有()()224200201a a s a aa ⎧⎪∆=+-->⎪<⎨⎪+⎪<<⎩解得4a <--故实数a的取值范围是(,4-∞--.。

2023-2024学年河北省唐山市十县高二上学期期中考试数学质量检测模拟试题(含解析)

2023-2024学年河北省唐山市十县高二上学期期中考试数学质量检测模拟试题(含解析)

2023-2024学年河北省唐山市十县高二上册期中考试数学模拟试题一、单选题1.直线l :230x y -+=的斜率和在x 轴上的截距分别为()A .12,3B .12,3-C .12-,3D .12-,3-【正确答案】B【分析】由230x y -+=可得322x y =+,据此可得答案.【详解】323022x x y y -+=⇔=+,则直线斜率为12,又令0y =,则30322x x +=⇒=-,故直线在x 轴上的截距分别为3-.故选:B2.已知点B 、C 分别为点()3,4,5A 在坐标平面Oxy 和Oyz 内的射影,则BC =()A B .5CD .【正确答案】A【分析】求出点B 、C 的坐标,利用空间中两点间的距离公式可求得BC 的值.【详解】因为点B 、C 分别为点()3,4,5A 在坐标平面Oxy 和Oyz 内的射影,则()3,4,0B 、()0,4,5C ,因此,BC =.故选:A.3.直线1l :16x y -+=,直线2l :30x y --=,则1l 与2l 之间的距离为()A B .2C .D .4【正确答案】C【分析】根据平行线的距离公式d .【详解】d =故选:C.4.已知空间三点O (0,0,0),A (12),B -1,2),则以OA ,OB 为邻边的平行四边形的面积为()A .8B .4C .D .【正确答案】D【分析】先求出OA ,OB 的长度和夹角,再用面积公式求出OAB 的面积进而求得四边形的面积.【详解】因为O (0,0,0),A (12),B -1,2),所以OA ==,2OB =,1,2),OA OB ==-11221cos ,2OA OB -+⨯== ,所以sin ,2OA OB = ,以OA ,OB 为邻边的平行四边形的面积为1222ABC S =⨯⨯= 故选:D.5.已知圆M 的半径为r 且圆心在x 轴上,圆M 与圆22:220N x y x y +--=相交于AB 两点,若直线AB 的方程为y x =,则()A .AB =r B .AB 4=,rC .AB =2r =D .AB 4=,2r =【正确答案】C【分析】分析可知圆心N 在直线AB 上,可求得AB ,求出圆心M 的坐标,可求得圆心M 到直线AB 的距离,利用勾股定理可求得r 的值.【详解】圆N 的标准方程为()()22112x y -+-=,圆心为()1,1N易知点N 在直线AB 上,所以,AB =因为圆心N 在直线AB 上,则圆心N 为线段AB 的中点,易知过圆心N 且与直线AB 垂直的直线的方程为20x y +-=,该直线交x 轴于点()2,0M ,点M 到直线AB 的距离为d ==2r ∴==.故选:C.6.已知直线1l 与直线2:20l x y a -+=关于x 轴对称,且直线1l 过点()2,1,则=a ()A .5-B .5C .4-D .4【正确答案】A【分析】分析可知,直线2l 经过点()2,1关于x 轴的对称点,由此可求得实数a 的值.【详解】点()2,1关于x 轴的对称点的坐标为()2,1-,由题意可知,直线2l 过点()2,1-,则2210a ⨯++=,解得5a =-.故选:A.7.在棱长为3的正四面体ABCD 中,2AM MB = ,2CN ND =,则MN = ()A .2B CD .【正确答案】B【分析】将MN 用AB、AC 、AD 表示,利用空间向量数量积的运算性质可求得MN .【详解】因为2AM MB =,所以,23AM AB = ,又因为2CN ND =,则()2AN AC AD AN -=- ,所以,1233AN AC AD =+ ,所以,122333MN AN AM AC AD AB =-=+- ,由空间向量的数量积可得293cos602AB AC AB AD AC AD ⋅=⋅=⋅==,因此,1223MN AC AD AB =+-==故选:B.8.已知P 是圆()22:54C x y -+=上一动点,()1,0A -,M 为线段AP 的中点,O 为坐标原点,则()A .22MA MO +为定值B .22MA MC +为定值C .22MO MC +为定值D .222MA MO MC ++为定值【正确答案】B【分析】设点()00,P x y ,可得220001021x y x +=-,求出点M 的坐标,利用平面两点间的距离公式化简可得出合适的选项.【详解】设点()00,P x y ,则()220054x y -+=,可得220001021x y x +=-,则点001,22x y M -⎛⎫ ⎪⎝⎭.圆C 的圆心为()5,0C ,半径为2.对于A 选项,()22222200000022022********M x y x x y y A M x O +++-⎛⎫=+++=⎝+ ⎪⎭()0002102121224144x x x -++-==不是定值,A 错;对于B 选项,222222000002021110611524242M x y x y x y x A MC --+-+⎛⎫⎛⎫=++-+=⎪ ⎪⎝⎝+⎭⎭0010211061202x x --+==,B 对;对于C 选项,()()2222220000020020022212121021221214441524x y x x x x y MO M x y C +-+--+++=+==-⎛⎫-+ ⎪⎝⎭7924x -=不是定值,C 错;对于D 选项,()222222222220000000003201221115244244x y x x y x y x y MA MO MC +-+-+-⎛⎫⎛⎫++=++++-+=⎪ ⎪⎝⎭⎝⎭()0003102120122105944x x x --++==不是定值,D 错.故选:B.二、多选题9.已知平行六面体111ABCD A B C D -,则下列各式运算结果是1AC uuu r的为()A .1AB AD AA ++B .11111AA A B A D ++C .1AB BC CC ++ D .1AB AC CC ++ 【正确答案】ABC【分析】利用空间向量的加法化简可得出合适的选项.【详解】如下图所示:对于A 选项,111AB AD AA AB BC CC AC ++=++=,A 对;对于B 选项,1111111A C A B B A B C C A A D =+++=+,B 对;对于C 选项,11AB BC CC AC =++,C 对;对于D 选项,111AB AC CC AB BC C AC C +=+++≠,D 错.故选:ABC.10.直线:310l x ++=,则()A .点(3-在l 上B .l 的倾斜角为5π6C .l 的图象不过第一象限D .l 的方向向量为)3,1【正确答案】BC【分析】利用点与直线的位置关系可判断A 选项;求出直线l 的斜率,可得出直线l 的倾斜角,可判断B 选项;作出直线l 的图象可判断C 选项;求出直线l 的方向向量,可判断D 选项.【详解】对于A 选项,22310-++≠ ,所以,点(3-不在l 上,A 错;对于B 选项,直线l 的斜率为33k =-,故l 的倾斜角为5π6,B 对;对于C 选项,直线l 交x 轴于点()1,0-,交y 轴于点30,3⎛⎫- ⎪ ⎪⎝⎭,如下图所示:由图可知,直线l 不过第一象限,C 对;对于D 选项,直线l 的一个方向向量为)1-,而向量)1-与这里(不共线,D 错.故选:BC.11.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,P ,Q 分别为棱A 1D 1,B 1B ,AB ,D 1D 的中点,则()A .MN PQ=B .直线MN 与直线BQ 相交C .点Q 到直线MND .点D 到平面MNP 的距离为11【正确答案】AC【分析】A 选项:用勾股定理可求出长度;B 选项:作BQ 的平行线与MN 相交,则可判断是否为异面直线;C 选项:求出三边长度,即可求出结果;D 选项:过点M 做//MH DP ,利用线面平行将点M 到平面DPN 的距离转化为点H 到平面DPN 的距离,等体积转化得到D MPN V -=D HPN V -,求体积和面积计算距离.【详解】A 选项:MN PQ =,故A 正确;B 选项:连接1D N ,则1D N 与MN 相交,1//BQ D N ,则MN 与BQ 为异面直线,故B 错误;C 选项:连接,MQ QN,则MQ =,QN =MN =MQ MN ⊥,所以Q 到直线MN 的距离即为MQ ,故C 正确;D 选项:过点M 做//MH DP ,DP ⊂平面DPN ,MH ⊄平面DPN ,则//MH 平面DPN ,所以点M到平面DPN 的距离等于点H 到平面DPN 的距离,点H 到直线PN 3424+=,1524HPN S == ,又点D 到平面HPN 的距离为2,所以1552346M DPN H DPN D HPN V V V ---===⨯⨯=,又D MPN V -=M DPN V -,MP =PN =MN =1222PMN S ==,设点M 到平面DPN 的距离为h ,则有15326h ⨯⨯=,所以11h =,故D 错误.故选:AC12.已知()1,0A 、()4,0B ,P 为圆22:4C x y +=上一动点,则()A .PAB S 的最大值为3B .PA PB +的最大值为9C .A 到直线PB 距离的最大值为43D .2PB PA=【正确答案】ABD【分析】求出点P 到直线AB 的最大距离,结合三角形的面积公式可判断A 选项;求出PBA ∠的最大值,可得出A 到直线PB 距离的最大值,可判断C 选项;利用平面两点间的距离公式结合圆的方程可判断D 选项;利用圆的几何性质可判断B 选项.【详解】对于A 选项,圆C 上的一点P 到直线AB 的最大距离为圆C 的半径2,故PAB S 的最大值为1232AB ⨯⨯=,A 对;对于C 选项,如下图所示:点A 到直线PB 的距离为sin AB PBA ∠,圆C 的圆心为原点O ,当直线PB 与圆C 相切时,此时PBA ∠最大,则点A 到直线PB 的距离取最大值,连接OP ,则OP PB ⊥,则122OP OB ==,故30PBA ∠=o ,因此,点A 到直线PB 的距离为33sin 302=,C 错;对于D 选项,设点()00,P x y ,则22004x y +=,所以,2PB =2PA ===,D 对;对于B 选项,()33369222PA PB PB PO OB +=≤+=⨯=,当且仅当点P 为直线BO 与圆C 的交点,且点O 在线段BP 上时,等号成立,所以,PA PB +的最大值为9,B 对.故选:ABD.三、填空题13.已知向量()1,2,1a =- ,()2,,1b k =,()()a b a b +⊥- ,则k =__________.【正确答案】1±【分析】分析可得()()220a b a b a b +⋅-=-= ,利用空间向量数量积的坐标运算可求得实数k 的值.【详解】因为()()a b a b +⊥- ,则()()()222650a b a b a b k +⋅-=-=-+= ,解得1k =±.故答案为.1±14.设直线1l :210ax y -+=,直线2l :()30x a y a +-+=,若1l ∥2l ,则实数a =____________.【正确答案】2【分析】由两直线1110A x B y C ++=与2220A x B y C ++=平行,可得12210A B A B -=,由此列式求出a 的值,然后再检验即可.【详解】若1l ∥2l ,则(3)(2)10a a ---⨯=,解得2a =或1a =,当2a =时,直线1l :2210x y -+=,直线2l :20x y -+=,符合题意;当1a =时,直线1l :210x y -+=,直线2l :210x y -+=,两直线重合,不符合题意.故2.15.已知圆锥PO (P 为圆锥顶点,O 为底面圆心)的轴截面是边长为2的等边三角形,A ,B ,C 为底面圆周上三点,空间一动点Q ,满足()1PQ xPA yPB x y PC =++--,则PQ 的最小值为____________.【分析】化简向量关系式证明,,,Q A B C 四点共面,结合轴截面特征可求PQ的最小值.【详解】因为()1PQ xPA yPB x y PC =++--,所以x PQ PC xPA y P PB P C C y --+-= ,CQ xCA yCB =+ ,所以,,CQ CA CB共面,又A ,B ,C 为底面圆周上三点,所以点Q 为平面ABC 上一点,由已知PO ⊥平面ABC ,所以PQ PO ≥ ,又圆锥PO 的轴截面是边长为2的等边三角形,所以PO =,所以PQ16.设直线l :()()110R a x ay a +--=∈与圆C :224x y +=交于,A B 两点,则AB 的取值范围是___________.【正确答案】4]【分析】由直线系方程求得直线所过定点,求出圆心到定点的距离,再确定弦长最短和最长时的位置,求得弦长,即可得到AB 的取值范围.【详解】直线l :()()110R a x ay a +--=∈即为()10a x y x -+-=,由010x y x -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩,可得直线l 过定点(1,1)P ,圆C :224x y +=的圆心坐标为(0,0)C ,半径2r =,由于22114+<,故(1,1)P 在圆C :224x y +=内,||CP ==,则当直线l CP ⊥时,AB 最小,min ||AB =AB 的最大值即为圆的直径,∴AB 的取值范围是⎡⎤⎣⎦故⎡⎤⎣⎦.四、解答题17.已知ABC 三个顶点的坐标分别为()2,4A 、()1,1B -、()9,3C -,求:(1)BC 边上的中线所在直线的方程;(2)BC 边上的高所在直线的方程;(3)BAC ∠的平分线所在直线的方程.【正确答案】(1)52180x y +-=(2)5220x y --=(3)2x =【分析】(1)求出线段BC 的中点坐标,利用两点式可得出BC 边上的中线所在直线的方程;(2)求出直线BC 的斜率,可得出BC 边上的高所在直线的斜率,利用点斜式可得出所求直线的方程;(3)分析可得0AB AC k k +=,数形结合可得出BAC ∠的平分线所在直线的方程.【详解】(1)解:BC 的中点为()41-,,所以BC 边上的中线所在直线的方程为421442y x --=---,整理可得52180x y +-=.(2)解:132195BC k +==--- ,则BC 边上的高所在直线的斜率为52,所以BC 边上的高所在直线的方程为()5422y x -=-,整理可得5220x y --=.(3)解:41121AB k -==+ ,43129AC k +==--,所以0AB AC k k +=,所以,BAC ∠的平分线所在直线的方程为2x =.18.已知长方体111ABCD A B C D -中,2AB =,4BC =,13AA =,点M ,N 分别在棱CD ,11A D 上,且11A N =,DM a =.(1)若1MN B N ⊥,求a ;(2)若MN 平面1A BD ,求a .【正确答案】(1)32a =(2)12a =【分析】以A 为原点,以AB ,AD ,1AA 为x ,y ,z 轴的正方向建立空间直角坐标系,(1)得出MN 与1B N 的坐标,由已知得出10MN B N ⋅= ,即可列式解出答案;(2)得出MN 与1A B uuu r 的坐标,求出平面1A BD 的法向量,即可根据已知MN 平面1A BD ,列式求解得出答案.【详解】(1)以A 为原点,以AB ,AD ,1AA 为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则()0,4,0D ,()12,0,3B ,(),4,0M a ,()0,1,3N ,所以(),3,3MN a =-- ,()12,1,0B N =- ,1MN B N ⊥ ,10MN B N ∴⋅= ,即230a -=,解得32a =;(2)由(1)得(),3,3MN a =-- ,()10,0,3A ,()2,0,0B ,()12,0,3A B =- ,设平面1A BD 的法向量为n,则100BD n A B n ⎧⋅=⎪⎨⋅=⎪⎩ ,取()6,3,4n = 由MN 平面1A BD ,得0n MN ⋅= ,解得12a =.19.在正三棱柱111ABC A B C -中,AB =2,AA 1=M 为BB 1的中点.(1)求AB 与平面MAC 所成角的正弦值;(2)证明:平面MA 1C 1⊥平面MAC .【正确答案】4(2)证明见解析【分析】建立空间直角坐标系,利用线面角公式即可算出答案;利用两个平面的法向量的数量积为零,即可证明.【详解】(1)解:取AC 的中点O ,则OB AC ⊥,以O 为原点.以OA ,OB 为x ,y 轴的正方向建立如图所示的空间直角坐标系.即O (0,0,0),A (1,0,0),C (-1,0,0),B (030),M (033所以()1,3,0AB =- ,()2,0,0AC =- ,(1,3,3AM =- 设平面MAC 的法向量为n,则00AC n AM n ⎧⋅=⎪⎨⋅=⎪⎩ 取()0,1,1n =- 所以()36cos 4,22AB n ==⨯ 故AB 与平面MAC 64(2)解:由(1)得A 1(1,0,23,C 1(-1,0,23,则()(1112,0,01,3,3A C A M =-=-- 设平面11MA C 的法向量为m ,则11100A C m A M m ⎧⋅=⎪⎨⋅=⎪⎩ 取()0,1,1m = 所以0m n ⋅= ,即m n ⊥ ,故平面MA 1C 1⊥平面MAC .20.已知圆O :221x y +=与圆C :22680x y x y m +--+=相外切.(1)求m 的值;(2)若直线l 与圆O 和圆C 都相切,求满足条件的所有l 的方程.【正确答案】(1)9m =(2)10x +=或724250x y --=或3450x y +-=【分析】(1)把两圆相外切转化为圆心间距离等于半径和,计算求解即可.(2)先设直线再满足直线和圆相切即圆心到直线距离等于半径,计算得解.【详解】(1)圆O 的圆心为O (0,0),半径1r =由圆C :22680x y x y m +--+=得()()223425x y m -+-=-,25m <.所以圆C 的圆心C (3,4),半径R 因为两圆相外切,所以1OC R =+,5OC ==,4=,解得9m =(2)由(1)得圆C :()()223416x y -+-=①当直线l 的斜率不存在时,设l 的方程为x t=依题意134t t ⎧=⎪⎨-=⎪⎩,解得1t =-,即l 的方程为=1x -②当直线l 的斜率存在时,设l 的方程为y kx b =+,依题意14⎧=⎪⎪=,所以344k b b +-=当344k b b +-=时,334b k =-,代入上式可得()223491)(k k -=+,解得724k =,即2524b =-所以此时l 的方程为7252424y x =-当344k b b +-=-时543b k =-,代入上式可得()()2243251k k -=+,解得34k =-即54b =所以此时l 的方程为3544y x =-+故满足题设的l 的方程为10x +=或724250x y --=或3450x y +-=.21.如图,四边形ABCD 为正方形,以BD 为折痕把BCD △折起,使点C 到达点P 的位置,且二面角A BD P --为直二面角,E 为棱BP 上一点.(1)求直线AD 与BP 所成角;(2)当PE EB 为何值时,平面ADE 与平面PAB 23【正确答案】(1)60 (2)12PE EB =【分析】(1)连接AC 、BD ,设AC BD O = ,推导出PO ⊥底面ABD ,然后以O 为原点,以OA 、OB 、OP 为x 、y 、z 轴的正方向建立如图空间直角坐标系,设1OA =,利用空间向量法可求得直线AD 与BP 所成角;(2)设PE PB λ= ,其中01λ≤≤,利用空间向量法可得出关于λ的等式,解之即可得出结论.【详解】(1)解:连接AC 、BD ,设AC BD O = ,则O 为BD 的中点,由已知AB AD =,PB PD =,则OP BD ⊥,AO BD ⊥,所以AOP ∠为二面角A BD P --的平面角,所以90AOP ∠= ,因此AO OP ⊥,因为AO BD O = ,AO 、BD ⊂平面ABD ,故PO ⊥底面ABD .以O 为原点,以OA 、OB 、OP 为x 、y 、z 轴的正方向建立如图所示的空间直角坐标系.不妨设1OA =.则()1,0,0A 、()0,1,0B 、()0,1,0D -、()0,0,1P ,()1,1,0AD =-- ,()0,1,1BP =- ,所以1cos ,222AD BP AD BP AD BP ⋅<>===⨯⋅ ,故直线AD 与BP 所成角为60 .(2)解:设平面PAB 的法向量为()111,,m x y z = ,()1,1,0AB =-uu u r ,()1,0,1AP =- ,则111100m AB x y m AP x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,取11x =,可得()1,1,1m = ,设()()0,1,10,,PE PB λλλλ==-=- ,其中01λ≤≤,()()()1,0,10,,1,,1AE AP PE λλλλ=+=-+-=-- ,()1,1,0AD =-- ,设平面ADE 的法向量为()222,,x n y z = ,则()22222010n AD x y n AE x y z λλ⎧⋅=--=⎪⎨⋅=-++-=⎪⎩,取1x λ=-,可得()1,1,1n λλλ=--+ ,由题意可得cos ,3m n m n m n ⋅<>==⋅ ,因为01λ≤≤,解得13λ=,则13PE PB = ,故12PE EB =,因此,当12PE EB =时,平面ADE 与平面PAB 夹角的余弦值为23.22.已知圆C :()222(0)x a y r r -+=>,四点P 1(1,1),P 2(0,2),P 3(1,P 4(1,中恰有三点在圆C 上.(1)求圆C 的方程;(2)设以k 为斜率的直线l 经过点Q (4,-2),但不经过点P 2,若l 与圆C 相交于不同两点A ,B .①求k 的取值范围;②证明:直线P 2A 与直线P 2B 的斜率之和为定值.【正确答案】(1)224x y +=(2)①413k -<<-或10k -≤<;②证明见解析【分析】(1)先判断出2P ,3P ,4P 在圆C 上,然后通过列方程组的方法求得,a r ,从而求得圆C 的方程.(2)①将直线l 的方程代入圆C 的方程,化简后利用0∆>求得k 的取值范围.②利用根与系数关系证得22P A P B k k +为定值.【详解】(1)显然圆C 关于x 轴对称,3P (1,4P (1,关于x 轴对称,所以3P 、4P 在圆C 上,因此1P 不在圆C 上,即2P ,3P ,4P 在圆C 上,代入圆的方程可得:()2222413a r a r ⎧+=⎪⎨-+=⎪⎩,解得02a r =⎧⎨=⎩.所以圆C 的方程为224x y +=.(2)直线l :2(4)y k x +=-,1k ≠-.①将直线l :2(4)y k x +=-代入圆C 的方程得()()222218416160k x k k x k k +-+++=.()()()2222844116160k k k k k ∆=+-++>,解得403k -<<,又1k ≠-,所以413k -<<-或10k -≤<,②设A (x 1,y 1),B (x 2,y 2),则2122841k k x x k ++=+,212216161k k x x k +⋅=+,2112P A y k x -=,2222P B y k x -=,112(4)y k x +=-,222(4)y k x +=-,所以()()22121221244244144P A P B x x k k k k k k k x x k +++=-+⋅=-+⋅=-+,圆直线P 2A 与直线P 2B 的斜率之和为定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6题图 高二数学上学期期中考试模拟题(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 1、在答卷前,考生务必将自己的姓名、考号用2B 铅笔涂写在答题卡上.2、选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.3、非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内,如需改动,先划掉原来的答案,再写上新的答案.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.1、在命题“若,12=x 则x=1”的逆命题,否命题,逆否命题中真命题的个数( ) A 、0个 B 、1个 C 、2个 D 、3个2、等差数列}{n a 满足4,1262==a a ,则其公差d=( ) A 、2 B 、-2 C 、3 D 、-33、命题“042,2≤+-∈∀x x R x ”的否定为( )A 、042,2≥+-∈∀x x R x B 、042,2>+-∈∃x x R x C 、042,2≤+-∉∀x x R x D 、042,2>+-∉∃x x R x 4、函数)32sin(π+=x y 的图像( )A 、关于点)0,3(π对称 B 、关于直线4π=x 对称 C 、关于点)0,4(π对称 D 、关于直线3π=x 对称5、下列结论正确的是( )A .当101,lg 2lg x x x x>≠+≥且时 B .x x x 1,2+≥时当的最小值为2C .函数1222++=x x y 最小值为2 D 当xx x 1,20-≤<时无最大值. 6、某程序框图如图所示,该程序运行后输出的S 的值是( ) A 、3- B 、12-C 、13D 、27、某中学从已编号(1~60)的60个班级中,随机抽取6个班级进行卫生检查,用每部分选取的号码间 隔一样的系统抽样方法确定所选的6个班级的编号可能是( )A 、6,16,26,36,46,56B 、3,10,17,24,31,38C 、4,11,18,25,32,39D 、5,14,23,32,41,508、在如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数ay x z -=2取得最大值的最优解有无数个,则a 为( )A .-2B .2C .-6D .69、一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93 用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A 、身高一定是145.83cm B 、身高在145.83cm 以上10、在⊿ABC 中,满足222a bc cb =-+,且3=ba,则角C 的值为( ) A 、3π B 、2π C 、6π D 、4π二、填空题(每题5分,共20分)11、已知样本容量为30,在样本频率分布直方图中,各小长方形的高的比从左 到右依次为1:3:4:2,则第2组的频数是_____12、过等腰直角△CAB 的顶点C 作直线CP 交斜边AB 于点P,则使CA>AP 的概率为______13、椭圆C:13422=+y x ,21,F F 为椭圆C 的两焦点,P 为椭圆C 上一点,连接1PF 并延长交椭圆于另外一点Q ,则⊿2PQF 的周长_______14、将函数x y sin =图像上点纵坐标不变,横坐标变为原来的21,再向右平移6π个单位,得到)sin(θω+=x y 的图像,)sin(θω+=x y 的解析式为___________三、解答题(解答过程要有必要的推理步骤,否则只有答案分) 15、(12分)将一颗质地均匀的正三棱锥骰子(4个面的点数分别为1,2,3,4)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“1=-y x ”的概率;(2)求点(x,y)落在⎪⎩⎪⎨⎧>≤+≥+0,823y x y x y x 的区域内的概率。

16、(12分)设函数2()2cos sin 2()f x x x a a R =++∈;(1)求函数()f x 的最小正周期和单调递增区间;(2)当[0,]6x π∈时,()f x 的最大值为2,求a 的值,并求出()()y f x x R =∈的对称轴方程.17、(14分).已知数列{}n a 满足121+=-n n a a ,13=a .(Ⅰ)求证:数列{1}-n a 是等比数列; (Ⅱ)求数列{}n a 的通项公式和前n 项和n S .18、(14分)已知命题p:方程a2x2+ax-2=0在[-1,1]上有解:命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,求a的取值范围.19、(14分)设二次函数2()f x ax bx c =++(a >0),方程()0f x x -=的两个根12x x ,满足1210x x a <<<.(1)83,0,21===c b a ,求2221x x + 的值;(2)设函数()f x 的图象关于直线0x x =对称,证明:102x x <; (3)当x ∈(0,1x )时,证明x <()f x <1x ;20、(14分)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1(-c,0),F 2(c,0),Q 是椭圆外的动点,满足|F 1Q →|=2a .点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足PT →·TF →2=0,|TF →2|≠0.(1)设x 为点P 的横坐标,证明|F 1P →|=a +c ax ;(2)求点T 的轨迹C 的方程;(3)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S =b 2?若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.高二数学上学期期中考试模拟题(理)参考答案一、选择题:1—5:C 、B 、B 、A 、C; 6—10:B 、A 、A 、D 、B; 二、填空题:11、12 ; 12、43; 13、8; 14、)32sin(π-=x y三、解答题:15、解:设(),x y 表示一个基本事件,则掷两次骰子包括:()1,1,()1,2,()1,3,()1,4,…(4,4),共16个基本事件.(或用树形图画出) (1)用A 表示事件“1=-y x ”,则A 的结果有(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6个基本事件. ∴83)(==M m A P . 答:事件“1=-y x ”的概率为83. (2)用B 表示事件⎪⎩⎪⎨⎧>≤+≥+0,824y x y x y x 发生,且事件B 是古典概型事件------9分事件B 含有的基本事件为:(1,3),(3,1),(1,4),(2,3),(2,4),(3,2) ∴ P(B)=83166= 答:事件⎪⎩⎪⎨⎧>≤+≥+0,824y x y x y x 发生的概率为8316、解:(1)2()2cos sin 21cos2sin 2)14f x x x a x x a x a π=++=+++=+++则()f x 的最小正周期2T ππω==, ……………………………4分且当222()242k x k k Z πππππ-≤+≤+∈时()f x 单调递增.即3[,]()88x k k k Z ππππ∈-+∈为()f x 的单调递增区间(写成开区间不 扣分).…………6分 (2)当[0,]6x π∈时724412x πππ⇒≤+≤, 当242x ππ+=,即8x π=时sin(2)14x π+=.2()4228k x k x k Z πππππ+=+⇒=+∈为()f x 的对称轴. ……12分 17、(Ⅰ)依题意有1122n n a a +-=-且112a -=, 所以1121n n a a +-=-所以数列{1}-n a 是等比数列 …………6分(Ⅱ)由(Ⅰ)知111(1)2n n a a --=-即12n n a -=, 所以21nn a =+ …………10分而12n n S a a a =+++22(21)(21)(21)(21)n =++++++++22(2222)nn =++++2(12)12n n -=+-122n n +=-+ …………14分18、解:由题意知a ≠0,若p 正确,----------------------2分a 2x 2+ax -2=(ax +2)(ax -1)=0的解为1a 或-2a,---------------------4分若方程在[-1,1]上有解,又⎪⎪⎪⎪⎪⎪1a <⎪⎪⎪⎪⎪⎪2a.---------------------6分只需满足-1≤1a≤1.即a ∈(-∞,-1]∪[1,+∞).----------------------9分若q 正确,即只有一个实数x 满足x 2+2ax +2a ≤0,-----------------10分 则有Δ=0,即a =0或2.----------------------12分 若p 或q 是假命题,则p 和q 都是假命题,有⎩⎪⎨⎪⎧-1<a <1,a ≠0且a ≠2,所以a 的取值范围是(-1,0)∪(0,1).-------------------------14分19、解:(1)212212221212122)(,2,4308321)(x x x x x x x x x x x x x x f -+=+∴=+=⇒=+-=-=25 -----3分 (也可以求出两根进行计算)(2)a b x 20-= ---------4分 )(212121210x x a b a x +=--=+----------6分 a x a x 212122<⇒<a x a x a x x x 2121212121212110121+<+⇒+<+∴ 210x x <∴----------------8分 (3)设))(()(21x x x x a x x f --=---------9分 ))(()(21x x x x a x x f --=-0,0,0),0(211><-<-∴∈a x x x x x x )(0)(x f x x x f <⇒>-∴--------11分1122)(0)(0)(101x x f x x f x x a x x a<⇒<-⇒<-<-∴<-<---------14分20、(1)设),(y x P ,满足x 2a 2+y 2b 2=122)(y c x ++=,又)1(2222ax b y -=x a c a a xc x ac a x b c cx x y c x +=++=-+++=++=222222222222)1(2)(---3分(2)∵PT →·TF →2=02TF PT ⊥⇒a 2=+,|F 1Q →+=2a= ∴T 是2QF 的中点,连接TO ,则TO//1QF ∴TO 是1QF 的中位线----5分a TO = ∴T 点的轨迹是圆 ,则T 点的轨迹方程为222a y x =+-----7分(3)设点M 的坐标为),(00y x ∵ca y c y c S MF F ≤=⋅⋅=∆0022121 若ca b >2,不存在M 点满足条件--------9分 若ca b ≤2,则存在点M 使得使△F 1MF 2的面积S =b 2221sin 2121b MF F S MF F =∠⋅=∆21000021cos ),)(,(MF F y x c y x c MF MF ∠⋅=-----=-----11分210000cos ),)(,(MF F y x c y x c ∠-----=------12分21210000221sin cos ),)(,(21sin 2121MF F MF F y x c y x c b MF F S MF F ∠∠-----⋅==∠=∆22020a y x =+ ∴2tan 21=∠MF F -----------------14分2013—2014学年高二数学(上)期中考试模拟题(理)双向细目表(针对大型考试及“交叉命题”使用)。

相关文档
最新文档