全国中考数学(附答案)压轴题分类解析汇编专题9:几何综合问题
2019年全国各地中考数学压轴题分类汇编几何综合(浙江专版)含答案

2019年全国各地中考数学压轴题分类汇编(浙江专版)几何综合打印版答案在最后1.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.2.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.3.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.4.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC 于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.5.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.6.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E 三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.7.(2019•嘉兴)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).8.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC 内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.9.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.10.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x 轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B 三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.11.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.13.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.14.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.15.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.16.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=,∠C=30°,求的长.18.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?19.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()20.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.2019年全国各地中考数学压轴题分类汇编(浙江专版)几何综合参考答案与试题解析1.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.2.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.3.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.4.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC 于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.5.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG=,∴在Rt△ABG中,AG=BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE=BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH=,BH=,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+BE=(2x+)BE,∴在Rt△AHE中,tan∠EAD=,∴y=;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM=EC=a+ax,∴BM=EM﹣BE=ax﹣a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG=,∴BF=,∴△OFB的面积=,∴△AEC的面积=,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,6.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E 三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.7.(2019•嘉兴)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.8.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC 内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得PN=.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴=,同理可得:=,∴=,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM==,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴==,==,∴=,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.9.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,由直线l2:y=3x﹣3得:点C(1,0),则CM=AC sin45°=4×=2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,解得:m=3﹣;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点P的坐标为(3﹣,6﹣3)或(3+,6+3).10.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x 轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B 三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.解:(1)∵OA=3,tan∠OAC==,∴OC=,∵四边形OABC是矩形,∴BC=OA=3,∵D是BC的中点,∴CD=BC=,∴D(,);(2)①∵tan∠OAC=,∴∠OAC=30°,∴∠ACB=∠OAC=30°,设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处,则DB'=DB=DC,∠BDF=∠B'DF,∴∠DB'C=∠ACB=30°∴∠BDB'=60°,∴∠BDF=∠B'DF=30°,∵∠B=90°,∴BF=BD•tan30°=,∵AB=,∴AF=BF=,∵∠BFD=∠AEF,∴∠B=∠F AE=90°,∴△BFD≌△AFE(ASA),∴AE=BD=,∴OE=OA+AE=,∴点E的坐标(,0);②动点P在点O时,∵抛物线过点P(0,0)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x,∴E(,0),∴直线DE:y=﹣x+,∴F1(3,);当动点P从点O运动到点M时,∵抛物线过点P(0,)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x+,∴E(6,0),∴直线DE:y=﹣x+,∴F2(3,);∴点F运动路径的长为F1F2==,∵△DFG为等边三角形,∴G运动路径的长为.11.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.13.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.14.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE=m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b的值为或.15.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.16.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC=BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DDBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG=BF=.②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.∵AD=6BD,∴BD=AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12﹣x,∵FH∥AC,∴=,∴=,整理得:x2﹣12x+28=0,解得x=6±2.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF=(12﹣x),OG=BF=(12﹣x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴=,∴=,整理得:x2﹣36x+268=0,解得x=18﹣2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC 于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=90°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12﹣x,BF=(12﹣x),OG=BF=(12﹣x),CK=EK=x,GK=7﹣(12﹣x)﹣x,由△OGD∽△KEG,可得=,∴=,解得x=2,,综上所述,满足条件的EC的值为6±2或18﹣2或2.17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=,∠C=30°,求的长.(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE=,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°•CD=×2=2,∴的长为:=.18.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=∠BAC=30°,在Rt△ADC中,DC=AC•tan30°=6×=2.(2)由题意易知:BC=6,BD=4,∵DE∥AC,∴∠FDM=∠GAM,∵AM=DM,∠DMF=∠AMG,∴△DFM≌△AGM(ASA),∴DF=AG,∵DE∥AC,∴==,∴====.(3)∵∠CPG=60°,过C,P,G作外接圆,圆心为Q,∴△CQG是顶角为120°的等腰三角形.①当⊙Q与DE相切时,如图3﹣1中,作QH⊥AC于H,交DE于P.连接QC,QG.菁优网设⊙Q的半径为r.则QH=r,r+r=2,∴r=,∴CG=×=4,AG=2,由△DFM∽△AGM,可得==,∴DM=AD=.②当⊙Q经过点E时,如图3﹣2中,延长CO交AB于K,设CQ=r.∵QC=QG,∠CQG=120°,∴∠KCA=30°,∵∠CAB=60°,∴∠AKC=90°,在Rt△EQK中,QK=3﹣r,EQ=r,EK=1,∴12+(3﹣r)2=r2,解得r=,∴CG=×=,由△DFM∽△AGM,可得DM=.③当⊙Q经过点D时,如图3﹣3中,此时点M,点G与点A重合,可得DM=AD=4.观察图象可知:当DM=或<DM≤4时,满足条件的点P只有一个.19.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=F A,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.20.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a=﹣1∴AP=FD=﹣1,∴AF=AD﹣DF=3﹣∴=(2)在CD上截取DH=AF∵AF=DH,∠P AF=∠D=90°,AP=FD,∴△P AF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP=﹣1∵点E是AB中点,∴BE=AE=1=EM∴PE=P A+AE=∵EC2=BE2+BC2=1+4=5,∴EC=∴EC=PE,CM=﹣1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH=﹣1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP=﹣1由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB=﹣1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y=x﹣2设点B'(x,x﹣2)∴AB'==2∴x=∴点B'(,﹣)∵点Q'(﹣1,0)∴B'Q'=≠﹣1∴点B旋转后的对应点B'不落在线段BN上.。
中考数学总复习 几何综合压轴题

中考数学总复习几何综合压轴题中考数学总复习:几何综合压轴题解析与策略一、几何综合压轴题概述几何综合压轴题是中考数学中难度较大、分值较高、涉及知识点广泛的一类题目,常出现在试卷的最后一题。
这类题目主要考察学生的空间想象能力、逻辑推理能力、代数与几何的综合运用能力。
常见的几何综合压轴题涉及三角形、四边形、圆形等多个几何图形的性质、面积、周长等方面的计算,以及通过辅助线构造新的图形、运用代数方法解决几何问题等。
二、几何综合压轴题解题策略1.审题理解:仔细阅读题目,理解题意,明确题目中的条件和要求。
对于较复杂的图形,需要仔细观察,抓住关键的点、线、角等。
2.分析题目:根据题目中的条件和要求,分析题目中的几何关系,找出解决问题的思路和方法。
注意运用几何图形的性质和定理,以及辅助线的构造方法。
3.代数计算:在分析题目的基础上,引入适当的变量,建立代数方程或代数不等式,通过代数计算求解。
注意代数计算的准确性和严密性。
4.反思检验:完成解题过程后,要对结果进行检验,检查是否符合题意。
对于不确定的答案,可以通过代入法进行验证。
三、几何综合压轴题常见类型及解题方法1.三角形问题:涉及三角形的性质、周长、面积等计算,常用勾股定理、三角形面积公式等。
解题时需要注意三角形边角关系、相似三角形的对应关系等。
2.四边形问题:涉及四边形的性质、周长、面积等计算,常用平行四边形、矩形、菱形、正方形的性质和判定方法。
解题时需要注意四边形内角和定理、四边形面积公式等。
3.圆形问题:涉及圆的基本性质、周长、面积等计算,常用圆的周长公式、面积公式等。
解题时需要注意圆的内接四边形、圆周角定理等。
4.组合图形问题:涉及多个几何图形的组合,需要运用辅助线构造新的图形,常用三角形、四边形等基本图形的性质和判定方法。
解题时需要注意图形的对称性、旋转相似等。
四、总结几何综合压轴题是中考数学中的难点,学生需要通过大量的练习来提高解题能力。
在解题过程中,要注重审题理解、分析题目、代数计算和反思检验四个环节,同时掌握常见类型题目的解题方法和技巧。
几何综合(解析版)--中考数学抢分压轴题秘籍(全国通用)

几何综合--中考数学抢分秘籍(全国通用)几何综合问题在中考中以填空题和解答题的形式出现,考查难度较大.此类问题在中考中多考查面积平分、面积最值和几何变换的综合问题,一般要用到特殊三角形、特殊四边形、相似三角形、圆、锐角三角函数、勾股定理、图形变换的性质和二次函数的最值等相关知识,以及分类讨论、数形结合、转化与化归等数学思想.此类题型常涉及以下问题:①几何图形中的线段最值问题②探究图形面积的分割问题;③探究图形面积的最值问题.右图为几何综合问题中各题型的考查热度.题型1:线段最值问题①动点路径问题②“胡不归”问题③“将军饮马”问题④“造桥选址”问题解题模板:1.(2021秋•白云区校级月考)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切,则点A到⊙O上的点的距离的最大值为()A.B.C.D.【分析】由题意画出符合题意的图形,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,利用勾股定理即可求得结论.【解答】解:由题意,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,如图,由对称性可知:圆心O在AC上.AC==4.∵BC与⊙O相切于点E,∴OE⊥EC.∵四边形ABCD是正方形,∴∠ACB=45°.∴△OEC为等腰直角三角形.∴OC=OE=.∴CG=OC﹣OG=﹣1.∴AG=AC﹣CG=4﹣(﹣1)=3+1.故选:C.【点评】本题主要考查了切线的性质,正方形的性质,直线和圆的位置关系,勾股定理,连接OE,利用切线的性质得到OE⊥EC是解题的关键.【变式1-1】(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.【分析】(1)要证明EF=DE,只要证明△DME≌△ENF即可,然后根据题目中的条件和正方形的性质,可以得到△DME≌△ENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长.【解答】(1)证明:∵四边形ABCD是正方形,AC是对角线,∴∠ECM=45°,∵MN∥BC,∠BCM=90°,∴∠NMC+∠BCM=180°,∠MNB+∠B=180°,∴∠NMC=90°,∠MNB=90°,∴∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∴MC=ME,∵CD=MN,∴DM=EN,∵DE⊥EF,∠EDM+∠DEM=90°,∴∠DEF=90°,∴∠DEM+∠FEN=90°,∴∠EDM=∠FEN,在△DME和△ENF中,∴△DME≌△ENF(ASA),∴EF=DE;(2)解:如图1所示,由(1)知,△DME≌△ENF,∴ME=NF,∵四边形MNBC是矩形,∴MC=BN,又∵ME=MC,AB=4,AF=2,∴BN=MC=NF=1,∵∠EMC=90°,∴CE=,∵AF∥CD,∴△DGC∽△FGA,∴,∴,∵AB=BC=4,∠B=90°,∴AC=4,∵AC=AG+GC,∴AG=,CG=,∴GE=GC﹣CE==;如图2所示,同理可得,FN=BN,∵AF=2,AB=4,∴AN=1,∵AB=BC=4,∠B=90°,∴AC=4,∵AF∥CD,∴△GAF∽△GCD,∴,即,解得,AG=4,∵AN=NE=1,∠ENA=90°,∴AE=,∴GE=GA+AE=5.综上所述:GE的长为:,5.【点评】本题考查正方形的性质、全等三角形的判定与性质、三角形相似,解答本题的关键是明确题意,利用数形结合的思想解答.2.(2022春•广陵区期末)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=2,点P为线段BD上的一个动点,则MP+PB的最小值是4.【分析】过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,根据菱形的性质得到AB=BC,BO 平分∠ABC,AO⊥BD,再判断△ABC为等边三角形得到∠ABC=∠ACB=60°,则∠OBC=30°,所以PH=BP,则MP+PB=MP+PH,所以MP+PH的最小值为MN的长,然后利用含30度角的直角三角形三边的关系求出MN即可.【解答】解:过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,∵四边形ABCD为菱形,∴AB=BC,BO平分∠ABC,AO⊥BD,∵AB=AC=10,∴AB=AC=BC=10,∴△ABC为等边三角形,∴∠ABC=∠ACB=60°,∴∠OBC=30°,∴PH=BP,∴MP+PB=MP+PH,当M、P、H共线时,MP+PH的值最小,即MP+PH的最小值为MN的长,∵AM=2,∴CM=10﹣2=8,在Rt△MNC中,∵∠MCN=60°,∴CN=CM=4,∴MN=CN=4,即MP+PB的最小值为4.故答案为:.【点评】本题考查了胡不归问题:利用垂线段最短解决最短路径问题,把PB转化为PH是解决问题的关键.也考查了菱形的性质和等边三角形的性质.【变式2-1】(2021•郴州)如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.【分析】过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,首先得出BD=4,AD=3,根据sin∠ABD=,得EP=,则PC+PB的最小值为PC+PE的最小值,即求CH的长,再通过等积法即可解决问题.【解答】解:过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,∵BD⊥AC,∴∠ADB=90°,∵sin A==,AB=5,∴BD=4,由勾股定理得AD=,∴sin∠ABD=,∴EP=,∴PC+PB=PC+PE,即点C、P、E三点共线时,PC+PB最小,∴PC+PB的最小值为CH的长,=,∵S△ABC∴4×4=5×CH,∴CH=.∴PC+PB的最小值为.故答案为:.【点评】本题主要考查了锐角三角函数,垂线段最短、勾股定理等知识,将PC+PB的最小值转化为求CH的长,是解题的关键.3.(2022秋•朝阳区校级月考)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的纵坐标为.【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E (0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,则,解得:,∴直线EC的解析式为y=x+2,解,得,∴P(,),故答案为:.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.【变式3-1】(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x 轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为(﹣,0).【分析】在BC上截取BH=3,可证四边形BHEF是平行四边形,可得BF=EH,由对称性可得DE=D'E,则四边形BDEF的周长=EH+ED'+BD+EF,由EF和BD是定值,则当EH+D'E有最小值时,四边形BDEF 的周长有最小值,即当点E,点H,点D'共线时,EH+D'E有最小值,利用待定系数法可求HD'解析式,即可求解.【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).【点评】本题考查了轴对称﹣最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E的位置是解题的关键.4.如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是.【分析】根据题意得出作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.【解答】解:作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,延长DF交BC于P,作FQ⊥BC于Q,作出点E关于AC的对称点E′,则CE′=CE=1,将MN平移至E′F′处,则四边形MNE′F′为平行四边形,则当BM+EN=BM+FM=BF′时四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.故答案为.【点评】此题主要考查了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.【变式4-1】如图,已知四边形ABCD四个顶点的坐标为A(1,3),B(m,0),C(m+2,0),D(5,1),当四边形ABCD的周长最小时,m的值为.【分析】因为AD,BC的长度都是固定的,所以求出AB+CD的长度就行了.问题就是AB+CD什么时候最短.把D点向左平移2个单位到D′点;作D′关于x轴的对称点D″,连接AD″,交x轴于P,从而确定C点位置,此时AB+CD最短.设直线AD″的解析式为y=kx+b,待定系数法求直线解析式.即可求得m的值.【解答】解:将C点向左平移2单位与B重合,点D向左平移2单位到D′(3,1),作D′关于x轴的对称点D″,根据作法知点D″(3,﹣1),设直线AD″的解析式为y=kx+b,则,解得k=﹣2,b=5.∴直线AD″的解析式为y=﹣2x+5.当y=0时,x=,即B(,0),m=.故答案为:.【点评】考查了轴对称﹣最短路线问题,关键是熟悉关于x轴的对称点,两点之间线段最短等知识.题型2:面积平分问题解题模板:技巧精讲1:利用中线平分图形面积的方法2.利用对称性平分图形面积的方法5.(1)问题提出:如图(1),在直角△ABC中,∠C=90°,AC=8,BC=6,点D为AC上一点且AD=2,过点D作直线DE交△ABC于点E,使得△ABC被分成面积相等的两部分,则DE的长为2.(2)类比发现:如图(2),五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C (4,0),D(4,2)请你找出一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,求出该直线对应的函数表达式.(3)如图(3),王叔叔家有一块四边形菜地ABCD,他打算过D点修一条笔直的小路把四边形菜地ABCD 分成面积相等的两部分,分别种植不同的农作物,已知AB=AD=200米,BC=DC=200米,∠BAD =90°过点D是否存在一条直线将四边形ABCD的面积平分?若存在,求出平分该四边形面积的线段长:若不存在,请说明理由.【分析】(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF于O.证明DE平分△ABC的面积,利用平行线分线段成比例定理求出CE即可解决问题.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,求出点M的坐标即可解决问题.(3)先求出四边形ABCD的面积,即可得出四边形ABQD的面积,从而求出QM,再用平行线分线段成比例定理求出BM,即可得出DM,最后用勾股定理即可.【解答】解:(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF 于O.∵AF=FC,=S△BFC,∴S△AFB∵BD∥EF,=S△BDF,∴S△BDE=S△BOE,∴S△DFO=S四边形ABED,∴S△ECD∴DE平分△ABC的面积,∵AC=8,AD=2,∴AF=CF=4,DF=2,∵EF∥BD,∴=,∴=,∴CE=4,∴DE===2,故答案为2.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,∵直线AO的解析式为y=x,∴直线BE解析式为y=x+2,∴点E坐标(﹣,0),∵直线AC的解析式为y=﹣4x+16,∴直线DF的解析式为y=﹣4x+18,∴点F坐标为(,0)∴EF的中点M坐标为(,0),∴直线AM的解析式为:y=x﹣4.(3)如图3中,连接BD,AC交于点O.在BC上取一点Q,过Q作QM⊥BD,∵AB=AD=200、BC=CD=200,∴AC是BD的垂直平分线,在Rt△ABD中,BD=AB=200,∴DO=BO=OA=100,在Rt△BCO中,OC==300,=S△ABD+S△CBD=BD×(AO+CO)=×200×(100+300)=80000,∴S四边形ABCD∵在一条过点D的直线将筝形ABCD的面积二等分,=S四边形ABCD=40000,∴S四边形ABQD=×BD×OA=20000,∵S△ABD=BD×QM=×200×QM=100QM=S四边形ABQD﹣S△ABD=20000,∴S△QBD∴QM=100,∵QM∥CO.∴=,∴=,∴BM=,∴DM=BD﹣BM=,在Rt△MQD中,DQ===.【点评】此题是一次函数综合题,主要考查了等腰三角形的性质,三角形的中线,几何作图,勾股定理,等积问题等知识,解题的关键是把多边形转化为三角形是解决问题的关键,记住三角形的中线把三角形分成面积相等的两个三角形.【变式5-1】(2022•江北区模拟)新知学习:若一条线段把一个平面图形分成面积相等的两部分,我们把这条线段叫做该平面图形的二分线.解决问题:(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是三角形的中线;②如图1,已知△ABC中,AD是BC边上的中线,点E,F分别在AB,DC上,连接EF,与AD交于=S△DGF,则EF是(填“是”或“不是”)△ABC的一条二分线.点G.若S△AEG(2)如图2,四边形ABCD中,CD平行于AB,点G是AD的中点,射线CG交射线BA于点E,取EB 的中点F,连接CF.求证:CF是四边形ABCD的二分线.(3)如图3,在△ABC中,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,EF是四边形ABDE的一条二分线,求DF的长.【分析】(1)①由平面图形的二分线定义可求解;②由面积的和差关系可得S△BEF=S△ABD=S△ABC,可得EF是△ABC的一条二分线;=S△CEF,由AB∥DC,G是AD的中点,证明△CDG≌△EAG,所(2)根据EB的中点F,所以S△CBF=S△CEF,所以S四边形AFCD=S△CBF,可得CF是四边形ABCD的二分线;以S四边形AFCD=S△DEC=S△ABE,可得S△HED=(3)延长CB使BH=CD,连接EH,通过全等三角形的判定可得S△BEHS四边形ABDE,即可得DF=DH=.【解答】解:(1)∵三角形的中线把三角形分成面积相等的两部分;∴三角形的中线是三角形的二分线,故答案为三角形的中线②∵AD是BC边上的中线=S△ACD=S△ABC,∴S△ABD=S△DGF,∵S△AEG+S△AEG=S四边形BDGE+S△DGF,∴S四边形BDGE=S△ABD=S△ABC,∴S△BEF∴EF是△ABC的一条二分线故答案为:是(2)∵EB的中点F,=S△CEF,∴S△CBF∵AB∥DC,∴∠E=∠DCG,∵G是AD的中点,∴DG=AG,在△CDG和△EAG中,∴△CDG≌△EAG(AAS),=S△DCG,∴S△AEG=S△CEF,∴S四边形AFCD=S△CBF,∴S四边形AFCD∴CF是四边形ABCD的二分线.(3)如图,延长CB使BH=CD,连接EH,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,∵BC=7∴BD+CD=7∴BD+BH=7=HD∵∠BED=∠A,∠BED+∠DEC=∠A+∠ABE∴∠ABE=∠CED,且AB=CE=7,∠A=∠C∴△ABE≌△CED(ASA)=S△EDC,∴AE=CD,BE=DE,∠AEB=∠EDC,S△ABE∴AE=BH,∵∠CBE=∠CEB∴∠AEB=∠EBH∴∠EBH=∠EDC,且BE=DE,BH=CD∴△BEH≌△DEC(SAS)、=S△DEC,∴S△BEH=S△DEC=S△ABE,∴S△BEH=S四边形ABDE,∴S△HED∵EF是四边形ABDE的一条二分线,=S四边形ABDE=S△HED,∴S△DEF∴DF=DH=【点评】本题是三角形综合题,考查了全等三角形的判定和性质,三角形中线的性质,平行线的性质,理解新定义是本题的关键.【变式5-2】(2021•西安一模)问题提出(1)如图①,在Rt△ABC中,∠A=90°,AB=3,AC=4,在BC上找一点D,使得AD将△ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;问题探究(2)如图②,点A、B在直线a上,点M、N在直线b上,且a∥b,连接AN、BM交于点O,连接AM、BN,试判断△AOM与△BON的面积关系,并说明你的理由;解决问题(3)如图③,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP的表达式;若不存在,请说明理由.【分析】(1)当点D是BC的中点时,AD将△ABC分成面积相等的两部分,根据直角三角形斜边中线等于斜边的一般,可求出AD的长度;(2)根据同底等高的三角形面积相等,再减去相等的部分,就可以得出△AOM与△BON的面积相等;(3)连接AB,过点O作AB的平行线,交CA的延长线于点F,交OA于点G,则△OBG的面积等于△AFG的面积,则四边形OACB的面积转化为△BCF的面积,取CF的中点P,求出点P的坐标,即可求出直线BP的表达式.【解答】解:(1)如图①,取BC边的中点D,连接AD,则线段AD即为所求.在Rt△ABC中,∠BAC=90°,AB=3,AC=4,∴BC=,∵点D为BC的中点,∴AD=BC=.=S△BON,理由如下:(2)S△AOM=S△ABM﹣S△AOB,S△BON=S△ABN﹣S△AOB,由图可知,S△AOM如图②,过点M作MD⊥AB于点D,过点N作NE⊥AB于点E,∴MD∥NE,∠MDE=90°,又∵MN∥DE,∴四边形MDEN是矩形,∴MD=NE,=,S△ABN=,∵S△ABM=S△ABN,∴S△ABM=S△BON.∴S△AOM(3)存在,直线BP的表达式为:y=x+4.如图③,连接AB,过点O作OF∥AB,交CA的延长线于点F,交OA于点G,=S△AFG,由(2)的结论可知,S△OBG=S△BCF,∴S四边形OACB取CF的中点P,作直线BP,直线BP即为所求.∵A(4,0),B(0,4),C(6,6),∴线段AB所在直线表达式为:y=﹣x+4,线段AC所在直线的表达式为:y=3x﹣12,∴直线OF的表达式为:y=﹣x,联立,解得,∴F(3,﹣3),∵点P是CF的中点,∴P(,),∴直线BP的表达式为:y=x+4.【点评】主要考查了勾股定理,中点的性质,面积转化以及待定系数法求一次函数表达式等内容,熟练掌握勾股定理的内容,中点性质的应用,作出辅助线,进行面积的转化是解答本题的关键.题型3:面积最值问题6.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG,EH=DG=8﹣x,所以S△BDE===,当x=4时,△BDE面积的最大值为8.【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴△AMB∽△CGB,∴,∴GB=8,设BD=x,则DG=8﹣x,∵ED=DC,∠EHD=∠DGC,∠HED=∠GDC,∴△EDH≌△DCG(AAS),∴EH=DG=8﹣x,===,∴S△BDE当x=4时,△BDE面积的最大值为8.故答案为8.【点评】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.;【变式6-1】(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC(3)如图③,四边形ABCD,AC=m,BD=n,对角线AC交于O点,他们所成锐角为β,求四边形ABCD .的面积S四边形ABCD【分析】(1)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(2)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(3)过A作AE⊥BD于E,过C作CF⊥BD于F,解直角三角形求出AE、CF,根据三角形面积公式求出即可.【解答】解:(1)如图①,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=60°,AC=4,∴AM=AC×sin60°=4×=2,∵BC=6,=×BC×AM=×6×2=6;∴△ABC的面积S△ABC(2)如图②,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=α,AC=b,∴AM=AC×sinα=b×sinα=b sinα,∵BC=a,=×BC×AM=×a×b sinα=ab sinα;∴△ABC的面积S△ABC(3)如图3,过A作AE⊥BD于E,过C作CF⊥BD于F,BD=n,OA+OC=m,∵AC、BD夹角为β,∴AE=OA•sinβ,CF=OC•sinβ,=S△ABD+S△BDC∴S四边形ABCD=BD•AE+BD•CF=BD•(AE+CF)=BD•(OA•sinβ+OC•sinβ)=BD•AC•sinβ=mn sinβ.=mn sinβ.即四边形ABCD的面积S四边形ABCD【点评】本题考查了解直角三角形,三角形的面积的应用,此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.【变式6-2】如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【分析】(1)由正方形的性质得出AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,证出∠ADE=∠CDG,由SAS证明△ADE≌△CDG,得出∠DCG=∠DAE=90°,证出∠DCG+∠DCB=180°,即可得出结论;(2)分情况讨论:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,则AC∥EK∥AD,证明△ADE∽△BEH,由相似三角形的性质得出=,求出BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积,即可得出结果;②当点E在BC边上时,S=△DEC的面积=4﹣x;(3)由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;由勾股定理求出BD,即可得出结果.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.【点评】本题是四边形综合题目,考查了正方形的性质、平行线的判定与性质、三角形面积的计算、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解决问题的关键.1.如图,在边长为6的菱形ABCD中,∠BCD=60°,连接BD,点E、F分别是边AB、BC上的动点,且AE=BF,连接DE、DP、EF.(1)如图①,当点E是边AB的中点时,求∠EDF的度数;(2)如图②,当点E是边AB上任意一点时,∠EDF的度数是否发生改变?若不改变,请证明;若发生改变,请说明理由;(3)若点P是线段BD上一动点,求PF+DP的最小值.【分析】(1)由菱形的性质可得AB=BC=CD=AD=6,∠BCD=∠BAD=60°,可证△ABD,△BCD 是等边三角形,由等边三角形的性质可证DE=DF,∠EDF=60°,可得结论;(2)证明△ADE≌△BDF(SAS),根据全等三角形的性质得∠ADE=∠BDF,由角的和差即可得∠EDF =∠ADB=60°;(3)过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,可得GP=DP•sin60°=DP,则PF+DP=PF+GP,当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,则DH=FG',PF+DP的最小值即为DH的长,由△BDC是等边三角形可得DH=CD•sin60°=3,即可求得PF+DP的最小值.【解答】解:(1)∵四边形ABCD是菱形,边长为6,∴AB=BC=CD=AD=6,∠BCD=∠BAD=60°,∴△ABD,△BCD是等边三角形,∵点E是边AB的中点,AE=BF,∴点F是边BC的中点,∴∠ADE=∠BDE=∠BDF=∠CDF=30°,∴∠EDF=∠BDE+∠BDF=60°;(2)∠EDF的度数不改变,证明:△ABD,△BCD是等边三角形,∴AD=BD,∠DAB=∠DBC=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴∠ADE=∠BDF,∴∠EDF=∠ADB=60°;(3)如图,过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,∵∠ADB=60°,∴GP=DP•sin60°=DP,∴PF+DP=PF+GP,∴当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,∵四边形ABCD是菱形,∴DH=FG',∴PF+DP的最小值即为DH的长,∵DH⊥BC,△BDC是等边三角形,∴DH=CD•sin60°=3,∴PF+DP的最小值为3.【点评】本题考查了四边形的综合应用,掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,最短路径等知识,添加恰当辅助线构造构造在直角三角形是解本题的关键.2.(2022•连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.【分析】(1)先证明四边形DBCE是平行四边形,再由BE⊥DC,得四边形DBCE是菱形;(2)作N关于BE的对称点N',过D作DH⊥BC于H,由菱形的对称性知,点N关于BE的对称点N'在DE上,可得PM+PN=PM+PN',即知MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,可得DH=DB•sin∠DBC=,即可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DE=AD,∴DE=BC,∵E在AD的延长线上,∴DE∥BC,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,∴DH=DB•sin∠DBC=2×=,∴PM+PN的最小值为.【点评】本题考查平行四边形性质及应用,涉及菱形的判定,等边三角形性质及应用,对称变换等,解题的关键是掌握解决“将军饮马”模型的方法.3.(2014•海南)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x 轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=,∴S四边形MEFP∴P(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.【点评】本题是二次函数综合题,第(1)问考查了待定系数法;第(2)问考查了图形面积计算以及二次函数的最值;第(3)问主要考查了轴对称﹣最短路线的性质.试题计算量偏大,注意认真计算.4.(2021•靖江市校级一模)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,若AE=2,则求EF的长.(请从“线段的长度或线段的位置关系”的方向设计条件及问题,并解答)【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解答】若AE=2.则求EF的长.解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,EF经过菱形对角线交点,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得:EF===2.【点评】本题考查了菱形的性质,勾股定理,矩形的性质,解决本题的关键是掌握菱形的性质.5.(2012•新密市自主招生)如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,且AE+CF=4,则△DEF面积的最大值为.【分析】首先过点F作FG⊥AD,交AD的延长线于点G,由菱形ABCD的边长为4,∠BAD=60°,即=DE•FG)=﹣(x﹣2)2+,可求得AD=CD=4,∠FDG=60°,然后设AE=x,即可得S△DEF然后根据二次函数的性质,即可求得答案.【解答】解:过点F作FG⊥AD,交AD的延长线于点G,∵菱形ABCD边长为4,∠BAD=60°,∴AD=CD=4,∠ADC=180°﹣∠BAD=120°,∴∠FDG=180°﹣∠ADB=60°,设AE=x,∵AE+CF=4,∴CF=4﹣x;∴DE=AD﹣AE=4﹣x,DF=CD﹣CF=4﹣(4﹣x)=x,在Rt△DFG中,FG=DF•sin∠GDF=x,=DE•FG=×(4﹣x)×x=﹣x2+x=﹣(x2﹣4x)=﹣(x﹣2)2+,∴S△DEF∴当x=2时,△DEF面积的最大,最大值为.故答案为:.【点评】此题考查了菱形的性质、三角函数的性质以及二次函数的最值问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与函数思想的应用.6.(2022•杭州模拟)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,BB′与CE的数量关系是BB'=CE.(2)当0°<α<360°且a≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点E,C,D,B′为顶点的四边形是平行四边形时,请直接写出BE与B′E的数量关系.。
中考数学专题-几何综合压轴问题(解答题)-(解析版)

几何综合压轴问题一、解答题1.(湖南省郴州市2021年中考数学试卷)如图1,在等腰直角三角形ABC 中,90BAC ∠=︒.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90︒得到AG ,连接GC ,HB .(1)证明:AHB AGC ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .①证明:在点H 的运动过程中,总有90HFG ∠=︒;①若4AB AC ==,当EH 的长度为多少时,AQG 为等腰三角形?【答案】(1)见详解;(2)①见详解;①当EH 的长度为2AQG 为等腰三角形【分析】(1)由旋转的性质得AH =AG ,①HAG =90°,从而得①BAH =①CAG ,进而即可得到结论;(2)①由AHB AGC ≌,得AH =AG ,再证明AEH AFG ≌,进而即可得到结论;①AQG 为等腰三角形,分3种情况:(a )当①QAG =①QGA =45°时,(b )当①GAQ =①GQA =67.5°时,(c )当①AQG =①AGQ =45°时,分别画出图形求解,即可.【详解】解:(1)①线段AH 绕点A 逆时针方向旋转90︒得到AG ,①AH =AG ,①HAG =90°,①在等腰直角三角形ABC 中,90BAC ∠=︒,AB =AC ,①①BAH =90°-①CAH =①CAG ,①AHB AGC ≌;(2)①①在等腰直角三角形ABC 中,AB =AC ,点E ,F 分别为AB ,AC 的中点,①AE =AF ,AEF 是等腰直角三角形,①AH =AG ,①BAH =①CAG ,①AEH AFG ≌,①①AEH =①AFG =45°,①①HFG =①AFG +①AFE =45°+45°=90°,即:90HFG ∠=︒;①①4AB AC ==,点E ,F 分别为AB ,AC 的中点,①AE =AF =2,①①AGH =45°,AQG 为等腰三角形,分3种情况:(a )当①QAG =①QGA =45°时,如图,则①HAF =90°-45°=45°,①AH 平分①EAF ,①点H 是EF 的中点,①EH 12==(b )当①GAQ =①GQA =(180°-45°)÷2=67.5°时,如图,则①EAH =①GAQ =67.5°,①①EHA =180°-45°-67.5°=67.5°,①①EHA =①EAH ,①EH =EA =2;(c )当①AQG =①AGQ =45°时,点H 与点F 重合,不符合题意,舍去,综上所述:当EH 的长度为2AQG 为等腰三角形.【点睛】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.2.(2021·湖北中考真题)问题提出 如图(1),在ABC 和DEC 中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC 内部,直线AD 与BE 交于点F ,线段AF ,BF ,CF 之间存在怎样的数量关系?问题探究 (1)先将问题特殊化.如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形.如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立.问题拓展 如图(3),在ABC 和DEC 中,90ACB DCE ∠=∠=︒,BC kAC =,EC kDC =(k 是常数),点E 在ABC 内部,直线AD 与BE 交于点F ,直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.【答案】(1)BF AF -=.(2)见解析;问题拓展:BF k AF -⋅=. 【分析】(1)先证明①BCE ①①ACD ,得到AF =BE ,BF -BE =BF -AF =EF ;(2)过点C 作CG CF ⊥交BE 于点G ,证明ACD BCE ≅△△,ACF BCG ≅△△,CGF △是等腰直角三角形即可;利用前面的方法变全等为相似证明即可.【详解】问题探究 (1)BF AF -=.理由如下:如图(2),①①BCA =①ECF =90°,①①BCE =①ACF ,①BC =AC ,EC =CF ,①BCE ①①ACF ,①BE =AF ,①BF -BE =BF -AF =EF ;(2)证明:过点C 作CG CF ⊥交BE 于点G ,则90FCG ACB ∠=∠=︒,①90ACB DCE ∠=∠=︒,①BCE ACD ∠=∠.又①AC BC =,DC EC =,①ACD BCE ≅△△,①CAF CBG ∠=∠.①ACF BCG ≅△△.①AF BG =,CF CG =,①CGF △是等腰直角三角形.①GF =.①BF AF BF BG GF -=-==.问题拓展 BF k AF -⋅.理由如下:①①BCA =①ECD =90°,①①BCE =①ACD ,①BC =kAC ,EC =kCD ,①①BCE ①①ACD ,①①EBC =①F AC ,过点C 作CM CF ⊥交BE 于点M ,则90FCM ACB ∠=∠=︒,①①BCM ①①ACF ,①BM :AF =BC :AC =MC :CF =k ,①BM =kAF ,MC =kCF ,①BF -BM =MF ,MF①BF - kAF .【点睛】本题考查了等腰直角三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,勾股定理,熟练掌握三角形全等的判定,三角形相似的判定,勾股定理是解题的关键.3.(2021·浙江中考真题)(证明体验)(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠.(思考探究)(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长.(拓展延伸)(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5,2BC CD AD AE ===,求AC 的长.【答案】(1)见解析;(2)92;(3)163 【分析】(1)根据SAS 证明EAD CAD ≌△△,进而即可得到结论;(2)先证明EBD GCD ∽,得BD DE CD DG=,进而即可求解;(3)在AB 上取一点F ,使得AF AD =,连结CF ,可得AFC ADC ≌,从而得DCE BCF ∽,可得,CD CE CED BFC BC CF=∠=∠,4CE =,最后证明EAD DAC ∽,即可求解. 【详解】解:(1)①AD 平分BAC ∠,①EAD CAD ∠=∠,①,==AE AC AD AD ,①()EAD CAD SAS ≌,①60ADE ADC ∠=∠=︒,①18060EDB ADE ADC ∠=︒-∠-∠=︒,①BDE ADE =∠∠,即DE 平分ADB ∠;(2)①FB FC =,①EBD GCD ∠=∠,①60BDE GDC ∠=∠=︒,①EBD GCD ∽, ①BD DE CD DG=. ①EAD CAD ≌△△,①3DE DC ==.①2DG =, ①92BD =; (3)如图,在AB 上取一点F ,使得AF AD =,连结CF .①AC 平分BAD ∠,①FAC DAC ∠=∠①AC AC =,①()AFC ADC SAS ≌,①,,CF CD ACF ACD AFC ADC =∠=∠∠=∠.①2ACF BCF ACB ACD ∠+∠=∠=∠,①DCE BCF ∠=∠.①EDC FBC ∠=∠,①DCE BCF ∽, ①,CD CE CED BFC BC CF=∠=∠.①5,BC CF CD ===,①4CE =.①180180AED CED BFC AFC ADC ∠=︒-∠=︒-∠=∠=∠,又①EAD DAC ∠=∠,①EAD DAC ∽ ①12EA AD AD AC ==, ①4AC AE =, ①41633AC CE ==. 【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,添加辅助线,构造全等三角形和相似三角形,是解题的关键.4.(2021·浙江中考真题)如图1,四边形ABCD 内接于O ,BD 为直径,AD 上存在点E ,满足AE CD =,连结BE 并延长交CD 的延长线于点F ,BE 与AD 交于点G .(1)若DBC α∠=,请用含α的代数式表列AGB ∠.(2)如图2,连结,CE CE BG =.求证;EF DG =.(3)如图3,在(2)的条件下,连结CG ,2AD =.①若tan ADB ∠=FGD 的周长. ①求CG 的最小值.【答案】(1)90AGB α∠=︒-;(2)见解析;(3)【分析】(1)利用圆周角定理求得90BAD ∠=︒,再根据AE CD =,求得ABG DBC α∠=∠=,即可得到答案; (2)由90BEC BDC α∠=∠=︒-,得到BEC AGB ∠=∠,从而推出CEF BGD ∠=∠,证得()CFE BDG ASA ≌,由此得到结论;(3)①连结DE .利用已知求出2AB AD ==,证得DA CE =,得到2BG AD ==,利用Rt ABG 中,根据正弦求出160,12AGB AG BG ∠=︒==,求出EF 的长,再利用Rt DEG △中,60EGD ∠=︒,求出EG 及DE ,再利用勾股定理求出DF 即可得到答案;①过点C 作CH BF ⊥于H ,证明()BAD CHF AAS ≌,得到FH AD =,证明BHC CHF ∽,得到BH CH CH FH=,设GH x =,得到()222CH x =-,利用勾股定理得到222CG GH CH =+ ,求得2222(2)(1)3CG x x x =+-=-+,利用函数的最值解答即可.【详解】解:(1)①BD 为O 的直径,①90BAD ∠=︒,①AE CD =, ①ABG DBC α∠=∠=,①90AGB α∠=︒-.(2)①BD 为O 的直径,①90BCD ∠=︒,①90BEC BDC α∠=∠=︒-,①BEC AGB ∠=∠,①180,180CEF BEC BGD AGB ∠=︒-∠∠=︒-∠, ①CEF BGD ∠=∠.又①,CE BG ECF GBD =∠=∠,①()CFE BDG ASA ≌,①EF DG =.(3)①如图,连结DE .①BD 为O 的直径,①90A BED ∠=∠=︒.在Rt ABD △中,tan ADB ∠=,2AD =,①AB AD ==.①AE CD =,①AE DE CD DE +=+,即DA CE =,①AD CE =.①CE BG =,①2BG AD ==.①在Rt ABG 中,sin 2AB AGB BG ∠==, ①160,12AGB AG BG ∠=︒==, ①1EF DG AD AG ==-=.①在Rt DEG △中,60EGD ∠=︒,①11,2222EG DG DE DG ====.在Rt FED 中,DF ==,①52FG DG DF +++=,①FGD . ①如图,过点C 作CH BF ⊥于H .①BDG CFE ≌,①,BD CF CFH BDA =∠=∠.①90BAD CHF ∠=∠=︒,①()BAD CHF AAS ≌.①FH AD =,①AD BG =,①FH BG =.①90BCF ∠=︒,①90BCH HCF ∠+∠=︒.①90BCH HBC ∠+∠=︒,①HCF HBC ∠=∠,①90BHC CHF ∠=∠=︒,①BHC CHF ∽, ①BH CH CH FH=. 设GH x =,①2BH x =-,①()222CH x =-. 在Rt GHC 中,222CG GH CH =+ ,①2222(2)(1)3CG x x x =+-=-+,当1x =时,2CG 的最小值为3,①CG【点睛】此题考查圆周角的定理,弧、弦和圆心角定理,全等三角形的判定及性质,勾股定理,三角函数,相似三角形的判定,函数的最值问题,是一道综合的几何题型,综合掌握各知识点是解题的关键.5.(2021·浙江中考真题)在扇形AOB 中,半径6OA =,点P 在OA 上,连结PB ,将OBP 沿PB 折叠得到O BP '.(1)如图1,若75O ∠=︒,且BO '与AB 所在的圆相切于点B .①求APO ∠'的度数.①求AP 的长.(2)如图2,BO '与AB 相交于点D ,若点D 为AB 的中点,且//PD OB ,求AB 的长.【答案】(1)①60°;①6-(2)125π 【分析】(1)根据图像折叠的性质,确定角之间的关系,通过已知的角度来间接求所求角的角度;求AP 的长,先连接'OO ,先在Rt OBQ △中,求出OQ ;再在Rt OPQ 中,求出OP 即可得到答案;(2)要求AB 的长,扇形的半径已知,就转化成求AOB ∠的度数,连接'OO ,通过条件找到角之间的等量关系,再根据三角形内角和为180︒,建立等式求出AOB ∠,最后利用弧长的计算公式进行计算.【详解】解:(1)①如图1,'BO 为圆的切线'90OBO ∴∠=︒.由题意可得,'45O BP OBP ∠=∠=︒,'O PB OPB ∠=∠.180180754560OPB BOP OBP ∴∠=︒-∠-∠=︒-︒-︒=︒'60O PB OPB ∴∠=∠=︒'60APO ∴∠=︒,①如图1,连结'OO ,交BP 于点Q .则有'BP OO ⊥.在Rt OBQ △中,sin 45OQ OB =⨯︒=在Rt OPQ △中,sin 60OQ OP ==︒6AP OA OP ∴=-=-(2)如图2.连结OD .设1a ∠=.①点D 为AB 的中点.BD AD ∴=21a ∴∠=∠=//PD OB321a ∴∠=∠=∠=.PD PO ∴=由题意可得,','PO PO O BOP =∠=∠.'PD PO ∴=''2PDO O BOP a ∴∠=∠=∠=又//,''2PD OB OBO PDO a ∴∠=∠=,4'2OB OD OBO a =∴∠=∠=43'180PDO ∠+∠+∠=︒,22180a a a ∴++=︒,解得36a =︒.72AOB ∴∠=︒726121801805n R AB πππ⨯∴===. 【点睛】本题考查了求线段的长度和弧长的长度问题,解题的关键是:根据题目中的条件,找到边角之间的等量关系,通过等量代换的思想间接求出所需要求的量.6.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =. (3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)(2)见解析;(3)存在,m 【分析】(1)先解直角三角形ABC 得出2AB AC =,从而得出ADC 是等边三角形,再解直角三角形ACP 即可求出AC 的长,进而得出BC 的长;(2)连结BE ,先利用AAS 证出≌CPA DPE ,得出AE =2PE ,AC =DE ,再得出ADC 是等边三角形,然后由SAS 得出≌CAB EBA ,得出AE =BC 即可得出结论;(3)过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ①AB 于G ,过E 作EN ①AB 于N ,由(2)得AE =2AP ,DE =AC ,再证明≌AEN BCG ,从而得出≌CAB EBA 得出DE =BE ,然后利用勾股定理即可得出m 的值.【详解】(1)解 90,60ACB CAD ∠=∠=︒︒,2cos60AC AB AC ︒==, BD AC =,AD AC =∴,ADC ∴是等边三角形,60ACD ∴∠=︒ Р是CD 的中点,AP CD ∴⊥,在Rt APC 中,AP =2sin 60AP AC ∴==︒,tan 60BC AC =︒=∴(2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠,()CPA DPE AAS ∴≌,1,2AP EP AE DE AC ∴===, BD AC =,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,BDE ∴是等边三角形,,60BD BE EBD ∴=∠=︒BD AC =,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒=,()CAB EBA SAS ∴≌,AE BC ∴=,2BC AP ∴=.(3)存在这样的,m m =.过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ①AB 于G ,过E 作EN ①AB 于N ,则45∠=∠=︒BDE CAD ,sin 45∴=⨯CG AC ,sin 45=⨯EN DE由(2)得AE =2AP ,DE =AC ,①CG =EN ,①2BC AP =,①AE =BC ,①①ANE =①BGC =90°,≌∴AEN BCG ,①①EAN =①CBG①AE =BC ,AB =BA ,①≌CAB EBA①AC =BE ,①DE =BE ,①①EDB =①EBD =45°,①①DEB =90°,①=BD ,①BD mAC = ①m【点睛】本题属于三角形综合题,考查了解直角三角形,全等三角形的性质与判定,等边三角形和等腰三角形的性质、勾股定理,解题的关键是合理添加辅助线,有一定的难度.7.(2021·安徽中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC的值.【答案】(1)见解析;(2)6;(3)1【分析】(1)根据平行线的性质及已知条件易证ABE AEB ∠=∠,DCE DEC ∠=∠,即可得AB AE =,DE DC =;再证四边形AFCD 是平行四边形即可得AF CD =,所以AF DE =,根据SAS 即可证得ABF EAD △≌△;(2)证明EBF EAB ∽△△,利用相似三角形的性质即可求解;(3)延长BM 、ED 交于点G .易证ABE DCE ∽,可得AB AE BE DC DE CE==;设1CE =,BE x =,DC DE a ==,由此可得AB AE ax ==,AF CD a ==;再证明MAB MDG △≌△,根据全等三角形的性质可得DG AB ax ==.证明FAB FEG △∽△,根据相似三角形的性质可得FA AB FE EG =,即(1)(1)a ax a x a x =-+,解方程求得x 的值,继而求得BE EC的值. 【详解】(1)证明://AE CD ,AEB DCE ∴∠=∠;//DE AB ,ABE DEC ∴∠=∠,12∠=∠,ABC BCD ∠=∠,ABE AEB ∴∠=∠,DCE DEC ∠=∠,AB AE =∴,DE DC =,//AF CD ,//AD CF ,∴四边形AFCD 是平行四边形AF CD ∴=AF DE ∴=在ABF 与EAD 中.12AB EAAF ED=⎧⎪∠=∠⎨⎪=⎩,()ABF EAD SAS ∴△≌△(2)ABF EAD △≌△,BF AD ∴=,在AFCD □中,AD CF =,BF CF ∴=,FBC FCB ∴∠=∠,又2FCB ∠=∠,21∠=∠,1FBC ∴∠=∠,在EBF △与EAB 中.1EBF BEF AEB∠=∠⎧⎨∠=∠⎩,EBF EAB ∴△∽△;EBEFEA EB ∴=;9AB =,9AE ∴=;5CD =,5AF ∴=;4EF ∴=,49EB EB∴=, 6BE ∴=或6-(舍); (3)延长BM 、ED 交于点G .ABE 与DCE 均为等腰三角形,ABC DCE ∠=∠, ABE DCE ∴△∽△,AB AE BE DC DE CE∴==, 设1CE =,BE x =,DC DE a ==, 则AB AE ax ==,AF CD a ==, (1)EF a x ∴=-,//AB DG ,3G ∴∠=∠;在MAB △与MDG 中,345G MA MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()MAB MDG AAS ∴△≌△;DG AB ax ∴==.(1)EG a x ∴=+;//AB EG ,FAB FEG ∴△∽△,FA AB FE EG ∴=, (1)(1)a ax a x a x ∴=-+, (1)1x x x -∴=+,2210x x ∴--=,2(1)2x ∴-=,1x ∴=11x ∴=,21x =1BE EC∴= 【点睛】本题是三角形综合题,考查了全等三角形的性质及判定、相似三角形的性质及判定,熟练判定三角形全等及相似是解决问题的关键.8.(2021·四川中考真题)在等腰ABC 中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .①在图2中补全图形;①探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE ==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.【答案】(1)30°;(2)①见解析;①CD BE =;见解析;(3)()AC k BD BE =+,见解析【分析】(1)先根据题意得出①ABC 是等边三角形,再利用三角形的外角计算即可(2)①按要求补全图即可①先根据已知条件证明①ABC 是等边三角形,再证明AEB ADC △≌△,即可得出CD BE =(3)先证明AC BC AD DE=,再证明ACB ADE △∽△,得出BAC EAD ∠=∠,从而证明AEB ADC △≌△,得出BD BE BC +=,从而证明()AC k BD BE =+【详解】解:(1)①AB AC =,60C ∠=°①①ABC 是等边三角形①①B =60°①点D 关于直线AB 的对称点为点E①AB ①DE ,①BDE ∠=30故答案为:30;(2)①补全图如图2所示;①CD 与BE 的数量关系为:CD BE =;证明:①AB AC =,60BAC ∠=︒.①ABC 为正三角形,又①AD 绕点A 顺时针旋转60︒,①AD AE =,60EAD ∠=︒,①60BAD DAC ∠+∠=︒,60BAD BAE ∠+∠=︒,①BAE DAC ∠=∠,①AEB ADC △≌△,①CD BE =.(3)连接AE .①AB AD k BC DE ==,AB AC =,①AC AD BC DE=. ①AC BC AD DE =. 又①ADE C ∠=∠,①ACB ADE △∽△,①BAC EAD ∠=∠.①AB AC =,①AE AD =,①BAD DAC BAD BAE ∠+∠=∠+∠,①DAC BAE ∠=∠,①AEB ADC △≌△,CD BE =.①BD DC BC +=,①BD BE BC +=.又①AC k BC=, ①()AC k BD BE =+.【点睛】本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点9.(2021·山东中考真题)如图1,O 为半圆的圆心,C 、D 为半圆上的两点,且BD CD =.连接AC 并延长,与BD 的延长线相交于点E .(1)求证:CD ED =;(2)AD 与OC ,BC 分别交于点F ,H .①若CF CH =,如图2,求证:CF AF FO AH ⋅=⋅;①若圆的半径为2,1BD =,如图3,求AC 的值.【答案】(1)见解析;(2)①见解析;①72AC =【分析】(1)连接BC ,根据90ACB BCE ∠=∠=︒,90ECD BCD ∠+∠=︒且BD CD =,则E ECD ∠=∠,即可推导出CD ED =;(2)①CF CH =,则AFO CHF ∠=∠,又BD CD =,CAD BAD ∠=∠,则AFO AHC △∽△,进而推导出CF AF FO AH ⋅=⋅;①连接OD 交BC 于G ,设OG x =,则2DG x =-,根据在Rt OGB △和Rt BGD △中列式222221(2)x x -=--,进而求得x 的值,再根据中位线定理求出AC 的长.【详解】证明:(1)连接BC ,①AB 为直径①90ACB BCE ∠=∠=︒ 90ECD BCD ∠+∠=︒①BD CD =①EBC BCD ∠=∠①E ECD ∠=∠①CD ED =.(2)①①CF CH =①CFH CHF ∠=∠又①AFO CFH ∠=∠①AFO CHF ∠=∠又①BD CD =①CAD BAD ∠=∠①AFO AHC △∽△ ①AF OF AH CH= ①AF OF AH CF = ①CF AF OF AH ⋅=⋅①连接OD 交BC 于G .设OG x =,则2DG x =-①CD BD =①COD BOD ∠=∠又①OC OB =①OD BC ,CG BG =在Rt OGB △和Rt BGD △中222221(2)x x -=-- ①74x =即74OG = ①OA OB =①OG 是ABC 的中位线 ①12OG AC =①72AC =.【点睛】本题考查了等弧对等角、相似三角形、等腰三角形、中位线等有关知识点,属于综合题型,借助辅助线是解决这类问题的关键.10.(2021·江苏中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC 是边长为3的等边三角形,E 是边AC 上的一个动点,小亮以BE 为边作等边三角形BEF ,如图2,在点E 从点C 到点A 的运动过程中,求点F 所经过的路径长;(3)ABC 是边长为3的等边三角形,M 是高CD 上的一个动点,小亮以BM 为边作等边三角形BMN ,如图3,在点M 从点C 到点D 的运动过程中,求点N 所经过的路径长;(4)正方形ABCD 的边长为3,E 是边CB 上的一个动点,在点E 从点C 到点B 的运动过程中,小亮以B 为顶点作正方形BFGH ,其中点F 、G 都在直线AE 上,如图4,当点E 到达点B 时,点F 、G 、H 与点B 重合.则点H 所经过的路径长为______,点G 所经过的路径长为______.【答案】(1)1;(2)3;(3(4)34π;4 【分析】(1)由ABC ∆、BEF ∆是等边三角形,BA BC =,BE BF =, ABE CBF ∠=∠,可证ABE CBF ∆∆≌即可;(2)连接CF ,ABC ∆、BEF ∆是等边三角形,可证ABE CBF ∆∆≌,可得BCF ABC ∠=∠,又点E 在C 处时,CF AC =,点E 在A 处时,点F 与C 重合.可得点F 运动的路径的长3==AC ; (3)取BC 中点H ,连接HN ,由ABC ∆、BMN ∆是等边三角形,可证≌∆∆DBM HBN ,可得NH BC ⊥.又点M 在C 处时,==HN CD M 在D 处时,点N 与H 重合.可求点N 所经过的路径的长==CD (4)连接CG ,AC ,OB ,由①CGA =90°,点G 在以AC 中点为圆心,AC 为直径的BC 上运动,由四边形ABCD 为正方形,BC 为边长,设OC =x ,由勾股定理222CO BO BC +=即,可求x =G 所经过的路径长为BC 长=4,点H 所经过的路径长为BN 的长34π=. 【详解】 解:(1)①ABC ∆、BEF ∆是等边三角形,①BA BC =,BE BF =,60∠=∠=︒ABC EBF .①∠+∠=∠+∠ABE CBE CBF CBE ,①ABE CBF ∠=∠,①ABE CBF ∆∆≌,①1CF AE ==;(2)连接CF ,①ABC ∆、BEF ∆是等边三角形,①BA BC =,BE BF =,60∠=∠=︒ABC EBF .①∠+∠=∠+∠ABE CBE CBF CBE ,①ABE CBF ∠=∠,①ABE CBF ∆∆≌,①CF AE =,60∠=∠=︒BCF BAE ,①60ABC ∠=︒,①BCF ABC ∠=∠,①//CF AB ,又点E 在C 处时,CF AC =,点E 在A 处时,点F 与C 重合.①点F 运动的路径的长3==AC ;(3)取BC 中点H ,连接HN , ①12BH BC =, ①12=BH AB , ①CD AB ⊥, ①12BD AB =,①BH BD =,①ABC ∆、BMN ∆是等边三角形,①BM BN =,60∠=∠=︒ABC MBN ,①∠+∠=∠+∠DBM MBH HBN MBH ,①∠=∠DBM HBN ,①≌∆∆DBM HBN ,①=HN DM ,90∠=∠=︒BHN BDM ,①NH BC ⊥,又点M 在C 处时,2==HN CD ,点M 在D 处时,点N 与H 重合,①点N 所经过的路径的长==CD (4)连接CG ,AC ,OB ,①①CGA =90°, ①点G 在以AC 中点为圆心,AC 为直径的BC 上运动,①四边形ABCD 为正方形,BC 为边长,①①COB =90°,设OC =x ,由勾股定理222CO BO BC +=即2223x x +=,①x =点G 所经过的路径长为BC 长=124π⨯=⎝⎭, 点H 在以BC 中点为圆心,BC 长为直径的弧BN 上运动,点H 所经过的路径长为BN 的长度,①点G 运动圆周的四分之一,①点H 也运动圆周的四分一,点H 所经过的路径长为BN 的长=1332424ππ⨯⨯=,故答案为34π.【点睛本题考查等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式,掌握等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式是解题关键.11.(2021·吉林中考真题)实践与探究操作一:如图①,已知正方形纸片ABCD ,将正方形纸片沿过点A 的直线折叠,使点B 落在正方形ABCD 的内部,点B 的对应点为点M ,折痕为AE ,再将纸片沿过点A 的直线折叠,使AD 与AM 重合,折痕为AF ,则EAF ∠= 度.操作二:如图①,将正方形纸片沿EF 继续折叠,点C 的对应点为点N .我们发现,当点E 的位置不同时,点N 的位置也不同.当点E 在BC 边的某一位置时,点N 恰好落在折痕AE 上,则∠=AEF 度. 在图①中,运用以上操作所得结论,解答下列问题:(1)设AM 与NF 的交点为点P .求证ANP FNE △≌△:.(2)若AB =AP 的长为 .【答案】操作一:45°,操作二:60°;(1)证明见解析;(2)2【分析】操作一:直接利用折叠的性质,得出两组全等三角形,从而得出BAE EAM ∠=∠,,MAF FAD ,从而得出①EAF 的值;操作二:根据折叠的性质得出,ABEAME CEF NEF ,从而得出BEA AEF FEC ,即可求得AEF ∠的度数;(1)首先利用60AEF ∠=︒ ,得出30,15NAP PAF ,则45NAF ∠=︒,从而得出①ANF 为等腰直角三角形,即可证得ANP FNE △≌△;(2)利用三角函数或者勾股定理求出BE 的长,则BE EM =,设DF =x ,那么FC x ,在Rt ①EFC 中,利用勾股定理得出DF 的长,也就是MF 的长,即可求得EF 的长,进而可得结果.【详解】操作一:45°,证明如下:①ABE △折叠得到AME △ ,ADF 折叠得到AMF ,①,ABEAME ADF AMF , ①11,22BAEMAE BAM MAF DAF MAD , ①111()222EAF EAM MAF BAM MAD BAM MAD190452=⨯︒=︒, 故填:45°;操作二:60°,证明如下:①ABE AME , ①BEA AEM ,又①CEF △沿着EF 折叠得到ENF △ ,①CEF NEF , ①NEF FEC , ①1603BEAAEF FEC BEC , 故填:60°;(1)证明:由上述证明得CEF NEF ,60NEC CEF , ①NFE CFE ,CENF ①四边形ABCD 为正方形,①①C =①D =90°,①30CFE NFE ,90ENF ANF , 又①ADFAMF , ①90D AMF ,在ANP 和PMF △中,①90,ANPPMF NPA MPF , ①30NAPMFP , ①30BAENAP , ①15MAFFAD , ①301545NAF NAP PAF ,①ANF 为等腰直角三角形,即AN =NF ,在ANP 和FNE 中:①NAP NFE AN NF ANP ENF ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ANP FNE ASA △≌△(2)由题可知ABE △是直角三角形,30BAE ∠=︒, ①3tan 33BE BE BAEAB , 解得BE =1,①BE =EM =1,31EC ,设DF =x,则MF =x ,CF x ,在Rt ①CEF 中,222CECF EF +=2221)(3)(1)x x,解得x =3, 则1232x EF ,①()ANP FNE ASA △≌△①AP =EF =2.【点睛】本题考查正方形的性质,折叠的性质,全等三角形的判定,勾股定理,解题的关键是熟练运用折叠的性质,找出全等三角形.12.(2021·湖南中考真题)如图,在ABC 中,AB AC =,N 是BC 边上的一点,D 为AN 的中点,过点A 作BC 的平行线交CD 的延长线于T ,且AT BN =,连接BT .(1)求证:BN CN =;(2)在如图中AN 上取一点O ,使AO OC =,作N 关于边AC 的对称点M ,连接MT 、MO 、OC 、OT 、CM 得如图.①求证:TOM AOC ∽;①设TM 与AC 相交于点P ,求证:1//,2PD CM PD CM =. 【答案】(1)见解析;(2)①见解析,①见解析.【分析】(1)先用//AT BN ,且AT BN =证明出四边形ATBN 是平行四边形,得到①TAD ①①CND ,用对应边相等与等量代换,从而得出结论.(2)①连接AM 、MN ,利用矩形的性质与等腰三角形的性质,证明出①OCM 是直角三角形,证明出Rt ①OAT ①Rt ①OCM ,得到对应角相等,则得到答案;①连接OP ,由①中TOM AOC ∽,得到①OTM =①OAP ,点O 、T 、A 、P 共圆,由直径所对的圆周角为直角,证明出①OPT =90①,再根据等腰三角形的三线合一性得出结论.【详解】证明:(1)①//AT BC ,且AT BN =①//AT BN ,且AT BN =,①四边形ATBN 是平行四边形,①//AN TB ,①①DTA =①DCN ,①①ADT =①NDC ,①点D 为AN 的中点,①AD =ND ,①①TAD ①①CND (AAS )①TA=CN,①AT BN,①BN=CN,(2)①如图所示,连接AM、MN,①点N关于边AC的对称点为M,①①ANC①①AMC,①①ACN=①ACM,①AB=AC,点N为AC的中点,①平行四边形ATBN是矩形,①①TAB=①ABN=①ACN=①ACM,①BAN=①MAC=①CAN,AT=BN=NC=MC,①OA=OC,①①CAN=①ACO,①①TAB+①BAN=①ACM+①ACO=90①,①①OAT=①OCM=90①,在Rt①OAT和Rt①OCM中,①AT=CM,①OAT=①OCM ,OA=OC,①Rt①OAT①Rt①OCM(SAS),①①AOT=①COM,OT=OM,①①AOT+①AOM=①COM+①AOM,①①TOM=①AOC①OA=OC,OT=OM,①OT OM OA OC=,①TOM AOC∽;①如图所示,连接OP,①TOM AOC∽,①①OTM=①OAP,①点O、T、A、P共圆,①①OAT=90①,①OT为圆的直径,①①OPT=90①,①OT=OM,①点P为TM的中点,①由(1)得①TAD①①CND,①TD=CD,①点D为TC的中点,①DP为①TCM的中位线,①1//,2PD CM PD CM.【点睛】本题主要考查了矩形的判定与性质、等腰三角形的性质、三角形全等的判定与性质、以及相似三角形的判定与性质、圆中直径的性质,关键在于通过等量代换,换出角相等,证明出直角三角形全等,再证明三角形相似.13.(2021·浙江台州市·中考真题)如图,BD是半径为3的①O的一条弦,BD=,点A是①O上的一个动点(不与点B,D重合),以A,B,D为顶点作平行四边形ABCD.(1)如图2,若点A是劣弧BD的中点.①求证:平行四边形ABCD是菱形;①求平行四边形ABCD的面积.(2)若点A运动到优弧BD上,且平行四边形ABCD有一边与①O相切.①求AB的长;①直接写出平行四边形ABCD对角线所夹锐角的正切值.【答案】①证明见解析;①(2)①AB【分析】=,根据一组邻边相等的平行四边形是菱形可得证;①连接AO,(1)①利用等弧所对的弦相等可得AD AB交BD于点E,连接OD,根据垂径定理可得DE BE==OE的长,即可求解;(2)①分情况讨论当CD与O相切时、当BC与O相切时,利用垂径定理即可求解;①根据等面积法求出AH的长度,利用勾股定理求出DH的长度,根据正切的定义即可求解.【详解】解:(1)①①点A是劣弧BD的中点,①AD AB=,=,①AD AB①四边形ABCD是平行四边形,①平行四边形ABCD是菱形;①连接AO,交BD于点E,连接OD,,①点A 是劣弧BD 的中点,OA 为半径,①OA BD ⊥,OA 平分BD ,①DE BE ==①平行四边形ABCD 是菱形,①E 为两对角线的交点,在Rt ODE △中,1OE ==,①2AE =,①122ABCD S BD AE =⋅⨯=; (2)①如图,当CD 与O 相切时,连接DO 并延长,交AB 于点F ,①CD 与O 相切,①DF CD ⊥,①2AB BF =,①四边形ABCD 是平行四边形,①//AB CD ,①DF AB ⊥,在Rt BDF △中,()2222323BF BD DF OF =-=-+,在Rt BOF △中,22229BF BO OF OF =-=-,①()223239OF OF -+=-,解得73OF =,①BF =①2AB BF == 如图,当BC 与O 相切时,连接BO 并延长,交AD 于点G ,同理可得AG DG ==73OG =,所以AB ==综上所述,AB ①过点A 作AH BD ⊥,,由(2)得:7163,33BD AD BG ===+= 根据等面积法可得1122BD AH AD BG ⋅=⋅, 解得329AH =,在在Rt ADH 中,DH ==,①HI ==①tan AH AIH HI ∠== 【点睛】本题考查垂径定理、平行四边形的判定与性质、解直角三角形等内容,掌握分类讨论的思想是解题的关键. 14.(2021·青海中考真题)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作60,30,15︒︒︒等大小的角,可以采用如下方法:操作感知:第一步:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开(如图13-1). 第二步:再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN (如图13-2).猜想论证:(1)若延长MN 交BC 于点P ,如图13-3所示,试判定BMP 的形状,并证明你的结论.拓展探究:(2)在图13-3中,若AB a BC b ==,,当a b ,满足什么关系时,才能在矩形纸片ABCD 中剪出符(1)中的等边三角形BMP ?【答案】(1)BMP 是等边三角形,理由见解析;(2)a ≤,理由见解析 【分析】(1)连接AN ,由折叠性质可得ABN 是等边三角形, 30PBN ∠=︒,30ABM NBM ∠=∠=︒,然后可得到 60MBP BMP ∠=∠=︒,即可判定 BMP 是等边三角形.(2)由折叠可知BC BP ≥,由(1)可知BP BM =,利用 30︒的三角函数即可求得.【详解】(1)解:BMP 是等边三角形,证明如下:连接AN .由折叠可知:AB BN =,EF 垂直平分AB .①AN BN =,①AN AB BN ==,①ABN 为等边三角形,①60ABN ∠=︒,①30PBN ∠=︒,①30ABM NBM ∠=∠=︒,90BNM BAM ∠=∠=︒,①60BMP ∠=︒,①60MBP BMP BPM ∠=∠=∠=︒,①BMP 是等边三角形.(2)解:方法一:要在矩形纸片ABCD 上剪出等边BMP ,则BC BP ≥,在Rt BNP △中,BN BA a ==,30PBN ∠=︒,①cos30a BP ==︒, ①BC BP ≥,①b ≥,即a ≤,当a ≤或(b ≥)时,在矩形纸片上能剪出这样的等边BMP . 方法二:要在矩形纸片ABCD 上剪出等边BMP ,则BC BP ≥,在Rt BNP △中,30NBP ∠=︒,BN AB a ==,设NP x =,则2BP x =,①222BP NP BN -=,即()2222x x a -=,得3x a =,①BP =, ①BC BP ≥,①3b a ≥,即2a b ≤,当a ≤(或b ≥)时,在矩形纸片上能剪出这样的等边BMP . 【点睛】本题考查了折叠的性质,及锐角三角函数的应用,正确理解折叠性质灵活运用三角函数解直角三角形是解本题的关键.15.(2021·海南中考真题)如图1,在正方形ABCD 中,点E 是边BC 上一点,且点E 不与点B C 、重合,点F 是BA 的延长线上一点,且AF CE =.(1)求证:DCE DAF ≌;(2)如图2,连接EF ,交AD 于点K ,过点D 作DH EF ⊥,垂足为H ,延长DH 交BF 于点G ,连接,HB HC .①求证:HD HB =;①若DK HC ⋅=HE 的长.【答案】(1)见解析;(2)①见解析;①1HE =.【分析】(1)直接根据SAS 证明即可;(2)①根据(1)中结果及题意,证明DFE △为等腰直角三角形,根据直角三角形斜边上的中线即可证明HD HB =;①根据已知条件,先证明DCH BCH ≌,再证明DKF HEC ∽,然后根据等腰直角三角形的性质即可求出HE 的长.【详解】(1)证明:①四边形ABCD 是正方形,,90CD AD DCE DAF ∴=∠=∠=︒.又CE AF =,DCE DAF ∴≌.(2)①证明;由(1)得DCE DAF ≌,,DE DF CDE ADF ∴=∠=∠.90FDE ADF ADE CDE ADE ADC ∴∠=∠+∠=∠+∠=∠=︒.DFE ∴为等腰直角三角形.又DH EF ⊥,∴点H 为EF 的中点.12HD EF ∴=. 同理,由HB 是Rt EBF △斜边上的中线得,12HB EF =. HD HB ∴=.①①四边形ABCD 是正方形,CD CB ∴=.又,HD HB CH CH ==,DCH BCH ∴≌.45DCH BCH ∴∠=∠=︒.又DEF 为等腰直角三角形,45DFE ∴∠=︒.HCE DFK ∴∠=∠.四边形ABCD 是正方形,//AD BC ∴.DKF HEC ∴∠=∠.DKF HEC ∴∽.DK DF HE HC∴=. DK HC DF HE ∴⋅=⋅.又①在等腰直角三角形DFH 中,DF ==2DK HC DF HE ∴⋅=⋅==1HE ∴=.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、直角三角形斜边上的中线以及等腰直角三角形的性质,熟知图形的性质与判定是解决本题的关键.16.(2021·甘肃中考真题)问题解决:如图1,在矩形ABCD 中,点,E F 分别在,AB BC 边上,,DE AF DE AF =⊥于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,判断AHF △的形状,并说明理由.类比迁移:如图2,在菱形ABCD 中,点,E F 分别在,AB BC 边上,DE 与AF 相交于点G ,,60,6,2DE AF AED AE BF =∠=︒==,求DE 的长.【答案】问题解决:(1)见解析;(2)等腰三角形,理由见解析;类比迁移:8【分析】问题解决:(1)证明矩形ABCD 是正方形,则只需证明一组邻边相等即可.结合DE AF ⊥和90DAE ∠=︒可知BAF ADG ∠=∠,再利用矩形的边角性质即可证明ABF DAE ≌,即AB AD =,即可求解; (2)由(1)中结论可知AE BF =,再结合已知BH AE =,即可证明ABH DAE △≌△,从而求得AHF △是等腰三角形;类比迁移:由前面问题的结论想到延长CB 到点H ,使得6BH AE ==,结合菱形的性质,可以得到ABH DAE ∆∆≌,再结合已知60AED ∠=︒可得等边AHF ∆,最后利用线段BF 长度即可求解.【详解】解:问题解决:(1)证明:如图1,①四边形ABCD 是矩形,90ABC DAB ∴∠=∠=︒.90BAF GAD ∴∠+∠=︒.,90DE AF ADG GAD ⊥∴∠+∠=.BAF ADG ∴∠=∠.又,,AF DE ABF DAE AB AD =∴∴=≌.①矩形ABCD 是正方形.(2)AHF △是等腰三角形.理由如下:,90,AB AD ABH DAE BH AE =∠=∠=︒=,,ABH DAE AH DE ∴∴=≌.又,DE AF AH AF =∴=,即AHF △是等腰三角形.类比迁移:如图2,延长CB 到点H ,使得6BH AE ==,连接AH .①四边形ABCD 是菱形,,,AD BC AB AD ABH BAD ∴=∴∠=∠∥.,BH AE ABH DAE =∴∆≌.,60AH DE AHB DEA ∴=∠=∠=︒.又,DE AF AH AF =∴=.60,AHB AHF ∠=︒∴是等边三角形,AH HF ∴=,628DE AH HF HB BF ∴===+=+=.【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.17.(2021·四川中考真题)如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE ∽;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求PMN∠的度数及MN PM的值;(3)在(2)的条件下,若BC =PMN 面积的最大值.【答案】(1)证明见解析;(2)135PMN ∠=;MN PM (3)14 【分析】(1)根据两边对应成比例,夹角相等判定即可.(2)PMN ∠的值可以根据中位线性质,进行角转换,通过三角形内角和定理求解即可,MN PM 的比值转换为AF CE的比值即可求得. (3)过点P 作PQ 垂直于NM 的延长线于点Q ,12PMN S MN PQ =△,将相关线段关系转化为CE ,可得关系218PMN S CE =△,观察图象,当CE BC == 【详解】(1)证明:①90ACB ∠=︒,AC BC =。
(完整版)北京中考压轴几何综合分类解析

二、几何综合题几何综合题是中考试卷中常见的题型,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键.常见的几何综合有六类:其中包括几何的三大变换,平移、旋转、对称。
还有特殊角,例如30°,45°,60°,120°,150°等。
另外还有特殊点问题,例如线段中点。
四点共圆在模拟考试中也略有涉及。
当然还有一些比较特殊的,需要具体分析题意得出结论。
一、几何三大变换几何变换一般解题思路根据变换性质,变换前后对应线段,对应角相等阶梯。
平移类:做辅助线方向,对应点连线,中(石景山)27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.B旋转类:确定已知旋转线段,寻找与已知旋转线段相关的线段,进行旋转,构造全等三角形。
特殊角易(房山)27.已知:Rt△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.若∠BAD=α,求∠DBE的大小(用含α的式子表示) ;(2)如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.①依题意补全图2;②用等式表示线段EA,EB和EC之间的数量关系,并证明.B AA图1图2中(门头沟)27.如图,∠AOB = 90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P作射线PE交OA于点E.以点P为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全图1,并证明PE = PF;(2)如图1,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图2,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.PPEECCBBOOAA图 1 图2中(密云)27. 已知△ABC 为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60°得到线段CE .连结DE 、BE . (1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB 交EB 延长线于点F .用等式表示线段EB 、DB 与AF 之间的数量关系并证明.图2D CBA图1A B CD易(平谷)27.在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD 交AC 于P .(1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示); (2)求AB ,BC ,BD 之间的数量关系; (3)当α=30°时,直接写出AC ,BD 的关系.对称:根据垂直平分线的性质,连接辅助线,构造全等三角形(通州)27.如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.对称(大兴)27.在Rt△ABC中,∠ACB=90°,CA =CB.点D为线段BC上一个动点(点D不与点B,C重合),连接AD,点E在射线AB上,连接DE,使得DE=DA.作点E 关于直线BC(1)依题意补全图形;(2)求证:∠CAD =∠BDF ;(3)用等式表示线段AB ,BD ,BF 之间的数量关系,并证明.二、特殊角类:根据特殊角,以不破坏特殊角为原则,构造直角三角形。
2019年全国各地中考数学压轴题分类汇编:几何综合(浙江专版)(解析卷)

2019年全国各地中考数学压轴题分类汇编(浙江专版)几何综合参考答案与试题解析1.(2019?杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.2.(2019?杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OBsin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.3.(2019?宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.4.(2019?宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC 于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.5.(2019?宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG=,∴在Rt△ABG中,AG=BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE=BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH=,BH=,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+BE=(2x+)BE,∴在Rt△AHE中,tan∠EAD=,∴y=;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM=EC=a+ax,∴BM=EM﹣BE=ax﹣a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG=,∴BF=,∴△OFB的面积=,∴△AEC的面积=,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,6.(2019?温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E 三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.7.(2019?嘉兴)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.8.(2019?嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC 内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得PN=.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴=,同理可得:=,∴=,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM==,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴==,==,∴=,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.9.(2019?湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,由直线l2:y=3x﹣3得:点C(1,0),则CM=ACsin45°=4×=2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,解得:m=3﹣;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点P的坐标为(3﹣,6﹣3)或(3+,6+3).10.(2019?湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x 轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B 三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.解:(1)∵OA=3,tan∠OAC==,∴OC=,∵四边形OABC是矩形,∴BC=OA=3,∵D是BC的中点,∴CD=BC=,∴D(,);(2)①∵tan∠OAC=,∴∠OAC=30°,∴∠ACB=∠OAC=30°,设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处,则DB'=DB=DC,∠BDF=∠B'DF,∴∠DB'C=∠ACB=30°∴∠BDB'=60°,∴∠BDF=∠B'DF=30°,∵∠B=90°,∴BF=BD?tan30°=,∵AB=,∴AF=BF=,∵∠BFD=∠AEF,∴∠B=∠F AE=90°,∴△BFD≌△AFE(ASA),∴AE=BD=,∴OE=OA+AE=,∴点E的坐标(,0);②动点P在点O时,∵抛物线过点P(0,0)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x,∴E(,0),∴直线DE:y=﹣x+,∴F1(3,);当动点P从点O运动到点M时,∵抛物线过点P(0,)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x+,∴E(6,0),∴直线DE:y=﹣x+,∴F2(3,);∴点F运动路径的长为F1F2==,∵△DFG为等边三角形,∴G运动路径的长为.11.(2019?绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.12.(2019?绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB?BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE?AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.13.(2019?绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.14.(2019?绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE=m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b的值为或.15.(2019?金华)如图,在?OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.16.(2019?金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC=BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DDBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG=BF=.②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.∵AD=6BD,∴BD=AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12﹣x,∵FH∥AC,∴=,∴=,整理得:x2﹣12x+28=0,解得x=6±2.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF=(12﹣x),OG=BF=(12﹣x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴=,∴=,整理得:x2﹣36x+268=0,解得x=18﹣2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC 于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=90°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12﹣x,BF=(12﹣x),OG=BF=(12﹣x),CK=EK=x,GK=7﹣(12﹣x)﹣x,由△OGD∽△KEG,可得=,∴=,解得x=2,,综上所述,满足条件的EC的值为6±2或18﹣2或2.17.(2019?衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=,∠C=30°,求的长.(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE=,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°?CD=×2=2,∴的长为:=.18.(2019?衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=∠BAC=30°,在Rt△ADC中,DC=AC?tan30°=6×=2.(2)由题意易知:BC=6,BD=4,∵DE∥AC,∴∠FDM=∠GAM,∵AM=DM,∠DMF=∠AMG,∴△DFM≌△AGM(ASA),∴DF=AG,∵DE∥AC,∴==,∴====.(3)∵∠CPG=60°,过C,P,G作外接圆,圆心为Q,∴△CQG是顶角为120°的等腰三角形.①当⊙Q与DE相切时,如图3﹣1中,作QH⊥AC于H,交DE于P.连接QC,QG.菁优网设⊙Q的半径为r.则QH=r,r+r=2,∴r=,∴CG=×=4,AG=2,由△DFM∽△AGM,可得==,∴DM=AD=.②当⊙Q经过点E时,如图3﹣2中,延长CO交AB于K,设CQ=r.∵QC=QG,∠CQG=120°,∴∠KCA=30°,∵∠CAB=60°,∴∠AKC=90°,在Rt△EQK中,QK=3﹣r,EQ=r,EK=1,∴12+(3﹣r)2=r2,解得r=,∴CG=×=,由△DFM∽△AGM,可得DM=.③当⊙Q经过点D时,如图3﹣3中,此时点M,点G与点A重合,可得DM=AD=4.观察图象可知:当DM=或<DM≤4时,满足条件的点P只有一个.19.(2019?台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=FA,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.20.(2019?台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a=﹣1∴AP=FD=﹣1,∴AF=AD﹣DF=3﹣∴=(2)在CD上截取DH=AF∵AF=DH,∠PAF=∠D=90°,AP=FD,∴△P AF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP=﹣1∵点E是AB中点,∴BE=AE=1=EM∴PE=PA+AE=∵EC2=BE2+BC2=1+4=5,∴EC=∴EC=PE,CM=﹣1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH=﹣1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP=﹣1由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB=﹣1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y=x﹣2设点B'(x,x﹣2)∴AB'==2∴x=∴点B'(,﹣)∵点Q'(﹣1,0)∴B'Q'=≠﹣1∴点B旋转后的对应点B'不落在线段BN上.。
中考数学复习专题:几何综合题(含答案解析)

几何综合题1.已知△ABC 中,AD 是的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD 的延长线于点H . (1)如图1,若①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.答案:(1)①75B ∠=︒,45ACB ∠=︒;②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=︒,AD =2可得DE =1,AE 3. Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1. ∴AC 31.Rt △ACH 中,由30DAC ∠=︒,可得AH 33+=;(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.2.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α︒<<︒时, ①依题意补全图1.②用等式表示NCE ∠与BAM ∠之间的数量关系:__________.BAC ∠60BAC ∠=︒(2)当4590α︒<<︒时,探究NCE ∠与BAM ∠之间的数量关系并加以证明. (3)当090α︒<<︒时,若边AD 的中点为F ,直接写出线段EF 长的最大值.答案:(1)①补全的图形如图7所示.② ∠NCE =2∠BAM .(2)当45°<α<90°时,=1802NCE BAM ∠︒-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵ 四边形ABCD 为正方形, ∴ ∠BAD=∠ADC=∠BCD=90°,直线BD 为正方形ABCD 的对称轴,点A 与点C 关于直线BD 对称. ∵ 射线AM 与线段BD 交于点M , ∴ ∠BAM=∠BCM=α. ∴ ∠1=∠2=90α︒-. ∵ CE ⊥AM , ∴ ∠CEH=90°,∠3+∠5=90°. 又∵∠1+∠4=90°,∠4=∠5, ∴ ∠1=∠3.∴ ∠3=∠2=90α︒-.∵ 点N 与点M 关于直线CE 对称,∴ ∠NCE=∠MCE=∠2+∠3=1802BAM ︒-∠. (31CDBA图1备用图C DBAM3. 如图,已知60AOB ∠=︒,点P 为射线OA内,且满足DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在一个定点M答案:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=, ∴30OPE ∠=.∴30DPA OPE ∠=∠=. ∴120EPD ∠=. ∵DP PE =,6DP PE +=,∴30PDE ∠=,3PD PE ==. ∴cos30DF PD =⋅︒=∴2DE DF ==(2)当M 点在射线OA 上且满足OM =DMME的值不变,始终为1.理由如下: 当点P 与点M 不重合时,延长EP 到K 使得PK PD =. ∵,DPA OPE OPE KPA ∠=∠∠=∠, ∴KPA DPA ∠=∠. ∴KPM DPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △.∴MK MD =.作ML ⊥OE 于L ,MN ⊥EK 于N . ∵60MO MOL =∠=,∴sin 603ML MO =⋅=.∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK ,∴MK ME =.∴ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立.4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上一动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中心,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示); (3)用等式表示线段AE 、AF 与CG 之间的数量关系,并证明. 答案:(1)补全的图形如图所示.(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°, ∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.(3)用等式表示线段AE 、AF 与CG 之间的数量关系为CG AF AE 3=+.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°. ∴CA=CG. ∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF , ∴△ACE ≌△GCF. ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠⋅= ∴AG =3CG .即AF+AE =3CG .5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数; (3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.答案:(1)如图;(2)45°;(3)结论:AM 2CN .A BC E证明:作AG ⊥EC 的延长线于点G .∵点B 与点D 关于CE 对称, ∴CE 是BD 的垂直平分线. ∴CB =CD .∴∠1=∠2=α.∵CA =CB ,∴CA =CD .∴∠3=∠CAD . ∵∠4=90°,∴∠3=(180°∠ACD )=(180°90°αα)=45°.∴∠5=∠2+∠3=α+45°-=45°. ∵∠4=90°,CE 是BD 的垂直平分线, ∴∠1+∠7=90°,∠1+∠6=90°. ∴∠6=∠7. ∵AG ⊥EC ,∴∠G =90°=∠8. ∴在△BCN 和△CAG 中,∠8=∠G , ∠7=∠6, BC =CA ,BCN ≌△CAG .∴CN =AG . ∵Rt △AMG 中,∠G =90°,∠5=45°,∴AM AG .∴AM CN .答案:(1)补全图形略 (2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=,12-12----αα又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ②BP AB =.7.如图,在等腰直角△ABC 中,∠CAB=90°,F 是AB 边上一点,作射线CF , 过点B 作BG ⊥C F 于点G ,连接AG . (1)求证:∠ABG =∠ACF ;(2)用等式表示线段C G ,AG ,BG 之间 的等量关系,并证明.答案:(1)证明 :∵ ∠CAB=90°. ∵ BG ⊥CF 于点G , ∴ ∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴ ∠ABG =∠ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH , ∵ △ABC 是等腰直角三角形, ∴ ∠CAB =90°,AB =AC . ∵ ∠ABG =∠ACH . ∴ △ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴ ∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .8.如图,在正方形ABCD 中,E 是BC 边上一点,连接AE ,延长CB 至点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对角线AC 于点P ,连接AF . (1)依题意补全图形; (2)求证:∠FAC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.答案:(1)补全图如图所示. (2)证明∵正方形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°, ∴∠PAH =45°-∠BAE . ∵FH ⊥AE .∴∠APF =45°+∠BAE .EDCBAM H PDAC∵BF=BE ,∴AF=AE ,∠BAF =∠BAE . ∴∠FAC =45°+∠BAF . ∴∠FAC =∠APF .(3)判断:FM =PN .证明:过B 作BQ ∥MN 交CD 于点Q ,∴MN =BQ ,BQ ⊥AE . ∵正方形ABCD ,∴AB =BC ,∠ABC =∠BCD=90°. ∴∠BAE =∠CBQ . ∴△ABE ≌△BCQ . ∴AE =BQ . ∴AE =MN .∵∠FAC =∠APF , ∴AF =FP . ∵AF=AE , ∴AE =FP . ∴FP =MN . ∴FM =PN .9.如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.解:(1)120°. ----------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒, ∴60.ACP BCP ∠+∠=︒ ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒ ()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴∴18060.CPD BPC ∠=︒-∠=︒ ∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒, ∴.ACD BCP ∠=∠ 在ACD △和BCP △中,M H PDA CDAC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,, ∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------4分 (3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N . ∵=60ADB ADC PDC ∠∠-∠=︒, ∴=60.ADB CDB ∠∠=︒ ∴=60.ADB CDB ∠∠=︒∴3= 3.BM BN BD == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =+()32AD CD =+ 32=3.=-----------------------------------7分10.如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.解:(1)①. ………………………………………………………………………… 1分3-图1 备用图② 0≤QL2分(2)设直线+3y =与x 轴,y 轴的交点分别为点A ,点B ,可得A ,(0,3)B .∴ OA =,3OB =,30OAB ∠=︒. 由0≤QL y =.①如图13,当⊙D 与x 轴相切时,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E , 可得11D E ∥OB ,111D E AE BO AO=. ∵ ⊙D 的半径为1, ∴ 111D E =.∴ 1AE =11OE OA AE =-=. ∴1D x =②如图14,当⊙D 与直线y =相切时, 相应的圆心2D 满足题意,其横坐标取到最小值.作22D E x ⊥轴于点2E ,则22D E ⊥OA . 设直线y =与直线+33y x =的交点为F 可得60AOF ∠=︒,OF ⊥AB .则9cos2AF OA OAF =⋅∠==.∵ ⊙D 的半径为1, ∴ 21D F =.∴2272AD AF D F =-=.∴ 22cos AE AD OAF=⋅∠72==,224OE OA AE =-=.图13∴2D x =.由①②可得,D x≤D x≤. ………………………………………… 5分(3)画图见图15..……………………………… 7分11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠<︒ ,点C 与点F 关于BD对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是 ;(2)若DBC α∠=,求FEC ∠的大小; (用α的式子表示) (3)用等式表示线段,BG GF 和FA 之间的数量关系,并证明.(1)DE DF =; (2)解:连接DE ,DF , ∵△ABC 是等边三角形, ∴60C ∠=︒. ∵DBC α∠=, ∴120BDC α∠=︒-.∵点C 与点F 关于BD 对称,∴120BDF BDC α∠=∠=︒-,DF DC =. ∴1202FDC α∠=︒+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆心,DC 为半径的圆上.∴1602FEC FDC ∠=∠=︒+α.(3)BG GF FA =+.理由如下:GFE DCBA图15GFEDCBA连接BF ,延长AF ,BD 交于点H , ∵△ABC 是等边三角形,∴60ABC BAC ∠=∠=︒,AB BC CA ==. ∵点C 与点F 关于BD 对称, ∴BF BC =,FBD CBD ∠=∠. ∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=, 则602ABF α∠=︒-. ∴60BAF α∠=︒+. ∴FAD α∠=.∴FAD DBC ∠=∠. 由(2)知60FEC α∠=︒+. ∴60BGE FEC DBC ∠=∠-∠=︒. ∴120FGB ∠=︒,60FGD ∠=︒.四边形AFGB 中,360120AFE FAB ABG FGB ∠=︒-∠-∠-∠=︒. ∴60HFG ∠=︒.∴△FGH 是等边三角形. ∴FH FG =,60H ∠=︒. ∵CD CE =, ∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△△AHD BGE ≅. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.12.如图,在△ABC 中,AB=AC ,∠BAC =90°,M 是BC 的中点,延长AM 到点D ,AE = AD ,∠EAD =90°,CE 交AB 于点F ,CD =DF .(1)∠CAD = 度; (2)求∠CDF 的度数;(3)用等式表示线段CD 和CE 之间的数量关系,并证明.HGFEDCBA解:(1)45 ……………………………………………………………1分(2)解:如图,连接DB.∵90 AB AC BAC =∠=,°,M 是BC 的中点,∴∠BAD=∠CAD=45°.∴△BAD ≌△CAD . ………………………………2分 ∴∠DBA =∠DCA ,BD = CD . ∵CD =DF ,∴B D =DF . ………………………………………3分 ∴∠DBA =∠DFB =∠DCA . ∵∠DFB +∠DFA =180°, ∴∠DCA +∠DFA =180°. ∴∠BAC +∠CDF =180°.∴∠CDF =90°. ………………………………………4分 (3)CE =)21CD . ……………………………………5分证明:∵90 EAD ∠=°,∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . …………………………………6分 ∴DF =EF .由②可知,CF 2CD . …………………………7分 ∴CE =()21C D .13.如图,正方形ABCD 中,点E 是BC 边上的一个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对角线BD 于点G ,连接AG . (1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.解:(1)图形补全后如图…………………1分(2)结论:AG ⊥EF . …………………2分证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .GFAB DCAB CE D∵四边形ABCD 是正方形,∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°, ∠ADB =∠5=45°.∵线段AE 绕点A 逆时针旋转90°,得到AF , ∴AE=AF ,∠FAE =90°. ∴∠1=∠2.∴△FDA ≌△EBA . …………………3分 ∴∠FDA =∠EBA =90°,FD=BE . ∵∠ADC =90°,∴∠FDA +∠ADC =180°。
几何难题中考压轴题带含及详细解析

几何难题精选解答题〔共 30 小题〕1 .〔2021 ?河南〕如图 1,在 Rt △ABC 中,∠B=90 °,BC=2AB=8 ,点 D、E 分别是边 BC、AC 的中点,连接DE,将△EDC 绕点 C 按顺时针方向旋转,记旋转角为α.〔1〕问题发现①当α=0 °时, = ;②当α=180 °时, = .〔2〕拓展研究试判断:当 0°≤α<360 °时,的大小有无变化?请仅就图 2 的状况给出证明.〔3〕问题解决当△EDC 旋转至 A,D,E 三点共线时,直接写出线段 BD 的长.2.〔2021 ?济南〕如图 1 ,在△ABC 中,∠ACB=90 °,AC=BC ,∠EAC=90 °,点M 为射线 AE 上任意一点〔不与 A 重合〕,连接 CM ,将线段 CM 绕点 C 按顺时针方向旋转 90 °获取线段CN ,直线 NB 分别交直线 CM 、射线 AE 于点 F、D.〔1〕直接写出∠ NDE 的度数;〔2〕如图 2、图 3,当∠EAC 为锐角或钝角时,其他条件不变,〔 1〕中的结论可否发生变化?若是不变,采用其中一种状况加以证明;若是变化,请说明原由;〔3〕如图 4,假设∠EAC=15 °,∠ACM=60 °,直线CM 与 AB 交于 G,BD= ,其他条件不变,求线段 AM的长.3 .〔2021 ?岳阳〕直线 m ∥n ,点 C 是直线 m 上一点,点 D 是直线 n 上一点, CD 与直线 m 、n 不垂直,点 P 为线段 CD 的中点.〔1〕操作发现:直线 l ⊥m ,l⊥n,垂足分别为 A、B,当点 A 与点 C 重合时〔如图①所示〕,连接 PB,请直接写出线段 PA 与 PB 的数量关系:.〔2〕猜想证明:在图①的状况下,把直线 l 向上平移到如图②的地址,试问〔 1〕中的 PA 与 PB 的关系式可否依旧成立?假设成立,请证明;假设不成立,请说明原由.〔3〕延伸研究:在图②的状况下,把直线 l 绕点 A 旋转,使得∠ APB=90 °〔如图③所示〕,假设两平行线 m 、n 之间的距离为 2k .求证: PA ?PB=k ?AB.4 .〔2021 ?重庆〕在△ABC 中,AB=AC ,∠A=60 °,点D 是线段 BC 的中点,∠EDF=120 °,DE 与线段 AB 相交于点 E.DF 与线段 AC 〔或 AC 的延伸线〕订交于点 F.〔1〕如图 1,假设 DF⊥AC,垂足为 F,AB=4 ,求 BE 的长;〔2〕如图 2,将〔1 〕中的∠EDF 绕点 D 顺时针旋转必然的角度, DF 仍与线段 AC 订交于点 F.求证:BE+CF= AB;〔3〕如图 3,将〔 2〕中的∠EDF 连续绕点 D 顺时针旋转必然的角度,使 DF 与线段 AC 的延伸线订交于点 F,作 DN ⊥AC 于点 N ,假设 DN ⊥AC 于点 N ,假设 DN=FN ,求证: BE+CF= 〔BE﹣CF〕.5 .〔2021 ?烟台〕【问题提出】如图①,△ ABC 是等腰三角形,点 E 在线段 AB 上,点 D 在直线 BC 上,且 ED=EC ,将△BCE 绕点 C 顺时针旋转 60°至△ACF 连接 EF试证明: AB=DB+AF【类比研究】〔1〕如图②,若是点 E 在线段 AB 的延伸线上,其他条件不变,线段 AB ,DB,AF 之间又有怎样的数量关系?请说明原由〔2〕若是点 E 在线段 BA 的延伸线上,其他条件不变,请在图③的基础大将图形补充完满,并写出 AB ,DB ,AF 之间的数量关系,不用说明原由.6 .〔2021 ?莆田〕在 Rt△ACB 和 Rt △AEF 中,∠ACB= ∠AEF=90 °,假设点P 是 BF 的中点,连接 PC,PE.特别发现:如图 1,假设点 E,F 分别落在边 AB,AC 上,那么结论: PC=PE 成立〔不要求证明〕.问题研究:把图 1 中的△AEF 绕着点 A 顺时针旋转.〔1〕如图 2,假设点 E 落在边 CA 的延伸线上,那么上述结论可否成立?假设成立,请恩赐证明;假设不成立,请说明原由;〔2〕如图 3,假设点 F 落在边 AB 上,那么上述结论可否依旧成立?假设成立,请恩赐证明;假设不成立,请说明原由;〔3〕记 =k ,当 k 为何值时,△ CPE 总是等边三角形?〔请直接写出 k 的值,不用说明原由〕7 .〔2021 ?襄城区模拟〕如图,正方形 ABCO 的边 OA 、OC 在坐标轴上,点 B 坐标为〔3,3〕.将正方形 ABCO绕点 A 顺时针旋转角度α〔 0°<α<90 °〕,获取正方形 ADEF ,ED 交线段 OC 于点 G,ED 的延伸线交线段 BC于点 P,连 AP 、AG .〔1〕求证:△AOG ≌△ADG ;〔2〕求∠PAG 的度数;并判断线段 OG 、PG、BP 之间的数量关系,说明原由;〔3〕当∠1= ∠2 时,求直线 PE 的解析式;〔4〕在〔3〕的条件下,直线 PE 上可否存在点 M ,使以 M 、A、G 为极点的三角形是等腰三角形?假设存在,请直接写出 M 点坐标;假设不存在,请说明原由.8 .〔2021 ?重庆校级一模〕,四边形 ABCD 是正方形,点 P 在直线 BC 上,点 G 在直线 AD 上〔P、G 不与正方形极点重合,且在 CD 的同侧〕, PD=PG ,DF⊥PG 于点 H,DF 交直线 AB 于点 F,将线段 PG 绕点 P逆时针旋转 90 °获取线段P E,连接 EF.〔1〕如图 1,当点 P 与点 G 分别在线段 BC 与线段 AD 上时,假设 PC=1 ,计算出 DG 的长;〔2〕如图 1,当点 P 与点 G 分别在线段 BC 与线段 AD 上时,证明:四边形 DFEP 为菱形;〔3〕如图 2,当点 P 与点 G 分别在线段 BC 与线段 AD 的延伸线上时,〔2〕的结论:四边形 DFEP 为菱形可否依旧成立?假设成立,请给出证明;假设不成立,请说明原由.9 .〔2021 ?房山区二模〕在△ ABC 中,AB=BC=2 ,∠ABC=90 °,BD 为斜边 AC 上的中线,将△ ABD 绕点 D 顺时针旋转α〔0°<α<180 °〕获取△EFD,其中点 A 的对应点为点 E,点 B 的对应点为点 F.BE 与 FC 订交于点 H.〔1〕如图 1,直接写出 BE 与 FC 的数量关系:;〔2〕如图 2,M 、N 分别为 EF、BC 的中点.求证: MN= ;〔3〕连接 BF,CE,如图 3,直接写出在此旋转过程中,线段 BF、CE 与 AC 之间的数量关系:.10 .〔2021 ?衢州校级模拟〕图 1 是边长分别为 4 和 2 的两个等边三角形纸片 ABC 和 ODE 叠放在一起〔 C与 O 重合〕.〔1〕操作:固定△ ABC ,将△0DE 绕点 C 顺时针旋转 30 °后获取△ODE ,连接 AD 、B E,CE 的延伸线交 AB 于 F 〔图 2〕;研究:在图 2 中,线段 BE 与 AD 之间有怎样的大小关系?试证明你的结论.〔2〕在〔 1〕的条件下将的△ ODE ,在线段 CF 上沿着 CF 方向以每秒 1 个单位的速度平移,平移后的△ CDE 设为△PQR,当点 P 与点 F 重合时停止运动〔图 3〕研究:设△PQR 搬动的时间为 x 秒,△PQR 与△ABC 重叠局部的面积为 y,求 y 与 x 之间的函数解析式,并写出函数自变量 x 的取值范围.〔3〕将图 1 中△0DE 固定,把△ABC 沿着 OE 方向平移,使极点 C 落在 OE 的中点 G 处,设为△ABG ,尔后将△ABG 绕点 G 顺时针旋转,边 BG 交边 DE 于点 M ,边 AG 交边 DO 于点 N ,设∠BGE= α〔30 °<α<90 °〕;〔图4 〕研究:在图 4 中,线段 ON ?EM 的值可否随α的变化而变化?若是没有变化,请你求出 ON ?EM 的值,若是有变化,请你说明原由.11 .〔2021 ?武义县模拟〕〔 1 〕将矩形 OABC 放在平面直角坐标系中,极点 O 为原点,极点 C、A 分别在 x轴和 y 轴上, OA=8 ,OC=10 ,点 E 为 OA 边上一点,连接 CE,将△EOC 沿 CE 折叠.①如图 1,当点 O 落在 AB 边上的点 D 处时,求点 E 的坐标;②如图 2,当点 O 落在矩形 OABC 内部的点 D 处时,过点 E 作 EG∥x 轴交 CD 于点 H,交 BC 于点 G,设 H〔m ,n 〕,求 m 与 n 之间的关系式;〔2〕如图 3,将矩形 OABC 变为边长为 10 的正方形,点 E 为 y 轴上一动点,将△ EOC 沿 CE 折叠.点 O 落在点 D 处,延伸 CD 交直线 AB 于点 T,假设 = ,求 AT 的长.12 .〔2021 ?石家庄校级模拟〕如图 1,在菱形 ABCD 中,AC=6 ,BD=6 ,AC,BD 订交于点 O .〔1〕求边 AB 的长;〔2〕如图 2,将一个足够大的直角三角板 60 °角的极点放在菱形 ABCD 的极点 A 处,绕点 A 左右旋转,其中三角板 60 °角的两边分别于边 BC,CD 订交于 E,F,连接 EF 与 AC 订交于点 G.①判断△AEF 是哪一种特别三角形,并说明原由;②旋转过程中可否存在线段 EF 最短,假设存在,求出最小值,假设不存在,请说明原由.13 .〔2021 春 ?泰安校级期中〕如图,正方形 OEFG 绕着边长为 30 的正方形 ABCD 的对角线的交点 O 旋转,边 OE、OG 分别交边 AD 、AB 于点 M 、N .〔1〕求证: OM=ON ;〔2〕设正方形 OEFG 的对角线 OF 与边 AB 订交于点 P,连接 PM .假设 PM=13 ,试求 AM 的长;〔3〕连接 MN ,求△AMN 周长的最小值,并指出此时线段 MN 与线段 BD 的关系.14 .〔2021 ?天津〕在平面直角坐标系中, O 为原点,点 A〔﹣2 ,0〕,点 B〔0,2〕,点 E,点 F 分别为 OA ,OB 的中点.假设正方形 OEDF 绕点 O 顺时针旋转,得正方形 OE ′D′F′,记旋转角为α.〔Ⅰ〕如图①,当α =90 °时,求AE′,BF′的长;〔Ⅱ〕如图②,当α =135 °时,求证AE′=BF ′,且AE′⊥BF′;〔Ⅲ〕假设直线 AE′与直线BF′订交于点P,求点 P 的纵坐标的最大值〔直接写出结果即可〕.15 .〔2021 春 ?青山区期末〕正方形 ABCD 和正方形 EBGF 共极点 B,连 AF,H 为 AF 的中点,连 EH,正方形 EBGF 绕点 B 旋转.〔1〕如图 1,当 F 点落在 BC 上时,求证: EH= FC;〔2〕如图 2,当点 E 落在 BC 上时,连 BH ,假设 AB=5 ,BG=2 ,求 BH 的长;〔3〕当正方形 EBGF 绕点 B 旋转到如图 3 的地址时,求的值.16 .〔2021 ?盐城〕阅读资料如图①,△ABC 与△DEF 都是等腰直角三角形,∠ACB= ∠EDF=90 °,且点 D 在 AB 边上,AB、EF的中点均为 O ,连接 BF、CD 、CO ,显然点 C、F、O 在同一条直线上,可以证明△ BOF≌△COD ,那么 BF=CD .解决问题〔1〕将图①中的 Rt△DEF 绕点 O 旋转获取图②,猜想此时线段 BF 与 CD 的数量关系,并证明你的结论;〔2〕如图③,假设△ ABC 与△DEF 都是等边三角形, AB 、EF 的中点均为 O ,上述〔 1 〕中的结论依旧成立吗?如果成立,请说明原由;如不成立,央求出 BF 与 CD 之间的数量关系;〔3〕如图④,假设△ABC 与△DEF 都是等腰三角形, AB 、EF 的中点均为 0,且顶角∠ACB= ∠EDF= α,请直接写出的值〔用含α的式子表示出来〕17 .〔2021 ?梅州〕用如图①,②所示的两个直角三角形〔局部边长及角的度数在图中已标出〕,完成以下两个研究问题:研究一:将以上两个三角形如图③拼接〔 BC 和 ED 重合〕,在 BC 边上有一动点 P.〔1〕当点 P 运动到∠CFB 的角均分线上时,连接 AP,求线段 AP 的长;〔2〕当点 P 在运动的过程中出现 PA=FC 时,求∠PAB 的度数.研究二:如图④,将△ DEF 的极点 D 放在△ABC 的 BC 边上的中点处,并以点 D 为旋转中心旋转△ DEF,使△DEF 的两直角边与△ ABC 的两直角边分别交于 M 、N 两点,连接 MN .在旋转△DEF 的过程中,△ AMN 的周长可否存在有最小值?假设存在,求出它的最小值;假设不存在,请说明原由.18 .〔2021 ?营口〕如图,点 P 是⊙O 外一点, PA 切⊙O 于点 A,AB 是⊙O 的直径,连接 OP ,过点 B 作 BC∥OP 交⊙O 于点 C,连接 AC 交 OP 于点 D .〔1〕求证: PC 是⊙ O 的切线;〔2〕假设 PD= ,AC=8 ,求图中阴影局部的面积;〔3〕在〔 2〕的条件下,假设点 E是的中点,连接 CE,求 CE 的长.19 .〔2021 ?永州〕问题研究:〔一〕新知学习:圆内接四边形的判判断理:若是四边形对角互补,那么这个四边形内接于圆〔即若是四边形 EFGH 的对角互补,那么四边形 EFGH 的四个极点 E、F、G、H 都在同个圆上〕.〔二〕问题解决:⊙ O 的半径为 2,AB ,CD 是⊙O 的直径. P 是上任意一点,过点 P 分别作 AB,CD 的垂线,垂足分别为 N,M .〔1〕假设直径 AB⊥CD,关于上任意一点 P〔不与 B、C 重合〕〔如图一〕,证明四边形 PMON 内接于圆,并求此圆直径的长;〔2〕假设直径 AB⊥CD ,在点 P〔不与 B、C 重合〕从 B 运动到 C 的过程中,证明 MN 的长为定值,并求其定值;〔3〕假设直径 AB 与 CD 订交成 120 °角.①当点 P 运动到的中点 P1 时〔如图二〕,求 MN 的长;②当点 P〔不与 B、C 重合〕从 B 运动到 C 的过程中〔如图三〕,证明 MN 的长为定值.〔4〕试问当直径 AB 与 CD 订交成多少度角时, MN 的长取最大值,并写出其最大值.20 .〔2021 ?盘锦〕如图 1,△ABC 和△AED 都是等腰直角三角形,∠ BAC= ∠EAD=90 °,点B 在线段 AE 上,点C 在线段 AD 上.〔1〕请直接写出线段 BE 与线段 CD 的关系:;〔2〕如图 2,将图 1 中的△ABC 绕点 A 顺时针旋转角α〔 0<α<360 °〕,①〔1〕中的结论可否成立?假设成立,请利用图 2 证明;假设不成立,请说明原由;②当 AC= ED 时,研究在△ABC 旋转的过程中,可否存在这样的角α,使以 A、B、C、D 四点为极点的四边形是平行四边形?假设存在,请直接写出角α的度数;假设不存在,请说明原由.21 .〔2021 ?旭日〕问题:如图〔 1〕,在 Rt△ACB 中,∠ACB=90 °,AC=CB ,∠DCE=45 °,试试究AD 、DE、EB 满足的等量关系.[研究发现 ]小聪同学利用图形变换,将△ CAD 绕点 C 逆时针旋转 90°获取△CBH,连接 EH,由条件易得∠ EBH=90 °,∠ECH= ∠ECB+ ∠BCH= ∠ECB+ ∠ACD=45 °.依照“边角边〞,可证△ CEH ≌,得 EH=ED .在 Rt△HBE 中,由定理,可得 BH 2+EB 2=EH 2,由 BH=AD ,可得 AD 、DE、EB 之间的等量关系是.[实践运用 ]〔1〕如图〔 2 〕,在正方形 ABCD 中,△AEF 的极点 E、F 分别在 BC、CD 边上,高 AG 与正方形的边长相等,求∠EAF 的度数;〔2〕在〔 1〕条件下,连接 BD ,分别交 AE、AF 于点 M 、N ,假设 BE=2 ,DF=3 ,BM=2 ,运用小聪同学探究的结论,求正方形的边长及 MN 的长.22 .〔2021 ?自贡〕在△ABC 中,AB=AC=5 ,cos ∠ABC= ,将△ABC 绕点 C 顺时针旋转,获取△ A1B1C.〔1〕如图①,当点 B1 在线段 BA 延伸线上时.①求证: BB1∥CA 1;②求△AB1C 的面积;〔2〕如图②,点 E 是 BC 边的中点,点 F 为线段 AB 上的动点,在△ ABC 绕点 C 顺时针旋转过程中,点 F 的对应点是 F1,求线段 EF1 长度的最大值与最小值的差.23 .〔2021 ?吉林〕两个三角板 ABC,DEF,按以以下图的地址摆放,点 B 与点 D 重合,边 AB 与边 DE 在同一条直线上〔假设图形中所有的点,线都在同一平面内〕.其中,∠C= ∠DEF=90 °,∠ABC= ∠F=30 °,AC=DE=6cm .现固定三角板 DEF,将三角板 ABC 沿射线 DE 方向平移,当点 C 落在边 EF 上时停止运动.设三角板平移的距离为 x〔cm 〕,两个三角板重叠局部的面积为 y〔cm 2〕.〔1〕当点 C 落在边 EF 上时, x= cm ;〔2〕求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围;〔3〕设边 BC 的中点为点 M ,边 DF 的中点为点 N .直接写出在三角板平移过程中,点 M 与点 N 之间距离的最小值.24 .〔2021 ?汕尾〕在 Rt△ABC 中,∠A=90 °,AC=AB=4 ,D,E 分别是边 AB ,AC 的中点,假设等腰 Rt△ADE绕点 A 逆时针旋转,获取等腰 Rt△AD 1E1,设旋转角为α〔 0<α≤180 °〕,记直线 BD1 与 CE1 的交点为 P.〔1〕如图 1,当α=90 °时,线段BD 1 的长等于,线段 CE1 的长等于;〔直接填写结果〕〔2〕如图 2,当α=135 °时,求证:BD 1=CE 1,且 BD1⊥CE1;〔3〕求点 P 到 AB 所在直线的距离的最大值.〔直接写出结果〕25 .〔2021 ?赤峰〕如图,四边形 ABCD 是边长为 2,一个锐角等于 60°的菱形纸片,小芳同学将一个三角形纸片的一个极点与该菱形极点 D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交 CB、BA〔或它们的延长线〕于点 E、F,∠EDF=60 °,当CE=AF 时,如图 1 小芳同学得出的结论是 DE=DF .〔1〕连续旋转三角形纸片,当 CE≠AF 时,如图 2 小芳的结论可否成立?假设成立,加以证明;假设不成立,请说明原由;〔2〕再次旋转三角形纸片,当点 E、F 分别在 CB、BA 的延伸线上时,如图 3 请直接写出 DE 与 DF 的数量关系;〔3〕连 EF,假设△DEF 的面积为 y ,CE=x ,求 y 与 x 的关系式,并指出当 x 为何值时, y 有最小值,最小值是多少?26 .〔2021 ?海南〕如图,菱形 ABCD 中,点 P 是 CD 的中点,∠BCD=60 °,射线AP 交 BC 的延伸线于点 E,射线 BP 交 DE 于点 K,点 O 是线段 BK 的中点.〔1〕求证:△ADP ≌△ECP;〔2〕假设 BP=n ?PK,试求出 n 的值;〔3〕作 BM 丄 AE 于点 M ,作 KN 丄 AE 于点 N,连接 MO 、NO ,如图 2 所示,请证明△MON 是等腰三角形,并直接写出∠ MON 的度数.27 .〔2021 ?丹东〕在正方形 ABCD 中,对角线 AC 与 BD 交于点 O;在 Rt△PMN 中,∠MPN=90 °.〔1〕如图 1,假设点 P 与点 O 重合且 PM ⊥AD 、PN ⊥AB ,分别交 AD 、AB 于点 E、F,请直接写出 PE 与 PF 的数量关系;〔2〕将图 1 中的 Rt△PMN 绕点 O 顺时针旋转角度α〔 0 °<α<45 °〕.①如图 2,在旋转过程中〔 1〕中的结论依旧成立吗?假设成立,请证明;假设不成立,请说明原由;②如图 2,在旋转过程中,当∠ DOM=15 °时,连接EF,假设正方形的边长为 2,请直接写出线段 EF 的长;③如图 3,旋转后,假设 Rt△PMN 的极点 P 在线段 OB 上搬动〔不与点 O 、B 重合〕,当 BD=3BP 时,猜想此时PE 与 PF 的数量关系,并给出证明;当 BD=m ?BP 时,请直接写出 PE 与 PF 的数量关系.28 .〔2021 ?成都〕 AC ,EC 分别是四边形 ABCD 和 EFDC 的对角线,点 E 在△ABC 内,∠CAE+ ∠CBE=90 °.〔1〕如图①,当四边形 ABCD 和 EFCG 均为正方形时,连接 BF.〔i〕求证:△CAE∽△CBF;〔ii 〕假设 BE=1 ,AE=2 ,求 CE 的长;〔2〕如图②,当四边形 ABCD 和 EFCG 均为矩形,且 = =k 时,假设 BE=1 ,AE=2 ,CE=3 ,求 k 的值;〔3〕如图③,当四边形 ABCD 和 EFCG 均为菱形,且∠ DAB= ∠GEF=45 °时,设BE=m ,AE=n ,CE=p ,试试究 m ,n,p 三者之间满足的等量关系.〔直接写出结果,不用写出解答过程〕29 .〔2021 ?锦州〕如图①,∠ QPN 的极点 P 在正方形 ABCD 两条对角线的交点处,∠ QPN= α,将∠QPN 绕点P 旋转,旋转过程中∠ QPN 的两边分别与正方形 ABCD 的边 AD 和 CD 交于点 E 和点 F〔点 F 与点 C,D 不重合〕.〔1〕如图①,当α =90 °时,DE,DF,AD 之间满足的数量关系是;〔2〕如图②,将图①中的正方形 ABCD 改为∠ADC=120 °的菱形,其他条件不变,当α =60 °时,〔1〕中的结论变为 DE+DF= AD ,请给出证明;〔3〕在〔2〕的条件下,假设旋转过程中∠ QPN 的边 PQ 与射线 AD 交于点 E,其他条件不变,研究在整个运动变化过程中, DE,DF ,AD 之间满足的数量关系,直接写出结论,不用加以证明.30 .〔2021 ?绵阳〕如图 1,矩形 ABCD 中,AB=4 ,AD=3 ,把矩形沿直线 AC 折叠,使点 B 落在点 E 处,AE交 CD 于点 F,连接 DE.〔1〕求证:△DEC≌△EDA;〔2〕求 DF 的值;〔3〕如图 2,假设 P 为线段 EC 上一动点,过点 P 作△AEC 的内接矩形,使其极点 Q 落在线段 AE 上,定点 M 、N 落在线段 AC 上,当线段 PE 的长为何值时,矩形 PQMN 的面积最大?并求出其最大值.几何难题精选 (1) 旋转圆四边形参照答案与试题解析一.解答题〔共 30 小题〕1 .〔2021 ?河南〕如图 1,在 Rt △ABC 中,∠B=90 °,BC=2AB=8 ,点 D、E 分别是边 BC、AC 的中点,连接DE,将△EDC 绕点 C 按顺时针方向旋转,记旋转角为α.〔1〕问题发现①当α=0 °时, = ;②当α=180 °时, = .〔2〕拓展研究试判断:当 0°≤α<360 °时,的大小有无变化?请仅就图 2 的状况给出证明.〔3〕问题解决当△EDC 旋转至 A,D,E 三点共线时,直接写出线段 BD 的长.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕①当α=0 °时,在Rt △ABC 中,由勾股定理,求出 AC 的值是多少;尔后依照点 D、E 分别是边BC、AC 的中点,分别求出 AE、BD 的大小,即可求出的值是多少.②α=180 °时,可得AB ∥DE,尔后依照,求出的值是多少即可.〔2〕第一判断出∠ ECA= ∠DCB ,再依照,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.〔3〕依照题意,分两种状况:①点 A,D,E 所在的直线和 BC 平行时;②点 A ,D,E 所在的直线和 BC 订交时;尔后分类谈论,求出线段 BD 的长各是多少即可.【解答】解:〔 1〕①当α=0 °时,∵Rt △ABC 中,∠B=90 °,∴AC= ,∵点D、E 分别是边 BC、AC 的中点,∴,∴.②如图 1,,当α=180 °时,可得 AB∥DE,∵,∴ = .故答案为:.〔2〕如图 2,,当 0°≤α<360 °时,的大小没有变化,∵∠ECD= ∠ACB ,∴∠ECA= ∠DCB ,又∵,∴△ECA∽△DCB ,∴.〔3〕①如图 3 ,,∵AC=4 ,CD=4 ,CD ⊥AD ,∴AD= = ,∵AD=BC ,AB=DC ,∠B=90 °,∴四边形 ABCD 是矩形,∴.②如图 4,连接 BD,过点 D 作 AC 的垂线交 AC 于点 Q ,过点 B作 AC 的垂线交 AC 于点 P,,∵AC=4 ,CD=4 ,CD ⊥AD ,∴AD= = ,∵点D、E 分别是边 BC、AC 的中点,∴DE= =2 ,∴AE=AD ﹣DE=8 ﹣2=6 ,由〔2〕,可得,∴BD= = .综上所述, BD 的长为 4 或.【谈论】〔1〕此题主要观察了几何变换综合题,观察了解析推理能力,观察了分类谈论思想的应用,观察了数形结合思想的应用,要熟练掌握.〔2〕此题还观察了相似三角形、全等三角形的判断和性质的应用,要熟练掌握.〔3〕此题还观察了线段长度的求法,以及矩形的判断和性质的应用,要熟练掌握.2.〔2021 ?济南〕如图 1 ,在△ABC 中,∠ACB=90 °,AC=BC ,∠EAC=90 °,点M 为射线 AE 上任意一点〔不与 A 重合〕,连接 CM ,将线段 CM 绕点 C 按顺时针方向旋转 90 °获取线段CN ,直线 NB 分别交直线 CM 、射线 AE 于点 F、D.〔1〕直接写出∠ NDE 的度数;〔2〕如图 2、图 3,当∠EAC 为锐角或钝角时,其他条件不变,〔 1〕中的结论可否发生变化?若是不变,采用其中一种状况加以证明;若是变化,请说明原由;〔3〕如图 4,假设∠EAC=15 °,∠ACM=60 °,直线CM 与 AB 交于 G,BD= ,其他条件不变,求线段 AM的长.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕依照题意证明△ MAC ≌△NBC 即可;〔2〕与〔 1〕的证明方法相似,证明△ MAC ≌△NBC 即可;〔3〕作 GK ⊥BC 于 K,证明 AM=AG ,依照△MAC ≌△NBC ,获取∠BDA=90 °,依照直角三角形的性质和条件求出 AG 的长,获取答案.【解答】解:〔 1〕∵∠ACB=90 °,∠MCN=90 °,∴∠ACM= ∠BCN ,在△MAC 和△NBC 中,,∴△MAC ≌△NBC ,∴∠NBC= ∠MAC=90 °,又∵∠ACB=90 °,∠EAC=90 °,∴∠NDE=90 °;〔2〕不变,在△MAC ≌△NBC 中,,∴△MAC ≌△NBC ,∴∠N= ∠AMC ,又∵∠MFD= ∠NFC,∠MDF= ∠FCN=90 °,即∠NDE=90 °;〔3〕作 GK⊥BC 于 K,∵∠EAC=15 °,∴∠BAD=30 °,∵∠ACM=60 °,∴∠GCB=30 °,∴∠AGC= ∠ABC+ ∠GCB=75 °,∠AMG=75 °,∴AM=AG ,∵△MAC ≌△NBC ,∴∠MAC= ∠NBC ,∴∠BDA= ∠BCA=90 °,∵BD= ,∴AB= + ,AC=BC= +1 ,设 BK=a ,那么 GK=a ,CK= a,∴a+ a= +1 ,∴a=1 ,∴KB=KG=1 ,BG= ,AG= ,∴AM= .【谈论】此题观察的是矩形的判断和性质以及三角形全等的判断和性质,正确作出辅助线、利用方程的思想是解题的重点,注意旋转的性质的灵便运用.3 .〔2021 ?岳阳〕直线 m ∥n ,点 C 是直线 m 上一点,点 D 是直线 n 上一点, CD 与直线 m 、n 不垂直,点 P 为线段 CD 的中点.〔1〕操作发现:直线 l ⊥m ,l⊥n,垂足分别为 A、B,当点 A 与点 C 重合时〔如图①所示〕,连接 PB,请直接写出线段 PA 与 PB 的数量关系: PA=PB .〔2〕猜想证明:在图①的状况下,把直线 l 向上平移到如图②的地址,试问〔 1〕中的 PA 与 PB 的关系式可否依旧成立?假设成立,请证明;假设不成立,请说明原由.〔3〕延伸研究:在图②的状况下,把直线 l 绕点 A 旋转,使得∠ APB=90 °〔如图③所示〕,假设两平行线 m 、n 之间的距离为 2k .求证: PA ?PB=k ?AB.【考点】几何变换综合题.【专题】压轴题.【解析】〔1〕依照三角形 CBD 是直角三角形,而且点 P 为线段 CD 的中点,应用直角三角形的性质,可得 PA=PB ,据此解答即可.〔2〕第一过 C 作 CE⊥n 于点 E,连接 P E,尔后分别判断出 PC=PE 、∠PCA= ∠PEB、AC=BE ;尔后依照全等三角形判断的方法,判断出△ PAC∽△PBE,即可判断出 PA=PB 依旧成立.〔3〕第一延伸 AP 交直线 n 于点 F,作 AE⊥BD 于点 E,尔后依照相似三角形判断的方法,判断出△AEF∽△BPF,即可判断出 AF ?BP=AE ?BF,再个 AF=2PA ,AE=2k ,BF=AB ,可得 2PA ?PB=2k .AB,因此 PA?PB=k ?AB,据此解答即可.【解答】解:〔 1〕∵l⊥n,∴BC⊥BD,∴三角形 CBD 是直角三角形,又∵点 P 为线段 CD 的中点,∴PA=PB .〔2〕把直线 l 向上平移到如图②的地址, PA=PB 依旧成立,原由以下:如图②,过 C 作 CE⊥n 于点 E,连接 P E,,∵三角形 CED 是直角三角形,点 P 为线段 CD 的中点,∴PD=PE ,又∵点 P 为线段 CD 的中点,∴PC=PD ,∴PC=PE ;∵PD=PE ,∴∠CDE= ∠PEB,∵直线 m ∥n ,∴∠CDE= ∠PCA ,∴∠PCA= ∠PEB,又∵直线 l⊥m ,l⊥n,CE⊥m ,CE⊥n ,∴l∥CE,∴AC=BE ,在△PAC 和△PBE 中,∴△PAC≌△PBE,∴PA=PB .〔3〕如图③,延伸 AP 交直线 n 于点 F,作 AE⊥BD 于点 E,,∵直线 m ∥n ,∴,∴AP=PF ,∵∠APB=90 °,∴BP⊥AF,又∵AP=PF ,∴BF=AB ;在△AEF 和△BPF 中,∴△AEF∽△BPF,∴,∴AF ?BP=AE ?BF,∵AF=2PA ,AE=2k ,BF=AB ,∴2PA ?PB=2k .AB ,∴PA?PB=k ?AB .【谈论】〔1〕此题主要观察了几何变换综合题,观察了解析推理能力,观察了分类谈论思想的应用,观察了数形结合思想的应用,观察了从图象中获守信息,并能利用获取的信息解答相应的问题的能力.〔2〕此题还观察了直角三角形的性质和应用,要熟练掌握.〔3〕此题还观察了全等三角形的判断和性质的应用,以及相似三角形的判断和性质的应用,要熟练掌握.4 .〔2021 ?重庆〕在△ABC 中,AB=AC ,∠A=60 °,点D 是线段 BC 的中点,∠EDF=120 °,DE 与线段 AB 相交于点 E.DF 与线段 AC 〔或 AC 的延伸线〕订交于点 F.〔1〕如图 1,假设 DF⊥AC,垂足为 F,AB=4 ,求 BE 的长;〔2〕如图 2,将〔1 〕中的∠EDF 绕点 D 顺时针旋转必然的角度, DF 仍与线段 AC 订交于点 F.求证:BE+CF= AB;〔3〕如图 3,将〔 2〕中的∠EDF 连续绕点 D 顺时针旋转必然的角度,使 DF 与线段 AC 的延伸线订交于点 F,作 DN ⊥AC 于点 N ,假设 DN ⊥AC 于点 N ,假设 DN=FN ,求证: BE+CF= 〔BE﹣CF〕.【考点】几何变换综合题;全等三角形的判断与性质;等边三角形的判断与性质;锐角三角函数的定义.【专题】压轴题.【解析】〔1〕如图 1,易求得∠B=60 °,∠BED=90 °,BD=2 ,尔后运用三角函数的定义即可求出 BE 的值;〔2〕过点 D 作 DM ⊥AB 于 M ,作 DN ⊥AC 于 N,如图 2,易证△MBD ≌△NCD ,那么有 BM=CN ,DM=DN ,进而可证到△ EMD ≌△FND ,那么有 EM=FN ,即可获取 BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60 °=BD= BC= AB;〔3〕过点 D 作 DM ⊥AB 于 M ,如图 3.同〔1〕可得:∠B= ∠ACD=60 °,同〔2〕可得: BM=CN ,DM=DN ,EM=FN .由 DN=FN 可得 DM=DN=FN=EM ,进而可得BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM ,B E﹣CF=BM+EM ﹣CF=BM+NF ﹣CF=BM+NC=2BM .尔后在 Rt△BMD 中,运用三角函数即可获取 DM= BM ,即 BE+CF= 〔B E﹣CF〕.【解答】解:〔 1〕如图 1,∵AB=AC ,∠A=60 °,∴△ABC 是等边三角形,∴∠B= ∠C=60 °,BC=AC=AB=4 .∵点D 是线段 BC 的中点,∴BD=DC= BC=2 .∵DF⊥AC,即∠AFD=90 °,∴∠AED=360 °﹣60 °﹣90 °﹣120 °=90 °,∴∠BED=90 °,∴BE=BD ×cos ∠B=2 ×cos60 °=2 × =1 ;〔2〕过点 D 作 DM ⊥AB 于 M ,作 DN ⊥AC 于 N,如图 2,那么有∠AMD= ∠BMD= ∠AND= ∠CND=90 °.∵∠A=60 °,∴∠MDN=360 °﹣60 °﹣90 °﹣90 °=120 °.∵∠EDF=120 °,∴∠MDE= ∠NDF .在△MBD 和△NCD 中,,∴△MBD ≌△NCD ,∴BM=CN ,DM=DN .在△EMD 和△FND 中,,∴△EMD ≌△FND ,∴EM=FN ,∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD ×cos60 °=BD= BC= AB ;〔3〕过点 D 作 DM ⊥AB 于 M ,如图 3.同〔1〕可得:∠B= ∠ACD=60 °.同〔2〕可得: BM=CN ,DM=DN ,EM=FN .∵DN=FN ,∴DM=DN=FN=EM ,∴BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM ,BE﹣CF=BM+EM ﹣CF=BM+NF ﹣CF=BM+NC=2BM .在 Rt△BMD 中,DM=BM ?tanB= BM ,∴BE+CF= 〔BE﹣CF〕.【谈论】此题主要观察了等边三角形的判断与性质、四边形的内角和定理、全等三角形的判断与性质、三角函数的定义、特别角的三角函数值等知识,经过证明三角形全等获取 BM=CN ,DM=DN ,EM=FN 是解决此题的关键.5 .〔2021 ?烟台〕【问题提出】如图①,△ ABC 是等腰三角形,点 E 在线段 AB 上,点 D 在直线 BC 上,且 ED=EC ,将△BCE 绕点 C 顺时针旋转 60°至△ACF 连接 EF试证明: AB=DB+AF【类比研究】〔1〕如图②,若是点 E 在线段 AB 的延伸线上,其他条件不变,线段 AB ,DB,AF 之间又有怎样的数量关系?请说明原由〔2〕若是点 E 在线段 BA 的延伸线上,其他条件不变,请在图③的基础大将图形补充完满,并写出 AB ,DB ,AF 之间的数量关系,不用说明原由.【考点】几何变换综合题.【专题】压轴题.【解析】第一判断出△ CEF 是等边三角形,即可判断出 EF=EC,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,因此∠EAF= ∠BAC+ ∠CAF=120 °,∠DBE=120 °,∠EAF= ∠DBE;尔后依照全等三角形判断的方法,判断出△EDB ≌△FEA ,即可判断出 BD=AE ,AB=AE+BF ,因此 AB=DB+AF .〔1〕第一判断出△CEF 是等边三角形,即可判断出 EF=EC,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,因此∠EFC= ∠FGC+ ∠FCG,∠BAC= ∠FGC+ ∠FEA,∠FCG= ∠FEA,再依照∠FCG= ∠EAD ,∠D= ∠EAD,可得∠D= ∠FEA;尔后依照全等三角形判断的方法,判断出△ EDB≌△FEA,即可判断出 BD=AE ,EB=AF ,进而判断出AB=BD ﹣AF 即可.〔2〕第一依照点 E 在线段 BA 的延伸线上,在图③的基础大将图形补充完满,尔后判断出△ CEF 是等边三角形,即可判断出 EF=EC ,再依照 ED=EC ,可得 ED=EF ,∠CAF= ∠BAC=60 °,再判断出∠ DBE= ∠EAF,∠BDE= ∠AEF;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国中考数学压轴题分类解析汇编专题9:几何综合问题24. (2012湖北恩施12分)如图,AB 是⊙O 的弦,D 为OA 半径的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于点F ,且CE=CB .(1)求证:BC 是⊙O 的切线;(2)连接AF ,BF ,求∠ABF 的度数;(3)如果CD=15,BE=10,sinA=513,求⊙O 的半径.【答案】解:(1)证明:连接OB ,∵OB=OA ,CE=CB ,∴∠A=∠OBA ,∠CEB=∠ABC 。
又∵CD ⊥OA ,∴∠A+∠AED=∠A+∠CEB=90°。
∴∠OBA+∠ABC=90°。
∴OB ⊥BC 。
∴BC 是⊙O 的切线。
(2)连接OF ,AF ,BF ,∵DA=DO ,CD ⊥OA ,∴△OAF 是等边三角形。
∴∠AOF=60°。
∴∠ABF=12∠AOF=30°。
(3)过点C 作CG ⊥BE 于点G ,由CE=CB ,∴EG=12BE=5。
易证Rt △ADE ∽Rt △CGE ,∴sin∠ECG=sin∠A=5 13,∴EG5CE==135sin ECG13=∠。
∴CG12=。
又∵CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE得AD DECG GE=,即AD2125=,解得24AD5=。
∴⊙O的半径为2AD=485。
【考点】等腰(边)三角形的性质,直角三角形两锐角的关系,切线的判定,圆周角定理,勾股定理,相似三角形的判定和性质,锐角三角函数定义。
【分析】(1)连接OB,有圆的半径相等和已知条件证明∠OBC=90°即可证明BC是⊙O的切线。
(2)连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF的度数。
(3)过点C作CG⊥BE于点G,由CE=CB,可求出EG=12BE=5,由Rt△ADE∽Rt△CGE和勾股定理求出DE=2,由Rt△ADE∽Rt△CGE求出AD的长,从而求出⊙O的半径。
25. (2012黑龙江哈尔滨10分)已知:在△ABC中,∠ACB=900,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,A0=MN.(1)如图l,求证:PC=AN;(2)如图2,点E是MN上一点,连接EP并延长交BC于点K,点D是AB上一点,连接DK,∠DKE=∠ABC,EF⊥PM于点H,交BC延长线于点F,若NP=2,PC=3,CK:CF=2:3,求DQ的长.【答案】解:(1)证明:∵BA ⊥AM ,MN ⊥AP ,∴∠BAM=ANM=90°。
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,∴∠PAQ=∠AMN 。
∵PQ ⊥AB MN ⊥AC ,∴∠PQA=∠ANM=90°。
∴AQ=MN 。
∴△AQP ≌△MNA (ASA )。
∴AN=PQ ,AM=AP 。
∴∠AMB=∠APM 。
∵∠APM=∠BPC ∠BPC+∠PBC=90°,∠AMB+∠ABM=90°,∴∠ABM=∠PBC 。
∵PQ ⊥AB ,PC ⊥BC ,∴PQ=PC (角平分线的性质)。
∴PC=AN 。
(2)∵NP=2 PC=3,∴由(1)知PC=AN=3。
∴AP=NC=5,AC=8。
∴AM=AP=5。
∴AQ MN 4==。
∵∠PAQ=∠AMN ,∠ACB=∠ANM=90°,∴∠ABC=∠MAN 。
∴MN 4tan ABC tan MAN AN 3∠=∠==。
∵AC tan ABC BC∠=,∴BC=6。
∵NE ∥KC ,∴∠PEN=∠PKC 。
又∵∠ENP=∠KCP ,∴△PNE ∽△PCK 。
∴NE NP CK PC =。
∵CK :CF=2:3,设CK=2k ,则CF=3k 。
∴NE 22k 3=,4NE k 3=。
过N 作NT ∥EF 交CF 于T ,则四边形NTFE 是平行四边形。
∴NE=TF=4k 3,∴CT=CF -TF=3k -45k=k 33。
∵EF ⊥PM ,∴∠BFH+∠HBF=90°=∠BPC+∠HBF 。
∴∠BPC=∠BFH 。
∵EF ∥NT ,∴∠NTC=∠BFH=∠BPC 。
∴BC tan NTC tan BPC 2PC∠=∠==。
∴NC tan NTC 2CT ∠==,15CT NC=22=。
∴CT=55k=32 。
∴3k=2 。
∴CK=2×32=3,BK=BC -CK=3。
∵∠PKC+∠DKC=∠ABC+∠BDK ,∠DKE=∠ABC ,∴∠BDK=∠PKC 。
∴PCtan PKC1KC∠==。
∴tan∠BDK=1。
过K作KG⊥BD于G。
∵tan∠BDK=1,tan∠ABC=43,∴设GK=4n,则BG=3n,GD=4n。
∴BK=5n=3,∴n=35。
∴BD=4n+3n=7n=215。
∵AB10=,AQ=4,∴BQ=AB-AQ=6。
∴DQ=BQ-BD=6-219=55。
【考点】相似形综合题,全等三角形的判定和性质,角平分线的性质,勾股定理,相似三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形。
【分析】(1)确定一对全等三角形△AQP≌△MNA,得到AN=PQ;然后推出BP为角平分线,利用角平分线的性质得到PC=PQ;从而得到PC=AN。
(2)由已知条件,求出线段KC的长度,从而确定△PKC是等腰直角三角形;然后在△BDK中,解直角三角形即可求得BD、DQ的长度。
26. (2012湖北十堰10分)如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;(3)作CF⊥AB于点F,连接AD交CF于点G(如图2),求FGFC的值.【答案】解:(1)证明:∵AB是⊙O的直径,∴∠BCA=90°。
∴∠ABC+∠BAC=90°。
又∵∠CBD=∠BAC,∴∠ABC+∠CBD=90°。
∴∠ABD=90°。
∴OB⊥BD。
∴BD为⊙O的切线。
(2)证明:如图,连接CE、OC,BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED。
∴△OBE为等边三角形。
∴∠BOE=60°。
又∵OD∥AC,∴∠OAC=60°。
又∵OA=OC,∴AC=OA=OE。
∴AC∥OE且AC=OE。
∴四边形OACE是平行四边形。
而OA=OE,∴四边形OACE是菱形。
(3)∵CF⊥AB,∴∠AFC=∠OBD=90°。
又∵OD∥AC,∴∠CAF=∠DOB。
∴Rt△AFC∽Rt△OBD。
∴FC AFBD OB=,即BD AFFCOB⋅=。
又∵FG∥BD,∴△AFG∽△ABD。
∴FG AFBD AB=,即BD AFFGAB⋅=。
∴FG OB1 FC AB2==。
【考点】圆的综合题,圆周角定理,直角三角形两锐角的关系,切线的判定,直角三角形斜边上的中线性质,等边三角形的判定和性质,平行的判定和性质,菱形的判定,相似三角形的判定和性质。
【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角为直角得到∠BCA=90°,则∠ABC+∠BAC=90°,而∠CBD=∠BA,得到∠ABC+∠CBD=90°,即OB⊥BD,根据切线的判定定理即可得到BD为⊙O的切线。
(2)连接CE、OC,BE,根据直角三角形斜边上的中线等于斜边的一半得到BE=OE=ED,则△OBE为等边三角形,于是∠BOE=60°,又因为AC∥OD,则∠OAC=60°,AC=OA=OE,即有AC∥OE且AC=OE,可得到四边形OACE是平行四边形,加上OA=OE,即可得到四边形OACE是菱形。
(3)由CF⊥AB得到∠AFC=∠OBD=90°,而OD∥AC,则∠CAF=∠DOB,根据相似三角形的判定易得Rt△AFC∽Rt△OBD,则有FC AFBD OB=,即BD AFFCOB⋅=,再由FG∥BD易证得△AFG∽△ABD,则FG AFBD AB=,即BD AFFGAB⋅=,然后求FG与FC的比即可。
27. (2012江苏镇江11分)等边△ABC 的边长为2,P 是BC 边上的任一点(与B 、C 不重合),连接AP ,以AP 为边向两侧作等边△APD 和等边△APE ,分别与边AB 、AC 交于点M 、N (如图1)。
(1)求证:AM=AN ;(2)设BP=x 。
①若,BM=38,求x 的值;②记四边形ADPE 与△ABC 重叠部分的面积为S ,求S 与x 之间的函数关系式以及S 的最小值;③连接DE ,分别与边AB 、AC 交于点G 、H (如图2),当x 取何值时,∠BAD=150?并判断此时以DG 、GH 、HE 这三条线段为边构成的三角形是什么特殊三角形,请说明理由。
【答案】解:(1)证明:∵△ABC 、△APD 和△APE 都是等边三角形,∴AD=AP ,∠DAP=∠BAC=600,∠ADM=∠APN=600。
∴∠DAM=∠PAN 。
∴△ADM ≌△APN (ASA ),∴AM=AN 。
(2)①易证△BPM ∽△CAP ,∴BM BP CP CA=, ∵BN=38,AC=2,CP=2-x ,∴3x 82x 2=-,即24x 8x+3=0-。
解得x=12或x=32。
②四边形AMPN 的面积即为四边形ADPE 与△ABC 重叠部分的面积。
∵△ADM ≌△APN ,∴ADM APN S S ∆∆=。
∴APM ANP APM ADM ADP AMPN S S S S S S ∆∆∆∆∆=+=+=四形边。
如图,过点P 作PS ⊥AB 于点S ,过点D 作DT ⊥AP 于点T ,则点T 是AP 的中点。
在Rt △BPS 中,∵∠P=600,BP=x ,∴PS=BPsin600x ,BS=BPcos600=12x 。
∵AB=2,∴AS=AB -BC=2-12x 。
∴2222221AP AS PS 2x +=x 2x+42⎫⎛⎫==--⎪ ⎪⎪⎝⎭⎝⎭+。
∴2ADP 11S AP DT AP 22∆=⋅⋅=⋅。
∴)))222ADP AMPN S S S x 2x+4x 1+0x 24444<<∆====-=-四形边。
∴当x=1时,S 。
③连接PG ,设DE 交AP 于点O 。
若∠BAD=150,∵∠DAP =600,∴∠PAG =450。
∵△APD 和△APE 都是等边三角形,∴AD=DP=AP=PE=EA 。