2015年秋季新版苏科版八年级数学上学期1.2、全等三角形同步练习4

合集下载

苏科版八年级数学上册1-2全等三角形试题 一课一练(含答案)-doc

苏科版八年级数学上册1-2全等三角形试题 一课一练(含答案)-doc

苏科版八年级数学上册1.2全等三角形试题一课一练一、选择题1.如图所示,△ABC≌△AEF,AB=AE,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是( )A.1 B.2 C.3 D.42.下列说法正确的是( )A.全等三角形是指形状相同的三角形 B.全等三角形是指面积相等的三角形C.全等三角形的周长和面积都相等 D.所有的等边三角形都全等3.下列命题中正确的是( )A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的垂直平分线相等D.全等三角形对应角的平分线相等4.如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角( )A.相等B.不相等C.互余D.互补或相等5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC6.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC 中与这个角对应的角是( )A .∠AB .∠BC .∠CD .∠D7.如图,已知△ABC ≌△ABD ,若,则的度数是( )55∠= BAC CAD ∠A .115°B .110°C .105°D .100°8.已知图中的两个三角形全等,则的度数是( )α∠A .72°B .60°C .58°D .50°9.如果的三边长分别为3,5,7,的三边长分别为3,,ABC A DEF A 32x -,若这两个三角形全等,则等于( ).21x -x A . B .3 C .3或 D .4737310.下列关于全等三角形的说法不正确的是A .全等三角形的大小相等B .两个等边三角形一定是全等三角形C .全等三角形的形状相同D .全等三角形的对应边相等11.在△ABC 中,∠A =∠C ,若与△ABC 全等的三角形有一个角等于96°,那么这个角在△ABC 中对应的角是A .∠AB .∠BC .∠CD .∠A 或∠C12.如图所示,锐角△ABC 中,D ,E 分别是AB ,AC 边上的点,△ADC ≌ADC 'A ,△AEB ≌,且,BE 、CD 交于点F ,若∠BAC=40°,则∠AEB 'A ////C D EB BC ''BFC 的大小是( )A.105° B.100° C.110° D.115°13.如图,已知△ABC≌△CDE,下列结论中不正确的是( )A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D 14.如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不一定正确的是( )A.AB=AC B.∠BAD=∠CAE C.BE=CD D.AD=DE15.如果一个三角形的一内角平分线垂直于对边,那么这个三角形是( ) A.等腰三角形B.等边三角形C.锐角三角形D.不能确定16.一个三角形的三边长分别为2,5,x,另一个三角形的三边长分别为y,2,6,若这两个三角形全等,则x+y=( )A.11 B.7 C.8 D.1317.若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为( ) A.5 B.8 C.7 D.5或818.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是 ( )①AC=DF②BC=EF③∠B=∠E④∠C=∠FA.①②③B.②③④C.①③④D.①②④二、填空题1.如图,将△ABC 沿BC 所在的直线平移到△A'B'C'的位置,则△ABC_______△A'B'C',图中∠A 与____,∠B 与____,∠ACB 与____是对应角.2.三个全等三角形按如图的形式摆放,则_______________度.123∠+∠+∠=3.如图,△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,在以下结论中:①△ADE ≌△ADF ;②△BDE ≌△CDF ;③△ABD ≌△ACD ;④AE=AF ;⑤BE=CF ;⑥BD=CD .其中正确结论的个数是_______.三、解答题1.如图,点A 、B 、C 在同一直线上,点E 在BD 上,且△ABD ≌△EBC ,AB =2cm ,BC =3cm .(1)求DE 的长;(2)判断AC 与BD 的位置关系,并说明理由.(3)判断直线AD 与直线CE 的位置关系,并说明理由.2.如图所示,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.3.如图所示,已知△ABC≌△ADE,BC的延长线交AD于F,交ED于G,且∠CAD=30°,∠B=∠D=25°,∠EAB=130°,求∠DFB和∠DGB的度数.答案一、选择题B.C.D.D.A.A.B.D.B.B.B.B.C. D.A. A.C.C.二、填空题1.≌、∠A'、∠A'B'C'、∠C'2.180°.3.2.三、解答题1.(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC =90°,即CE ⊥AD .2.证明:(1)∵△ABC ≌△BAD ,∴∠CAB =∠DBA ,∴OA =OB .(2)∵△ABC ≌△BAD ,∴AC =BD ,又∵OA =OB ,∴AC ﹣OA =BD ﹣OB ,即:OC =OD ,∴∠OCD =∠ODC ,∵∠AOB =∠COD ,∠CAB ,∠ACD , =180°−∠AOB 2=180°−∠COD 2∴∠CAB =∠ACD ,∴AB ∥CD .3.∵△ABC ≌△ADE ,∴∠BAC =∠DAE ,∵∠EAB =130°,∴∠DAE +∠CAD +∠BAC =130°, ∵∠CAD =30°,∴∠BAC (130°﹣30°)=50°, =12∴∠BAF =∠BAC +∠CAD =80°,∴∠DFB =∠BAF +∠B =80°+25°=105°; ∵∠DFB =∠D +∠DGB ,∴∠DGB =105°﹣25°=80°.。

苏科版八年级数学上册《全等三角形》同步练习.docx

苏科版八年级数学上册《全等三角形》同步练习.docx

《全等三角形》同步练习姓名一、选择题1.下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边2.AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有()A.5对B.4对C.3对D.2对3.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对4.已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF第2题第3题第 4题第5题第6题5.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为()A.50°B.30°C.45°D.25°6.如图 , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ()A.70°B.80°C.100°D.90°7.如图,用直尺和圆规作一个角等于己知角的示意图如图所示,则说明∠A'O'B'=∠AOB的依据是()A、SSSB、SASC、ASAD、AAS8.下列说法:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.其中正确的是()A.①和②B.②和③C.①和③D.①②③9.如图所示是5×5的正方形网格图,以点D,E为两个顶点作位置不同的格点三角形(三个顶点在正方形格点上的三角形),使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出( )A.2个B.4个C.6个D.8个二、填空题1.如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.CEDBOA2.如图,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________.3.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质).在△EBD 与△FCE 中, ∠______=∠______(已证),______=______(已知),∠B =∠C (已知), ∴EBD FCE △≌△( ).∴ED =EF( ).4.如图,△ACD≌△ECB,A 、C 、B 在一条直线上,且A 和E 是一对对应顶点,如果∠BCE=1300,那么将△ACD绕着C 点顺时针旋转 度与△ECB 重合.5.AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则边BC 的取值范围是 ;中线AD的取值范围是 .6.如图,△ABC ≌△ADE ,BC 的延长线经过点E ,交AD 于F ,∠ACB =∠AED =105°,∠CAD =10°,∠B =50°,则∠EAB = °,∠DEF = °.三、简答题:1.如图,△ABC ≌△A’B ’C ’,AD 、A’D’分别是△ABC 、△A’B’C’的高.试用全等识别法说明AD=A’D’.A B CD12 A D EC B F2.如图,已知AC=DB ,AB=CD .试说明:OA=OD .3.如图,△ABC 的形状大小确定,将AB 边绕点A 顺时针旋转90°至AE 处,这时AC 就跟着旋转到AD 处,试说明BC ⊥DE .4.如图,AB//CD ,AB=CD ,过AC 中点O 的直线分别交AD 、BC 于点E 、F ,试说明OF=OE5.已知:∠AOB (如图) 求作:(1)∠AOB 的平分线OC ;(2)作射线OD ⊥OC ;(3)在OC 上取一点P ,作出点P 到∠AOB两边的垂线段,并比较这两条垂线段的大小关系。

苏科版八年级上册数学 全等三角形同步单元检测(Word版 含答案)

苏科版八年级上册数学 全等三角形同步单元检测(Word版 含答案)

一、八年级数学全等三角形解答题压轴题(难)1.如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.(1)求m和n的值.(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.【答案】(1)42mn=-⎧⎨=⎩(2)详见解析;(3)NB﹣FB=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.【解析】【分析】(1)由点D,点B的坐标和四边形AOBD的面积为12,可列方程组,解方程组即可;(2)由(1)可知,AD=OA=4,OB=2,并可求出AB=BD=25,利用SAS可证△DAC≌△AOB,并可得∠AEC=90°,利用三角形面积公式即可求证;(3)取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,证明△ABH≌△CAN,即可得到结论.【详解】解:(1)由题意()()218122m nn m m--=⎧⎪⎨++-=⎪⎩解得42mn=-⎧⎨=⎩;(2)如图2中,由(1)可知,A(﹣4,0),B(0,2),D(﹣4,4),∴AD=OA =4,OB =2,∴由勾股定理可得:AB =BD =25,∵AC =OC =2,∴AC =OB ,∵∠DAC =∠AOB =90°,AD =OA ,∴△DAC ≌△AOB (SAS ),∴∠ADC =∠BAO ,∵∠ADC +∠ACD =90°,∴∠EAC +∠ACE =90°,∴∠AEC =90°,∵AF ⊥BD ,DE ⊥AB ,∴S △ADB =12•AB •AE =12•BD •AF , ∵AB =BD ,∴DE =AF .(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,∵AG =BG ,∴∠GAB =∠GBA ,∵G 为射线AD 上的一点,∴AG ∥y 轴,∴∠GAB =∠ABC ,∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB ,即∠ABG =∠ACN ,∵∠GAN =∠GBO ,∴∠AGB =∠ANC ,在△ABG 与△ACN 中,ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△ACN (AAS ),∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB =2∴NB ﹣FB =2×2=4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.【点睛】本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.2.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.(1)求证:BMD ∆为等腰直角三角形;(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可.()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形,45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC∴=,12DM EC=,BM DM∴=,BM CM=,DM CM=,BCM MBC∠∠∴=,DCM MDC∠∠=,2BME BCM MBC BCE∠∠∠∠∴=+=,同理2DME ACM∠∠=,22224590 BMD BCM ACM BCA∠∠∠∠∴=+==⨯= BMD∴是等腰直角三角形.()2解:如图2,BDM是等腰直角三角形,理由是:延长ED交AC于F,ADE和ABC△是等腰直角三角形,45BAC EAD∠∠∴==,AD ED⊥,ED DF∴=,M为EC中点,EM MC∴=,12DM FC∴=,//DM FC,45BDN BND BAC∠∠∠∴===,ED AB⊥,BC AB⊥,//ED BC∴,DEM NCM∠∴=,在EDM和CNM中DEM NCMEM CMEMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩EDM∴≌()CNM ASA,DM MN∴=,BM DN∴⊥,BMD∴是等腰直角三角形.()3BDM是等腰直角三角形,理由是:过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,可证得MDE ≌MFC ,DM FM ∴=,DE FC =,AD ED FC ∴==,作AN EC ⊥于点N ,由已知90ADE ∠=,90ABC ∠=,可证得DEN DAN ∠∠=,NAB BCM ∠∠=,//CF ED ,DEN FCM ∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=, BCF ∴≌BAD ,BF BD ∴=,DBA CBF ∠∠=,90DBF DBA ABF CBF ABF ABC ∠∠∠∠∠∠∴=+=+==,DBF ∴是等腰直角三角形,点M 是DF 的中点,则BMD 是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.3.(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.小王同学探究此问题的方法是延长FD 到点G ,使DG =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 ;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由;(3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,试求出MN的长.【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证MN=ND,则求出ND的长度,即可得到答案.解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;(2)EF=BE+FD仍然成立.证明:如答图1,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.∴AE=AG,∠BAE=∠DAG.又∵∠EAF=12∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD-∠EAF=∠BAD-12∠BAD=12∠BAD,∴∠EAF=∠GAF.在△AEF与△AGF中,AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF.∴EF=FG.又∵FG=DG+DF=BE+DF.∴EF=BE+FD.(3)如答图2,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.∴EF=AE+FB=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离为210海里;(4)如答图3,在△ABC外侧作∠CAD=∠BAM,截取AD=AM,连接CD,DN,在△ACD与△ABM中,AC=AB,∠CAD=∠BAM,AD=AM,则△ACD≌△ABM,∴CD=BM=1,∠ACD=∠ABM=45°,∵∠NAD=∠NAC+∠CAD=∠NAC+∠BAM=∠BAC-∠MAN=45°,∴∠MAD=∠MAN+∠NAD=90°=2∠NAD,又∵AM=AD,∠NCD+∠MAD=(∠ACD+∠ACB)+90°=180°,∴对于四边形AMCD符合探索延伸,则ND=MN,∵∠NCD=90°,CD=1,CN=3,∴MN=ND=10.4.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1) 如图1,直接写出AB与CE的位置关系(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK =BK【答案】(1)AB ⊥CE ;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A ,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB ⊥CE. (2)延长HK 于DE 交于H ,易得△ACD 为等腰直角三角形,∠ADC=45°,易得DH=DE ,然后证明△DGH ≌△DGE ,所以∠H=∠E ,则∠H=∠B ,可得HK=BK.【详解】解:(1)∵Rt △ABC ≌Rt △CED ,∴∠ECD=∠A ,∠B=∠E ,BC=DE ,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB ⊥CE(2)在Rt △ACD 中,AC=CD ,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH =DB ,∴CH+CD=DB+CD ,即HD=BC ,∴DH=DE ,在△DGH 和△DGE 中,DH=DE HDG=EDG=45DG=DG ⎧⎪∠∠⎨⎪⎩∴△DGH ≌△DGE (SAS )∴∠H=∠E又∵∠B=∠E∴∠H=∠B ,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.5.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.6.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .(1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】 解:(1)903, 7C AC BC ∠=︒==,∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM 与△DEN 中,∠EMA=∠END=90°,∠AEM=∠DEN ,AE=DE∴△AEM ≌△DEN (AAS )∴ME=NE∴点E 在∠ACB 的平分线上,即CE 是ACB ∠的平分线(3)由(2)可知,点E 在∠ACB 的平分线上,∴当点D 向点B 运动时,点E 的路径为一条直线,∵△AEM ≌△DEN∴AM=DN ,即AC-CM=CN-CD在Rt △CME 与Rt △CNE 中,CE=CE ,ME=NE ,∴Rt △CME ≌Rt △CNE (HL )∴CM=CN∴CN=1()2AC CD +, 又∵∠MCE=∠NCE=45°,∠CME=90°, ∴CE=22()2CN AC CD =+, 当AC=3,CD=CO=1时, CE=2(31)222+= 当AC=3,CD=CB=7时,CE=2(37)522+= ∴点E 的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.7.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG ,由(1)可知,AE=GF ,DC=BG ,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC =B C ∴∠=∠,60DF DE ADB =∠=︒,且E 与A 重合,ADF ∴∆是等边三角形60ADF AFD ∴∠=∠=︒120AFB ADC ∴∠=∠=︒在ABF ∆和ACD ∆中AFB ADC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD ∴∆∆≌BF DC ∴=②如图2,过点A 做AG ∥EF 交BC 于点G ,∵∠ADB =60° DE =DF∴△DEF 为等边三角形∵AG ∥EF∴∠DAG =∠DEF =60°,∠AGD =∠EFD =60°∴∠DAG =∠AGD∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,∴+=+==BF CD BF BG GF AE=-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.8.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【分析】(1)首先连接AD 并延长至点F ,然后根据外角的性质,即可判断出∠BDC =∠BAC+∠B+∠C ;(2)①由(1)可得∠A+∠ABX+∠ACX =∠X ,然后根据∠A =40°,∠X =90°,即可求解;(3)②由∠A =40°,∠DBE =130°,求出∠ADE+∠AEB 的值,然后根据∠DCE =∠A+∠ADC+∠AEC ,求出∠DCE 的度数即可.【详解】(1)如图,∠BDC =∠BAC+∠B+∠C ,理由是:过点A 、D 作射线AF ,∵∠FDC =∠DAC+∠C ,∠BDF =∠B+∠BAD ,∴∠FDC+∠BDF =∠DAC+∠BAD+∠C+∠B ,即∠BDC =∠BAC+∠B+∠C ;(2)①如图(2),∵∠X =90°,由(1)知:∠A+∠ABX+∠ACX =∠X =90°,∵∠A =40°,∴∠ABX+∠ACX =50°,故答案为:50;②如图(3),∵∠A =40°,∠DBE =130°,∴∠ADE+∠AEB =130°﹣40°=90°,∵DC 平分∠ADB ,EC 平分∠AEB ,∴∠ADC =12∠ADB ,∠AEC =12∠AEB , ∴∠ADC+∠AEC =1(ADB AEB)2∠+∠=45°, ∴∠DCE =∠A+∠ADC+∠AEC =40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,ABC ∆是等腰直角三角形,090BAC ∠=,点D 是直线BC 上的一个动点(点D与点B C、不重合),以AD为腰作等腰直角ADE∆,连接CE.(1)如图①,当点D在线段BC上时,直接写出,BC CE的位置关系,线段,BC CD,CE之间的数量关系;(2)如图②,当点D在线段BC的延长线上时,试判断线段BC,CE的位置关系,线段,,BC CD CE之间的数量关系,并说明理由;(3)如图③,当点D在线段CB的延长线上时,试判断线段,BC CE的位置关系,线段,,BC CD CE之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE⊥,CE BC CD=+,理由见解析;(3),BC CE CD BC CE⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,判定△ABD≌△ACE(SAS),利用两角的和即可得出BC CE⊥;利用线段的和差即可得出BC CE CD=+;(2)同(1)的方法根据SAS证明△ABD≌△ACE,得出BD=CE,∠ACE=∠ABD,从而得出结论;(3)先根据SAS证明△ABD≌△ACE,得出ADB AEC∠=∠,BD CE=,从而得出结论.【详解】(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,AE=AD,在△△ABD和△ACE中90AB ACBAC DAEAD AE⎧⎪∠∠=︒⎨⎪⎩===,∴△ABD≌△ACE(SAS),∴∠B=∠ACE,BD=CE,又∵△ABC是等腰直角三角形,∴∠B+∠A CB=90︒,∴∠ACE+∠ACB=90︒,即BC CE⊥,∵BC=BD+CD, BD=CE,∴BC CE CD=+;(2)BC CE⊥,CE BC CD=+,理由如下:∵ABC ∆、ADE ∆是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC DAC DAE DAC ∠+∠=∠+∠即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆∴BD CE =∵BD BC CD =+∴CE BC CD =+,∴ABD ACE ∠=∠,∵090ABD ACE ∠+∠=∴090ACE ACB ∠+∠=∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下:∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆,∴ADB AEC ∠=∠,BD CE =,∵CD BD BC =+,∴CD CE BC =+,∵090ADE AED ∠+∠=,即090ADB CDE AED ∠+∠+∠=∴090AEC CDE AED ∠+∠+∠=,∴090DCE ∠=,即BC CE ⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.10.在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM与△OQN全等【解析】【分析】(1)根据OA=OE即可解决问题.(2)根据ASA证明三角形全等即可解决问题.(2)设运动的时间为t秒,分三种情况讨论:当点P、Q分别在y轴、x轴上时;当点P、Q都在y轴上时;当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时;列方程即可得到结论.【详解】(1)∵A(0,5),∴OE=OA=5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t=174(秒),③当点P在x轴上,Q在y轴上时,若二者都没有提前停止,则PO=QO得:t﹣5=3t﹣12,解得t=72(秒)不合题意;当点Q运动到点E提前停止时,有t﹣5=5,解得t=10(秒),综上所述:当两动点运动时间为72、174、10秒时,△OPM与△OQN全等.【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.。

苏科版八年级数学上册1-3探索三角形全等的条件 同步练习(含答案)

苏科版八年级数学上册1-3探索三角形全等的条件  同步练习(含答案)

苏科版八年级数学上册1.3探索三角形全等的条件同步练习一.选择题1.如图,已知△ABD≌△ACE,下列说法错误的是()A.∠B=∠C B.EB=DC C.AD=DC D.△EFB≌△DFC 2.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.BE=CD D.DA=DE3.下列说法中错误的是()A.有两个角及它们的夹边对应相等的两个三角形全等B.有两个角及其中一个角的对边对应相等的两个三角形全等C.有两条边及它们的夹角对应相等的两个三角形全等D.有两条边及其中一条边的对角对应相等的两个三角形全等4.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD、CD.由作法可得:△ABC≌△CDA的根据是()A.SAS B.ASA C.AAS D.SSS5.如图,将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由转动,就做成了一个测量工件,则A'B'的长等于内槽宽AB,那么判定△AOB≌△A'OB'的理由是()A.边角边B.角边角C.边边边D.角角边6.在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D 7.如图,已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.甲和乙B.乙和丙C.只有乙D.只有丙8.下面各条件中,能使△ABC≌△DEF的条件的是()A.AB=DE,∠A=∠D,BC=EF B.AB=BC,∠B=∠E,DE=EF C.AB=EF,∠A=∠D,AC=DF D.BC=EF,∠C=∠F,AC=DF 9.如图,在①AB=AC②AD=AE③∠B=∠C④BD=CE四个条件中,能证明△ABD与△ACE全等的条件顺序是()A.①②③B.②③④C.①②④D.①②③④10.如图,已知△ABD≌△ACE,且∠ABC=∠ACB,则图中一共有多少对全等三角形?()A.3对B.4对C.5对D.6对二.填空题11.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论正确的是.A.∠1=∠2;B.BE=CF;C.△CAN≌△ABM;D.CD=DN.12.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)13.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是.14.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.15.如图,∠ADC=∠DCF=120°,AD=DC=2CF,若AE=24,则线段CE长为.三.解答题16.如图,已知四边形ABCD中,AB∥CD,AD∥BC.E为BD上一点,且BE=AD,∠DEF=∠ADC,EF交BC的延长线于点F.(1)AD和BC相等吗?为什么?(2)BF和BD相等吗?为什么?17.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.18.已知:如图,在五边形ABCDE中,AB=AE,∠B=∠E,BC=ED.(1)求证:△ABC≌△AED.(2)当AC∥DE,∠ADE=40°时,求∠ACD的度数.参考答案一.选择题1.解:∵△ABD≌△ACE,∴∠B=∠C,AB=AC,AE=AD,∴AB﹣AE=AC﹣AD,∴BE=CD,在△EFB和△DFC中∴△EFB≌△DFC(AAS),无法证得AD=DC,∴正确的说法是A、B、D,错误的说法是C.故选:C.2.解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项不符合题意;C、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;D、添加DA=DE无法求出∠DAB=∠EAC,故本选项符合题意.故选:D.3.解:A、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA”,说法正确;B、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS”,说法正确;C、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS”,说法正确;D、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D.4.解:由题意可得,AD=BC,AB=CD,在△ADC和△CBA中,,∴△ADC≌△CBA(SSS),故选:D.5.解:∵两钢条中点连在一起做成一个测量工件,∴OA′=OA,OB′=OB,∵∠BOA=B′OA′,∴△AOB≌△B′OA′.所以AB的长等于内槽宽A'B',用的是SAS的判定定理.故选:A.6.解:A、加上AB=DE,不能证明这两个三角形全等,故此选项错误;B、加上BC=EF,不能证明这两个三角形全等,故此选项错误;C、加上AB=FE,可用ASA证明两个三角形全等,故此选项正确;D、加上∠C=∠D,不能证明这两个三角形全等,故此选项错误;故选:C.7.解:甲、边a、c夹角不是50°,∴甲错误;乙、两角为58°、50°,夹边是a,符合ASA,∴乙正确;丙、两角是50°、72°,72°角对的边是a,符合AAS,∴丙正确.故选:B.8.解:A、AB=DE,∠A=∠D,BC=EF,∠A=∠D不是夹角;B、AB=BC,∠B=∠E,DE=EF不是两三角形的边相等;C、AB=EF,∠A=∠D,AC=DF不是对应边相等;D、BC=EF,∠C=∠F,AC=DF,满足SAS,三角形全等.故选:D.9.解:根据图形和四个三角形全等的判定定理可知:(1)当有条件①②④的时候,可根据“边边边”定理证明出△ABD与△ACE全等.(2)当满足条件①③④的时候,可根据“边角边”定理证明出△ABD与△ACE全等.故选:C.10.解:∵△ABD≌△ACE,∴AE=AD,CE=BD,∠ABD=∠ACE,∴BE=CD,在△BFE与△CFD中,,∴△BFE≌△CFD(AAS),在△BCD与△CBE中,∴△BCD≌△CBE(SSS),∴BD=CE,在△BDE与△CED中,,∴△BDE≌△CED(SSS),∴共有4对全等三角形.故选:B.二.填空题11.解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF(AAS),∴∠FAC=∠EAB,BE=CF,AB=AC,∴∠1=∠2,故A,B正确;又∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),故C错误;∵△ACN≌△ABM(ASA),∴AN=AM,∴MC=BN,而∠B=∠C,∠CDM=∠BDN,∴△DMC≌△DMB(AAS),∴DC=DB,∴DC≠DN,故D错误.故答案为:A,B;12.解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)13.解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°,故答案为:65°.14.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.15.解:如图,过点D作DH⊥AC于H,∵∠ADC=∠DCF=120°,AD=DC,DH⊥AC,∴AH=HC,∠DAC=∠DCA=30°,∴∠ACF=90°,AD=2DH,∵AD=2CF,∴DH=CF,在△DHE和△FCE中,,∴△DHE≌△FCE(AAS)∴EH=EC,∴EC=EH=CH=AH,∵AE=24,∴EH=EC=8.故答案为8.三.解答题16.解:(1)AD=CB,∵AD∥BC,∴∠ABD=∠CDB,同理可得,∠ADB=∠CBD,在△ABD与△CDB中,,∴△ABD≌△CDB(ASA),∴AD=CB;(2)BF=BD,∵AD=CB,BE=AD,∴BC=BE,∵AD∥BC,∴∠ADB=∠DBF,∵∠DEF=∠ADC,∴∠DEF﹣∠DBF=∠ADC﹣∠ADB,即∠EFB=∠CDB,在△EFB与△CDB中,,∴△EFB≌△CDB(ASA),∴FB=DB.17.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.18.(1)证明:在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:∵AC∥DE,∠ADE=40°,∴∠CAD=∠ADE=40°,∵△ABC≌△AED,∴AC=AD,∴.。

苏科版八年级上册数学 1-2全等三角形 同步练(预习)(含答案)

苏科版八年级上册数学 1-2全等三角形 同步练(预习)(含答案)

苏科版八年级上册数学1.2全等三角形同步练(预习)知识点1:全等三角形1、全等三角形的概念:能够___________的图形叫全等三角形2、表示方法:如果△ABC 和△DEF 是全等三角形,可记作△ABC ≌△DEF,读作△ABC 全等于△DEF3、对应元素:把两个全等的三角形重合在一起(1)对应顶点:_______的顶点(2)对应边:_______的边(3)对应角:_______的角4、找对应边:(1)两个全等三角形的最长边是对应边,最短边是对应边(2)两个全等三角形的公共边是对应边(3)两个全等三角形的对应角,所对的边是对应边;两个对角所夹的边是对应边(4)已知两个全等三角形的两组对应边,则第三组边必为对应边5、找对应角:(1)两个全等三角形的_______角是对应角,________角是对应角。

(2)两个全等三角形的公共角是对应角。

一组_______角是对应角。

(3)两个全等三角形对应边所对的角是对应角,两组对应边所夹的角是对应角。

(4)已知两个全等三角形的两组对应角,则第三组角___________。

知识点2:全等三角形的性质1、全等三角形的对应边_____,对应角_____2、全等三角形的周长_____,面积_____知识点3:三角形的全等变换1、全等变化的概念:只改变图形的位置,而不改变其形状大小的图形变换,叫做全等变换2、三种常见的全等变换:平移全等形、翻折全等形、旋转全等形一、选择题1.如图,△AOC≌△BOD,点A 与点B 是对应点,那么下列结论中错误的是()A.AB=CDB.AC=BDC.AO=BOD.∠A=∠B 2.如图,△ABC≌△DEC,B、C、D 在同一直线上,且CE=5,AC=7,则BD 长()A.12B.7C.2D.143.如图,若△ABC≌△DEF,B、E、C、F 在同一直线上,BC=7,EC=4,则CF 的长是()A.2B.3C.5D.74.如图,△OCA≌△OBD,AO=3,CO=2,则AB 的长为()第1题第2题第3题A.1B.3C.4D.55.如图,△ABC≌△DEF,下列结论正确的是()A.AB=DFB.BE=CFC.∠B=∠FD.∠ACB=∠DEF6.如图,△ABC≌△DEF,∠A=63°,∠B=70°,则∠F 的度数为()A.47°B.43°C.45°D.40°7.如图,△ABC≌△DEF,∠A=90°,∠C=50°,则∠E 的度数是()A.30°B.40°C.50°D.90°8.已知图中的两个三角形全等,则∠α等于()A.50°B.60°C.70°D.80°二、填空题9.如图,点B、D、E、C 在一条直线上,若△ABD≌△ACE,BC=12,BD=3,则DE 的长为_____.10.如图,△ABC≌△DBE,△ABC 的周长为30,AB=9,BE=8,则AC 的长是_____.11.如图,△ABD≌△ACE,∠B 与∠C 是对应角,若AE=5cm,BE=7cm.则AC=_____.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC 的长为_____.13.如图,△ABC≌△DEF,∠A=70°,∠B=50°,则∠DFC=_____.14.已知△ABC≌△ADE,点E 在BC上,∠ABC=30°,∠AED=65°,则∠BAE=_____°.第4题第5题第6题第7题第8题第9题第10题第11题第12题第13题第14题15.如图,△ACB≌△A'CB',若∠ACB=60°,∠ACB'=100°,则∠BCA'=_____°.16.如图,△ABC≌△DCB,AB和DC是对应边,∠DBC=40°,则∠AOD=_____度.三、解答题17.如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.(1)求AE的长度;(2)求∠AED的度数.18.已知,如图,△ABC≌△DEF,求证:AC∥DF.19.如图,△AEC≌△ADB,若∠A=60°,∠ACE=35°,且∠1=∠2,求∠1的度数.第15题第16题1、A2、A3、B4、D5、B6、A7、B8、C9、610、1311、12cm12、313、60°14、3515、2016、10017、(1)∵△ABC≌△DEB,∴BE=BC=3,∴AE=AB-BE=6-3=3;(2)∵△ABC≌△DEB,∴∠A=∠D=25°,∠DBE=∠C=55°,∴∠AED=∠DBE+∠D=25°+55°=80°18、证明:∵△ABC≌△DEF,∴∠ACB=∠DFE,∴AC∥DF19、解:∵△AEC≌△ADB,∴AC=AB,∴∠ABC=∠ACB,∵∠A=60°,∴∠ABC=∠ACB=60°,∵∠ACE=35°,∠1=∠2,∴∠1=∠2=∠ACB-∠ACE=60°-35°=25°。

苏科版八年级数学上册《1.2全等三角形的判定》课后作业(4).docx

苏科版八年级数学上册《1.2全等三角形的判定》课后作业(4).docx

初中数学试卷鼎尚图文**整理制作全等三角形的判定HL 练习题1.在Rt △ABC 和Rt △DEF 中,∠ACB=∠DFE=︒90,AB=DE ,AC=DF ,那么Rt △ABC 与Rt △DEF (填全等或不全等)2.如图,点C 在∠DAB 的内部,CD ⊥AD 于D ,CB ⊥AB 于B ,CD=CB 那么Rt △ADC ≌Rt △ABC 的理由是( )A .SSSB. ASAC. SASD. HL3.如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,AC ∥DB ,且AC=BD ,那么Rt △AEC ≌Rt △BFC 的理由是( ).A .SSSB. AASC. SASD. HL4.下列说法正确的个数有( ).①有一角和一边对应相等的的两个直角三角形全等; ②有两边对应相等的两个直角三角形全等; ③有两边和一角对应相等的两个直角三角形全等; ④有两角和一边对应相等的两个直角三角形全等. A .1个B. 2个C. 3个D. 4个5.过等腰△ABC 的顶点A 作底面的垂线,就得到两个全等三角形,其理由是 . 6.如图,△ABC 中,∠C=︒90,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是 cm. 7.在△ABC 和△C B A '''中,如果AB=B A '',∠B=∠B ',AC=C A '',那么这两个三角形( ). A .全等B. 不一定全等C. 不全等D. 面积相等,但不全等8.已知,如图,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个 ( ) (1)AD 平分∠EDF ; (2)△EBD ≌△FCD ; (3)BD=CD ; (4)AD ⊥BC . A .1个 B .2个 C .3个 D .4个8题图 10题图 11题图 12题图 9.下列命题中正确的有( )①两直角边对应相等的两直角三角形全等; ②两锐角对应相等的两直角三角形全等;③斜边和一条直角边对应相等的两直角三角形全等;④一锐角和斜边对应相等的两直角三角形全等. A .2个 B .3个 C .4个 D .1个D B CAE FD C B A10.如图,ABC ∆和EDF ∆中,︒=∠=∠90D B ,E A ∠=∠,点B 、F 、C 、D 在同一条直线上,再增加一个条件,不能判定ABC ∆≌EDF ∆的是( )A .ED AB = B .EF AC = C .EF AC //D .DC BF =11.如图,AC AB =,AC BD ⊥于D ,AB CE ⊥于E ,图中全等三角形的组数是( ) A .2 B .3 C .4 D .5 12.如图,在△ABC 和△ABD 中,∠C=∠D=90°,若利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 _______或 ; 若利用“HL ”证明△ABC ≌△ABD ,则需要加条件 或 . 13. 已知 如图,AB ⊥BD ,CD ⊥BD ,AB=DC ,求证:AD ∥BC.14.如图,△ABC 中,D 是BC 上一点,DE⊥AB,DF⊥AC,E 、F 分别为垂足,且AE=AF ,试说明:DE=DF ,AD 平分∠BAC.15. 如图,B 、E 、F 、C 在同一直线上,AE ⊥BC ,DF ⊥BC ,AB=DC ,BE=CF ,试判断AB 与CD 的位置关系, 并证明.16.如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD , 试探究BE 与AC 的位置关系.17.如图,在△ABC 中,∠ACB=︒90,AC=BC ,直线DN 经过点C ,且AD ⊥DN 于D ,BE ⊥DN 于E ,A BDCE FABCDF ┐┘E A D BC求证:DE=AD+BE.18.如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE ,求证:AF=CE.19.如图,△ABC 中,∠C=90°,AB=2AC ,M 是AB 的中点,点N 在BC 上,MN ⊥AB 。

苏科版八年级数学上册 1.2 全等三角形 同步测试题

苏科版八年级数学上册   1.2  全等三角形 同步测试题

真情提示:题号得分1cm三角形;③全等三角形的面积相等;④若,,则△ABC≅△DEF △DEF≅△MNP .其中正确的说法共有( )△ABC≅△MNP A.个0 B.个1 C.个2 D.个3 6. 如图所示,,,,则不正确的结论是( )AC =CD ∠B =∠E =90∘AC ⊥CDA. B.∠A =∠2∠1=∠2C.与互为余角D.∠A ∠D △ABC≅△CED7. 如图,,,.给出下列结论:①;②∠E =∠F =90∘∠B =∠C AE =AF ∠1=∠2;③;④.其中正确的结论是( )BE =CF △ACN≅△AMB CD =DNA.①②③B.①③④C.①②D.②③ 8. 如图,在中,,,,,且△ABC ∠A =30∘∠ABC =50∘∠ACB =100∘△EDC≅△ABC 、、在同一条直线上,则 A C D ∠BCE =()A.20∘ B.30∘ C.40∘ D.50∘9. 如图,是的中线,,分别是和延长线上的点,且,连接AD △ABC E F AD AD DE =DF ,、下列说法:①;②和面积相等;③;④BF CE CE =BF △ABD △ACD BF // CE .其中正确的有 △BDF≅△CDE ()A.个1 B.个2 C.个3 D.个4A BE AC=AB BD=CE CE BD F AC BD G10. 如图,点在上,且,.,交于点,,交于点.∠CAB=∠DFE AE.则等于()A.ADB.DFC.CE‒ABD.BD‒AB二、填空题(本题共计9小题,每题3 分,共计27分,)△ABE≅△ACF AB=5AE=2EC11. 如图,若,且,,则的长为________.AC BD O△AOB≅△COD∠A=∠C12. 如图所示,,相交于点,,,则其它对应角分别为________,对应边分别为________.△ABC≅△DEF BC=EF=6cm△ABC18cm2EF13. 已知,,的面积为,则边上的高的cm长是________.△ABC≅△ADE∠B=42∘∠C=90∘∠EAB=40∘14. 如图,已知,,,,则∠BAD=________.AC=BC AD=BE15. 如图,,请你添加一对边或一对角相等的条件,使.你所添加的条件是________.AD△ABC E AC BE AD F BF=AC 16. 如图,已知是的高,为上的一点,交于点,且,FD=CD∠BAD=,则________.△ABC AD⊥BC D E AC BE AD F17 如图,在中,,垂足为,为上一点,交于点,且BF=AC FD=CD AD=4AB=,,,则________.△ABC≅△A1B1C1∠A=110∘∠B=40∘∠C1=∘18 如图,若,且,,则________.AB CD E AE=EB CE=ED D FB CF AB19 如图,与相交于,,,为线段的中点,与交于点G AB=18GE,若,则之长为________.三、解答题(本题共计6 小题,共计63分,)∠1=∠2∠3=∠4E BD AE CE AE=CE20 已知:如图,,,点在上,连结、,求证:.AB=AD AC=AE∠1=∠2BC=DE21. 如图,已知,,,求证:.△ABC AB=BC∠ABC=90∘F AB E BC 22. 如图,在中,,,为延长线上一点,点在上,BE=BF AE EF CF AE=CF,连接,和,求证:.△ABC△ADE AB=AD∠B=∠D∠1=∠2BC=DE 23. 如图,在和中,,,.求证:.△ABC AB=BC∠ABC=90∘F AB E BC24 如图,中,,,为延长线上一点,点在上,且AE=CF△ABE≅△CBF(1)求证:;∠CAE=25∘∠ACF(2)若,求的度数.1AD∠BAC∠B+∠C=180∘∠B=90∘DB=DC25. 如图,平分,,,易知:.2AD∠BAC∠ABD+∠ACD=180∘∠ABD<90∘DB=DC (1)如图,平分,,.求证:.3ABCD∠B=60∘∠C=120∘DB=DC=2AB‒AC=(2)如图,四边形中,,,,则?。

苏科版八年级数学上学期《1.2 全等三角形》 同步练习

苏科版八年级数学上学期《1.2 全等三角形》 同步练习

1.2 全等三角形一.选择题1.已知图中的两个三角形全等,则∠1等于()A.70°B.50°C.60°D.120°2.如图,已知△ABC≌△EFG,则∠α等于()A.72°B.60°C.58°D.50°3.如图所示的两个三角形全等,则∠1的度数是()A.50°B.72°C.58°D.82°4.如图,已知△ABC≌△ADE,若∠E=70°,∠D=30°,则∠BAC的度数是()A.80°B.70°C.40°D.30°5.如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°6.如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E 为对应顶点,下列结论不一定成立的是()A.AC=CD B.BE=CD C.∠ADE=∠AED D.∠BAE=∠CAD 7.如图,已知△ABC≌△EDF,下列结论正确的是()A.∠A=∠E B.∠B=∠DFE C.AC=ED D.BF=DF8.如图,△ACE≌△DBF,AE∥DF,AB=3,BC=2,则AD的长度等于()A.2B.8C.9D.109.如图,△ABC≌△EBD,∠E=50°,∠D=62°,则∠ABC的度数是()A.68°B.62°C.60°D.50°10.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以二.填空题11.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.12.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.13.如图,△ABC≌△ADE,且点E在BC上,若∠DAB=30°,则∠CED=.14.如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=°.15.如图,△EFG≌△NMH,EH=2.4,HN=5.1,则GH的长度是.三.解答题16.如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数..17.如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.参考答案一.选择题1.C.2.A.3.A.4.A.5.A.6.A.7.A.8.B.9.A.10.B.二.填空题11.7cm.12.100°.13.150°.14.40.15.2.7.三.解答题16.解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.17.解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形
1.已知:AB=CD ,∠A=∠D ,求证:∠B=∠C
2.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .
(1)求证:MB =MD ,ME =MF
(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
3.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .
(2)观看图前,在不添辅助线的情况下,除△EBC
外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明): 4.AB=AC ,DB=DC ,F 是AD 的延长线上的一点。

求证:BF=CF
5. 如图:AB=CD ,AE=DF ,CE=FB 。

求证:AF=DE 。

6..已知:如图所示,AB =AD ,BC =D C ,E 、F 分别是 DC 、BC 的中点,求证: AE =AF 。

O
E D
C
B A
F
D
C
B
A
F
E
D
C
B
A
7.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.
8.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .
9.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .
10.已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?
11.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MC
12.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. 已知: 求证:
证明:
C
A
A
C B D
E
F
C A
B
13在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,
MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
14.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

求证:(1)EC=BF ;(2)EC ⊥BF
15.如图:BE ⊥AC ,CF ⊥AB ,B M=AC ,CN=AB 。

求证:(1)AM=AN ;(2)AM ⊥AN。

16.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC ∥EF
17. 如图,已知: AD 是BC 上的中线 ,且DF=DE
.求证:BE ∥CF .
18.已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:AB CD ∥.
A E
B M C
F D C F
19.如图,已知∠1=∠2,∠3=∠4,求证:AB=CD
20.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.
21.如图,已知AB =DC ,AC =DB ,BE =CE ,求证:AE =DE.
全等三角形练习B
1.将直角三角形(∠ACB 为直角)沿线段CD 折叠使B 落在B ’处,若∠ACB ’=60°,则∠ACD 度数为______.
2.如图,△ABE 和△ACD 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠BAC=150°,则∠EFC 的度数为_________.
3.已知△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为_______. 4.如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点, (1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论; (2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.
B
5.△AB C 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.
题图
第1
题图
第2 A
C
E D
B
A B
E
C
D
.34
21D
C
B A
6. 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=
,.将BOC △绕点C 按顺时针方向旋
转60
得ADC △,连接OD .(1)求证:COD △是等边三角形;
(2)当150α=
时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?
A
B
C
D
O
110 α
7.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△;
(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.
C
G
A
E
D
B
F
8.已知:BC=DE ,∠B=∠E ,∠C=∠D
,F 是CD 中点,求证:∠1=∠2。

相关文档
最新文档