12.1《全等三角形》学案
人教版八年级数学第十二章全等三角形导学案

第十二章全等三角形12.1 全等三角形一、课前预习(一)全等形1.定义:能够完全_____的两个图形.2.特点:_____和_____完全相同.二、全等三角形1.定义:能够完全_____的两个三角形.2.对应元素:两个全等的三角形重合在一起有如下对应元素(1)对应顶点:_____的顶点.(2)对应边:_____的边.(3)对应角:_____的角.3.表示方法:(1)表示:△ABC和△DEF全等,记作△ABC___△DEF.(2)注意:记两个三角形全等时,把表示对应顶点的字母写在_____位置上.4.性质:(1)全等三角形的_______相等.(2)全等三角形的_______相等.思维诊断(打“√”或“×”)(1)两个形状相同的图形是全等形.( )(2)比例尺相同的两张中国地图是全等形.( )(3)所有的正方形都是全等形.()(4)全等三角形的面积相等.()(5)两个三角形全等时,两个三角形中最长的边是对应边. ()二、课内探究知识点 1 找全等三角形的对应元素【例1】如图所示,△ABC≌△EDA,∠BAC与∠DEA是对应角,AB与ED是对应边,写出其他对应边及对应角.【解题探究】1.两个三角形全等时,对应角所对的边是对应边,由∠BAC与∠DEA是对应角可得的一组对应边是什么?2.AB与ED是一组对应边,那么另一组对应边是什么?3.根据对应边所对的角是对应角,可知这两个三角形中未知的两组对应角是什么?【互动探究】此题还有另外的方法找对应边和对应角吗?提示:可以根据所给字母的顺序确定对应关系.【总结提升】确定两个全等三角形对应边、对应角的方法(1)确定对应边的“三种方法”①若全等三角形中有公共边,则公共边是对应边.②若已知对应角或对应顶点,则对应角或对应顶点所对的边为对应边.③若已知全等三角形中有最长(或最短)边,则一对最长(或最短)边是对应边.(2)确定对应角的“四种方法”①若全等三角形中有公共角,则公共角为对应角.②若全等三角形中有对顶角,则对顶角为对应角.③若已知全等形的对应顶点,则以对应顶点为顶点的角为对应角.④若已知全等三角形中有最大(或最小)角,则一组最大(或最小)角是对应角.知识点 2 全等三角形性质的应用【例2】如图所示,已知△ABD≌△ACE,AD=6 cm,AC=4 cm,∠ABD=50°,∠E=30°,求BE的长及∠COD的度数.【思路点拨】△ABD≌△ACE→求AE,AB的长→BE的长;根据∠ABD和∠E的大小→∠BOE的大小→∠COD的大小【总结提升】全等三角形性质的两点应用(1)求线段:全等三角形的对应边相等,可以直接确定对应边的数量关系,也可以间接求解相关线段的长度等.(2)求角:全等三角形的对应角相等,可以直接确定对应角的数量关系,也可以间接求解相关角的大小等.三、限时练习1.一个图形经过下列变换得到的图形与原图形不全等的是( )A.平移B.旋转C.翻折D.放大2.下列四个图形中,与图1全等的是( )3.如图所示,△ABC≌△CDA,且AB与CD是对应边,那么下列说法错误的是( )A.∠1与∠2是对应角B.∠B与∠D是对应角C.BC与AC是对应边D.AC与CA是对应边3题4题5题6题4.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.POB.QPC.MOD.MQ5.如图所示,沿直线AC对折,△ABC与△ADC重合,则△ABC≌______,AB的对应边是______,AC的对应边是______,∠B的对应角是______,∠BCA的对应角是______.6.如图,△ABC≌△ADE,写出其对应顶点、对应边、对应角.7.△ABC与△DEF的边长均为整数,且△ABC≌△DEF,若AB=2,BC=4,△DEF的周长为奇数,则DF的取值为( )A.3B.4C.3或5D.3或4或58.如图,△ABC绕点A旋转到△ADE,则下列说法不正确的是( )A. AB与DE是对应边B. △ABC≌△ADEC. ∠BAD=∠CAED. AC=AE9.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5B.4C.3D.210.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的F处,如果AD=9 cm,DE=2.4 cm,∠BAF=60°,则AF=________cm,EF=________cm, ∠DAE=________.8题9题10题11题11.如图所示,将△ABC沿直线BC平移到点D,使BC=CD.(1)相等的边有________,相等的角有________.(2)∠ACE=∠E吗?为什么?四、自助练习1.如果∆ABC ≌∆ADC ,AB=AD ,∠B=70°,BC=3cm,那么∠D=____,DC=____cm.2.如果 ∆ABC ≌∆DEF,且∆ABC 的周长为100 cm,A,B 分别与D,E 对应, AB=30 cm,DF=25 cm,则BC 的长为( )A.45 cmB.55 cmC.30 cmD. 25 cm3.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果 AD=7cm,DM=5cm,则AN=___cm,NM=___cm.4.如图所示,已知△ABD ≌△ACE ,AD=6 cm ,AC=4 cm ,∠ABD=50°, ∠E=30°,求BE 的长及∠COD 的度数.5.如图,△ABD ≌△EBC ,AB=2 cm,BC=5 cm,求DE 的长.6、【想一想错在哪?】如图,△ABC ≌△DEF ,则此图中相等的线段有( ) A.1对 B.2对 C.3对 D.4对M DNBC12.2 三角形全等的判定第1课时 SSS一、课前预习1.判定三角形全等的方法: 已知:△ABC.画△A ′B ′C ′,使A ′B ′=AB,B ′C ′=BC,A ′C ′=AC. 请同学们参照下面的步骤画△A ′B ′C ′. (1)画B ′C ′=___.(2)分别以B ′,C ′为圆心,线段___,___长为半径画弧, 两弧相交于点A ′.(3)连接线段_______,_______,得△A ′B ′C ′. 请同学们把画得的△A ′B ′C ′剪下来,放到△ABC 上, 观察可发现△A ′B ′C ′与△ABC_________,即 △A ′B ′C ′___△ABC.【归纳】(1)判定方法: 分别相等的两个三角形全等. (简写成_______或____)(2)应用格式:在△ABC 和△A ′B ′C ′中,∴△ABC ≌△A ′B ′C ′(____).2.用直尺和圆规作一个角等于已知角的依据是 .(打“√”或“×”)(1)当两个三角形的三边和三角中有两个条件分别相等时,这两个三角形不一定全等.( ) (2)当两个三角形的三边和三角中有三个条件分别相等时,这两个三角形可能全等.( ) (3)当一个三角形的三边确定时,这个三角形的形状就确定了. ( ) (4)两个三角形中,只要三条边分别相等,这两个三角形就一定全等.( )AB A B ,BC B C ,AC A C ,=''⎧⎪=''⎨⎪=''⎩∵二、课内探究知识点1 应用“SSS”证明两个三角形全等【例1】如图,点B,C,D,F在同一直线上,已知AB=EC, AD=EF,BC=DF,探索AB与EC的位置关系,并说明理由.【思路点拨】先判定AB与EC的位置关系,由BC=DF先证出BD=CF,再由SSS证出△ABD与△ECF全等,得出∠B=∠ECF,从而得出答案.【总结提升】证明三角形全等的步骤及寻找边相等的方法(1)证明三角形全等的“四个步骤”①准备条件:未知的条件要先证明(公共边相等可以直接应用,不必推理说明).②写出在哪两个三角形中.③列出三个条件用大括号括起来.④写出全等结论.(2)寻找边相等的“三种方法”①图形中的隐含条件,如公共边.②利用线段中点的定义说明边相等.③多条线段共线时,利用线段的和(差)关系证明边相等.知识点2 “SSS”的实际应用【例2】如图是工人师傅自己设计的测量垂直的仪器.仪器中的AB=AC,D是BC的中点,让BC平行于地面,当铅锤经过D点时,工人师傅就断定AD垂直于地面.工人师傅的判断有道理吗?你能说明理由吗?【思路点拨】证△ABD≌△ACD→∠ADB=∠ADC→∠ADB=90°→AD⊥BC→BC∥地面→结论【总结提升】利用“SSS”解决实际问题“三步法”(1)建模:把实际问题转化为数学问题,构造两个三角形.(2)证明:利用“SSS”证明两个三角形全等.(3)应用:应用全等三角形的性质说明线段或角的大小关系.三、限时训练1.下列说法中正确的个数为( )①周长相等的两个三角形全等②周长相等的两个等腰三角形全等③周长相等的两个等边三角形全等④有三条边分别相等的两个三角形全等A.1B.2C.3D.42.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对2题3题4题5题4.如图,若AB=AC,AD=AE,则需要______条件就可根据“SSS”判断△ABE≌△ACD.5.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=__________.6.如图,已知AB=DC,DB=AC,(1)求证:∠ABD=∠DCA.(注:证明过程要求给出每一步结论成立的依据.)(2)在(1)的证明过程中,需要作辅助线,它的目的是什么?7为稳固电线杆,从A处拉了两根等长的铁丝AC,AD,且C,D到杆脚B的距离相等,则有( )A.∠1>∠2B.∠1<∠2C.∠1=∠2D.∠1与∠2大小不能确定8.小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )A.∠A=∠CB.∠ABC=∠CDAC.∠ABD=∠CDBD.∠ABD=∠C9.长为3 cm,4 cm,6 cm,8 cm的木条各两根,小明与小刚分别取了3 cm和4 cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A.一个人取6 cm的木条,一个人取8 cm的木条B.两人都取6 cm的木条C.两人都取8 cm的木条D. B,C中的两种取法都可以10.如图为一三角形钢架(AB=AC),为使钢架更坚固,需在点A和BC间做一个支架,且使AD⊥BC于D,但只有一把可测长度的皮尺,应如何确定点D的位置.7题8题10题四、自助练习1、如图,D ,F 是线段BC 上的两点,AB=EC ,AF=ED ,要使△ABF ≌△ECD, 还需要条件2、如图,在四边形ABCD 中AB=CD ,则∠A=∠C ,请说明理由。
最新人教版第十二章全等三角形导学案

12.1全等三角形班级 小组 姓名 【学习目标】1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边. 【重点难点】全等三角形的性质;找全等三角形的对应边、对应角.预习案【预习导学】预习课本第31-32页的内容,并完成下列问题:1.能够完全重合的两个图形叫做___________ .2.能够完全重合的两个三角形叫做____________,重合的顶点叫做 , 重合的边叫做___________,重合的角叫做_________,全等用符号_____表示,读作___________.3.如图所示,△ABC ≌△DEF.对应顶点有: ;对应角有: ;对应边有: .4.全等三角形的性质: .探究案探究一:图形的平移、翻折、旋转 如图甲:将△ABC 沿直线BC 平移得△DEF ;如图乙:将△ABC 沿BC 翻折180°得到△DBC ; 如图丙:将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB丙DCABE上述各图中的两个三角形全等吗?得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ .你能得到什么结论: 探究二 : 找对应顶点、对应边、对应角如图,△ABC ≌△CDA ,指出它们的对应顶点、对应边、对应角,并思考在书写两个三角形全等时,应该注意什么问题?探究三:全等三角形的性质的应用 1.如图,△ABC ≌△CDA,求证:AB ∥CD.ABC DEFABCDE2.如图,△ABC ≌△DEC,∠B=∠FCB.求证:ED ∥CF.训练案1.如图,已知△ABE ≌△ACD ,指出它们的对应边和对应角.2.已知如图△ABC ≌△ADE ,试找出对应边、对应角.3.如图所示,若△OAD ≌△OBC,∠O=65°,∠C=20°,则∠OAD= .4.如图,若△ABC ≌△DEF ,回答下列问题:⑴若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; ⑵若∠A =50°,∠E=75°,则∠B= .5.如图,△ABN ≌△ACM.⑴写出它们的对应边和对应角; ⑵求证:BM=CN.DC ABEONMCBAF EDCB A ECADBOC 'B 'A 'CBA12.2 .1三角形全等的判定(SSS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的SSS 判定定理. 2.会应用判定定理SSS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】1.什么是全等三角形?全等三角形有些什么性质?2.如图,ABC ∆≌C B A '''∆那么相等的边是: ; 相等的角是: . 【预习导学】预习课本第35-36页的内容,并完成下列问题:任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足三边相等、三角相等六个条件中的一个.⑴一边或一角对应相等的两个三角形全等吗? 请画图说明.⑵两边或两角对应相等的两个三角形全等吗? 请画图说明⑶一角一边对应相等的两个三角形全等吗? 请画图说明探究案通过预习我们研究了满足全等三角形中的一个或两个条件的情况,现在我们探究满足全等三角形中三个条件(三边对应相等)的情况: 探究:三角形全等的判定方法1已知△ABC ,再画一个△C B A ''',使AB B A ='',BC C B ='',AC C A ='',比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法1: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧===AC BC AB ∴△ABC ≌ ( )练习:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .探究二:用尺规作图作一个角等于已知角. 已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB训练案1.下列说法中,错误的有( )个 ⑴周长相等的两个三角形全等. ⑵周长相等的两个等边三角形全等. ⑶有三个角对应相等的两个三角形全等. ⑷有三边对应相等的两个三角形全等A.1B.2C.3D.42.如图,OA=OB ,AC=BC.求证:△AOC ≌△BOC.3.已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC.4.如图,AB=AE ,AC=AD ,BD=CE ,求证:△ABC ≌△ADE.D CBACOAB AO B12.2.2三角形全等的判定(SAS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的SAS 判定定理. 2.会应用判定定理SAS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 【预习导学】预习课本第37-39页的内容,并完成下列问题:任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两边和一角对应相等.⑴两边和其中一边的对角分别相等的两个三角形全等吗? 请画图说明.⑵两边和它们的夹角分别相等的两个三角形全等吗? 请画图说明.探究案探究:三角形全等的判定方法2已知△ABC ,再画一个△C B A ''',使AB B A ='',AC C A ='',A A ∠='∠,比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法2: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧==∠=AC A AB ∴△ABC ≌ ( )练习:如图,AC 和BD 相较于点O,OA=OC,OB=OD.求证:AB=CD.训练案1.如图,AC 和BD 相较于点O,OA=OC,OB=OD.求证:AB ∥CD.2.如图,AB=AC,AD=AE.求证:∠B=∠C.3.如图,BE=CF ,AB=DC ,∠B=∠C ,求证:∠A=∠D.4.如图,CD =CA ,∠1=∠2,EC =BC.求证:DE =AB.EABCD12DCABE12.2.3三角形全等的判定(ASA)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的ASA 判定定理. 2.会应用判定定理ASA 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 全等三角形的判定方法2: . 【预习导学】预习课本第39-340页的内容,并完成下列问题:1.任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两角和它们的夹边分别相等,这两个三角形全等吗? 请画图说明.2.满足下列哪种条件时,就能判定△ABC ≌△DEF 的是( ) A.∠A =∠E,BC=EF, ∠D =∠C; B.AB=DE,BC=EF, ∠C =∠F C.∠A =∠D,AB=DE, ∠B =∠E; D.∠A =∠D,∠B =∠E, AC=EF探究案探究:三角形全等的判定方法3已知△ABC ,再画一个△C B A ''',使AB B A ='',A A ∠='∠,B B ∠='∠,比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法3: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧=∠==∠B AB A ∴△ABC ≌ ( )练习:如图, AB=AC ,∠B=∠C .求证:AD=AE.D CABE训练案1.如图,AB⊥BD,ED⊥BD,BC=CE,求证:AB=DE.2.如图,∠1=∠2,∠3=∠4,求证:AC=AD.3.如图,已知AF=CD,AB∥DE,EF∥BC,求证:AB=DE.4.如图,AB∥DC,AE⊥BD,CF⊥BD,BF=DE,求证:AE=CF.ABC DEF12AB CDEFAB CDEC 'B 'A 'C B A 12.2.4三角形全等的判定(AAS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的AAS 判定定理. 2.会应用判定定理AAS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 全等三角形的判定方法2: . 全等三角形的判定方法3: . 【预习导学】预习课本第39-340页的内容,并完成下列问题:1.任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两角和其中一个角对边分别相等,这两个三角形全等吗? 请画图说明.2.满足下列哪种条件时,就能判定△ABC ≌△DEF 的是( ) A.AB=DE,BC=EF, ∠A =∠E; B.AB=DE,BC=EF, ∠C =∠F C.∠A =∠E,AB=EF, ∠B =∠D; D.∠A =∠D,∠B =∠E, AC=DF探究案探究:三角形全等的判定方法4如图,在△ABC 和△C B A '''中,A A '∠=∠,B B '∠=∠,C B BC ''=,求证:△ABC ≌△C B A '''.判定方法4: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧==∠=∠AB A C ∴△ABC ≌ ( )练习:如图, AD=AE ,∠B=∠C .求证:AB=AC.D CABE训练案1.如图,已知BC=EF ,AB ∥DE ,∠B=∠E ,求证:AB=DE.2.如图,AE ⊥BE ,AD ⊥DC ,CD =BE ,∠DAB=∠EAC .求证:AB =AC3.如图,E ,F 在线段AC 上,AD ∥CB ,AE = CF .若∠B =∠D ,求证:DF =BE .4.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE.ABCD E A B CD EFABCDEABCDEF12.2.5直角三角形全等的判定(HL)班级 小组 姓名【学习目标】1.理解并掌握直角三角形全等的判定方法(HL );2.学会利用直角三角形全等的判定方法(HL )解决问题. 【重点难点】直角三角形全等的判定方法(HL );灵活运用直角三角形全等的判定方法(HL )解决问题.预习案【旧知回顾】1.判定两个三角形全等的方法: 、 、 、 .2.如图,Rt △ABC 中,直角边是 、 ,斜边是 .3.如图,AB ⊥BE 于B ,DE ⊥BE 于E ,下列情况下,△ABC 与△DEF 全等吗? ①若∠A=∠D ,AB=DE : . ②若∠A=∠D ,BC=EF : . ③若AB=DE ,BC=EF : . ④若AB=DE ,BC=EF ,AC=DF : .【预习导学】预习课本第39-41页的内容,并完成下列问题:任意画出一个Rt ABC ∆,再画一个Rt C B A '''∆,使Rt ABC ∆与Rt C B A '''∆满足斜边和直角边对应相等,这两个直角三角形全等吗? 请画图说明.探究案探究:直角三角形全等的判定方法已知Rt △ABC 中,∠C=90°,再画一个Rt △C B A ''',使∠C '=90°,BC C B ='',AB B A ='',比较这两个直角三角形,看它们是否全等?由此你能得到什么结论?直角三角形的判定方法: . 简写成: 或 . 用数学语言表述:在Rt △ABC 和Rt △C B A '''中, ∵⎩⎨⎧==BC AB ∴Rt △ABC ≌ ( )练习:如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF . 求证:AE =DF .训练案1.如图,△ABC 中,AB=AC ,AD 是高,求证:D 是BC 的中点.2.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?3.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,BE =CF. 求证:AD 是△ABC 的角平分线.5.如图,DE ⊥AC 于E 点,BF ⊥AC 于F 点,若AB=CD,AF=CE,BD 交AC 于M 点. 求证:MB=MD,ME=MFA B C DEF12.2三角形全等的判定复习班级 小组 姓名 【学习目标】1.进一步理解巩固三角形全等的判定方法;2.学会灵活选择三角形全等的判定方法解决问题. 【重点难点】三角形全等的判定方法;灵活选择三角形全等的判定方法解决问题. 【学前准备】1.全等三角形有哪些性质?2.判断全等三角形的方法有哪些?【典型例题】例1:如图,AC=BD ,AB=DC ,求证:∠B=∠C.例2:如图,AB=AD ,CD=CB ,∠A+∠C=180°,试探索CB 与AB 的位置关系.例3:如图,CE ⊥AB 于E ,BD ⊥AC 于D ,BD 、CE 交于点O ,且OD=OE ,求证:AB=AC.例4:已知AB 是等腰直角三角形ABC 的斜边,AD 是∠BAC 的角平分线, 求证:AC+CD=AB.DCBADCB AEODCBAECBDA例5:如图,AD 是△ABC 的高,∠B=2∠C ,求证:CD=AB+BD.例6:在△ABC 中,AB=AC ,在AB 上取一点D ,在AC 的延长线上取一点E ,使BD=CE ,连结DE 交BC 于F ,求证:DF=EF.例7:如图,OA=OB ,C 、D 分别是OA ,OB 上两点,且OC=OD ,连结AD 、BC 交于E , 求证:OE 平分∠AOB.例8:如图,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D , BE ⊥MN 于E ,求证:DE=AD-BE.ACBD FEDCBAEDCBAON M EDCBA12.3角的平分线的性质(1)班级小组姓名【学习目标】1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;2.能运用角的平分线性质定理解决简单的几何问题.【重点难点】掌握角的平分线的性质定理;角平分线定理的应用.预习案【旧知回顾】1.请说出三角形的判定方法:2.直角三角形有哪些判定方法:【预习导学】认真阅读课本P48-49,完成下列问题:1.怎样画一个角的平分线?画出图形,并写出做法.2.OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E 为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论 .PD PE第一次第二次第三次探究案探究一:角平分线的性质求证:角平分线上的点到角的两边的距离相等.(提示:先画出图形,写出已知和求证,然后在证明.)小结:证明一个几何命题的步骤有那些?探究二:如图所示OC 是∠AOB 的平分线,P 是OC 上任意一点, 问PE=PD? 为什么?小结:在应用角平分线定理时应注意哪些问题:训练案1.在Rt △ABC 中,BD 平分∠ABC , DE ⊥AB 于E ,则 ⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE 相等?为什么?⑶若AB =10,BC =8,AC =6,求BE ,AE 的长和△AED 的周长.2.如图:在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF,求证:CF=EB3.如图,在△ABC 中,AC ⊥BC ,AD 平分∠BAC ,DE ⊥AB ,AB =7㎝,AC =3㎝, 求BE 的长OA BED C PED CBA EDCBA12.3角的平分线的性质(2)班级小组姓名【学习目标】1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2.能应用这两个性质解决一些简单的实际问题.3.激情参与,享受成功.【重点难点】角平分线的性质及其应用;灵活应用两个性质解决问题.预习案【旧知回顾】1.请写出角平分线定理:2.证明一个几何命题的步骤有那些?【预习导学】认真阅读课本P48-49,完成下列问题:1.画出三角形三个内角的平分线你发现了什么特点吗?探究案探究一:求证:到角的两边的距离相等的点在角的平分线上(提示:先画图,并写出已知、求证,再加以证明)探究二:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.PNMCBA探究三:如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,训练案1.如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°ADCB第十二章全等三角形检测题班级小组姓名一.选择题(每小题3分,共30分)1.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.52.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论.①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个B.2个C.3个D.4个3.如图,AB=AD,AE平分∠BAD,则图中有()对全等三角形。
人教版八年级数学上册第十二章12.1全等三角形导学案

人教版八年级数学上册第十二章12.1 全等三角形导学案教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.预习反馈阅读教材P31~32,完成下列内容.1.全等形、全等三角形的概念:能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.如下列图形中的全等形是e与h、d与g.2.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如图,△ABC与△DEF能重合,则记作:△ABC≌△DEF,对应顶点:点A与点D、点B 与点E、点C与点F;对应边:AB与DE、AC与DF、BC与EF;对应角:∠A与∠D、∠B与∠E、∠C与∠F.3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.如上图,△ABC≌△DEF,则AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F.例题讲解类型1 全等形的识别例1如图,在4个正方形图案中,与如图所示正方形图案全等的图案是(C)【方法归纳】判断全等形的方法:两个图形同时满足形状相同和大小相同才能称为全等形,并且全等形与它们的位置和方向无关.【跟踪训练1】在下列每组图形中,是全等形的是(C)类型2 找全等三角形的对应元素例2 如图,△ABC≌△DEF,点A与点D,点B和点E是对应顶点,写出这两个三角形的对应边和对应角.解:由△ABC≌△DEF可得AC的对应边是DF,BC的对应边是EF,AB的对应边是DE,∠ABC的对应角是∠DEF,∠A的对应角是∠D,∠ACB的对应角是∠DFE.【方法归纳】确定全等三角形对应元素的三种方法:1.字母顺序法:根据书写规范,按照对应顶点确定对应边,对应角.如:△ABC≌△DEF,则AB与DE,AC与DF,BC与EF是对应边,∠A和∠D,∠B和∠E,∠C和∠F是对应角.2.图形位置法:①公共边一定是对应边;②公共角一定是对应角;③对顶角一定是对应角.3.图形大小法:两个全等三角形的最大的边(角)是对应边(角),最小的边(角)是对应边(角).【跟踪训练2】如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.解:对应边:AN与AM,BN与CM;对应角:∠BAN与∠CAM,∠ANB与∠AMC.类型3 运用全等三角形的性质解决问题例3 如图所示,△ABC绕着点B顺时针旋转90°得到△DBE,且∠ABC=90°.(1)△ABC和△DBE是否全等?若全等,指出对应边和对应角;(2)直线CD,DE有怎样的位置关系?解:(1)∵△ABC绕着点B沿顺时针方向旋转90°得到△DBE,∴△ABC≌△DBE.∴∠BAC的对应角为∠BDE,∠ACB的对应角为∠DEB,∠ABC的对应角为∠DBE;AB的对应边为DB,BC的对应边为BE,AC的对应边为DE.(2)AC⊥DE.理由:延长AC,交DE于点F.∵∠ABC=90°,∴∠A+∠1=90°.又∵△ABC≌△DBE,∴∠D=∠A.又∵∠2=∠1,∴∠2+∠D=90°.∴AC⊥DE.【方法归纳】全等三角形的性质的用途全等三角形的性质⎩⎪⎨⎪⎧角相等⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫证两角相等求某角的度数判断两直线的位置关系边相等⎩⎪⎨⎪⎧证线段相等求线段的长度【跟踪训练3】 如图,把△ABC 沿直线BA 翻折至△ABD ,那么△ABC 和△ABD 是全等图形(填“是”或“不是”).若CB =5,则DB =5;若△ABC 的面积为10,则△ABD 的面积为10.巩固训练1.下列关于全等三角形的说法,不正确的是(A)A .形状相同的三角形是全等三角形B .全等三角形的形状相同C .全等三角形的大小相等D .全等三角形的对应边相等2.如图,已知△ABC ≌△CDE ,其中AB =CD ,那么下列结论中,不正确的是(C)A .AC =CEB .∠BAC =∠ECD C .∠ACB =∠ECDD .∠B =∠D3.如图,若△OAD ≌△OBC ,∠COD =65°,∠C =20°,则∠OAD 的度数为(D)A .65°B .75°C .85°D .95°4.已知△ABC≌△A′B′C′,点A与A′,点B与B′是对应点,△A′B′C′周长为9 cm,AB=3 cm,BC=4 cm,则A′C′=2__cm.5.如图,在图中的两个三角形是全等三角形,其中点A和D、点B和E是对应点.(1)用符号表示两个三角形全等,并写出图中相等的线段;(2)写出图中一组平行的线段,并说明理由.解:(1)△ABC≌△DEF,AB=DE,BC=EF,AC=DF,AF=DC.(2)∵△ABC≌△DEF,∴∠A=∠D,∴AB∥DE.6.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.若DE=7,BC=4,∠D=35°,∠C=60°.(1)求线段AE的长;(2)求∠DFA的度数.解:(1)∵△ABC≌△DEB,∴DE=AB,BE=BC.∵AE=AB-BE,∴AE=DE-BC=7-4=3.(2)∵△ABC≌△DEB,∴∠A=∠D,∠C=∠DBE.∴∠DEA=∠D+∠DBE=95°.∴∠DFA=∠DEA+∠A=130°.课堂小结1.全等三角形的概念:能够完全重合的两个图形叫做全等形.平移、翻折、旋转前后的图形全等.2.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:“全等”用“≌”表示,读作“全等于”,表示两个三角形全等时,通常把表示对顶点的字母写在对应的位置上.3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.。
12.1全等三角形导学案

DCABODC ABE C 1B 1CABA1第一课时 12.1 全等三角形【学习目标】1、知道什么是全等形,什么是全等三角形,能够找出全等三角形的对应元素。
2、会正确表示两个全等三角形,掌握全等三角形的性质。
【学习重点】全等三角形的性质。
【学习难点】正确寻找全等三角形的对应元素 一、学前准备1、三角形的定义:____________________________________2、三角形按边分类: 三角形按角分类:二、探索思考(一)阅读书P31-32,完成下列问题(1) 的两个图形叫做全等形; 叫做全等三角形。
请举出一个生活中全等形的实例 平移、翻折、旋转前后的两个图形 改变了, 、 没变,即它们 (2)全等三角形的对应元素:两个全等的三角形重合到一起,重合的顶点叫 ;重合的边叫 ;重合的角叫如图:两个三角形全等,点C 和点B ,点A和点D是对应顶点, 则△ACO 与△BOD 全等记作 对应边: 和 、 和 、 和 对应角: 和 、 和 、 和 (3)全等三角形的性质:全等三角形的 , 全等三角形的 符号语言:∵△ABC ≌△A 1B 1C 1,∴练习11、将△ABC 沿BC 翻折180°得到△DBC ,则△ABC ≌ ,对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和2、将△ABC 旋转180°得△AED ,△ABC ≌ .对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和3、如图,已知△ABE ≌△ACD ,则对应顶点: 和 、 和 、 和 ∠ADE= ,∠B= ,∠BAE= ;AB= ,BE= ,AD=4、已知如图,△ABC ≌△ADE ,,则对应顶点: 和 、 和 、 和 ∠A= ,∠B= ,∠ACB= ;AB= ,BC= ,AC=三、典例分析1、 将△ABC 沿直线BC 平移,得到△DEF (如图)(1) 线段AB 、DE 是对应线段,有什么关系?线段AC 和DF 呢? (2)线段BE 和CF 有什么关系?为什么?(3)若∠A=50º,∠ABC=30º,求∠D 、∠DEF 、∠DFE 的度数四、当堂反馈1、如图△ BCE ≌ △ CBF ,若BE=3cm ,BF=5cm ,∠CBE=80°, ∠BEC=60, 则∠FBC= ,∠FCB= ,BE= , CE= .2、△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB =8cm ,BD =•6cm ,AD =5cm ,则BC =________cm .3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C4、如图:△ABC ≌△DEF, △ ABC 的周是32cm,DE=9cm,EF=12cm ,求AC.5、如图,△ABC ≌△DEC ,CA 和CD ,CB 和CE 是对应边,∠ACD 和∠BCE 相等吗?为什么?6、如图,△AEC ≌△ADB ,点E 和点D 是对应顶点,若∠A=50°,∠ABD=35°,且∠1=∠2,求∠1的度数。
人教版数学八年级上册12.1全等三角形优秀教学案例

1.讲解全等三角形的定义,让学生理解全等三角形的概念。
2.逐步引导学生发现全等三角形的性质和判定方法。
3.通过实例和问题,讲解全等三角形在实际问题中的应用。
四、教学内容与过程
(一)导入新课
1.利用教具和实物,引导学生观察和操作,激发学生对全等三角形的兴趣。
2.结合生活实际,提出与全等三角形相关的问题,引发学生的思考。
3.总结全等三角形的定义和性质,为新课的讲解做好铺垫。
在导入新课时,我会利用教具和实物,引导学生观察和操作,激发学生对全等三角形的兴趣。例如,我会拿出两个完全相同的三角形,让学生通过观察和操作,发现它们的特性。同时,我会结合生活实际,提出与全等三角形相关的问题,引发学生的思考。例如,我会问学生:“你们在生活中有没有遇到过两个完全相同的三角形?”通过这些问题,让学生对全等三角形产生好奇心和兴趣。最后,我会总结全等三角形的定义和性质,为新课的讲解做好铺垫。
三、教学策略
(一)情景创设
1.利用教具和实物,创设直观情境,让学生通过观察和操作,直观地感受全等三角形的特性。
2.结合生活实际,设计一些与全等三角形相关的问题,引导学生发现数学与生活的紧密联系。
3.创设一些具有挑战性的问题情境,激发学生的思维,培养学生的解决问题能力。
在教学过程中,我会利用教具和实物,创设直观情境,让学生通过观察和操作,直观地感受全等三角形的特性。同时,我会结合生活实际,设计一些与全等三角形相关的问题,引导学生发现数学与生活的紧密联系。此外,我还会创设一些具有挑战性的问题情境,激发学生的思维,培养学生的解决问题能力。
(三)小组合作
1.组织学生进行小组合作,培养学生的团队协作精神和沟通能力。
2.设计一些需要小组合作才能完成的任务,让学生在合作中思考、讨论和解决问题。
新人教版八年级数学上册《12.1 全等三角形》学案

新人教版八年级数学上册《12.1 全等三角形》学案三维目标知识目标1、知道什么是全等形、全等三角形及全等三角形的对应元素;2、知道全等三角形的性质,能用符号正确地表示两个三角形全等;能力目标能熟练找出两个全等三角形的对应角、对应边。
情感目标1、让学生观察、发现生活中的全等三角形并在实际操作中获得全等三角形的体验。
2、在运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重点全等三角形的性质。
教学难点找全等三角形的对应边、对应角。
教学方法合作探究教学资源多媒体课件教学步骤教学环节师生活动调整与思考教学过程设计课前导学一、提出问题,创设情境1、问题:你能发现这两个三角形有什么美妙的关系吗?C1B1CABA1这两个三角形是完全重合的。
2、学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。
3、获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。
教师提出问题,学生解答。
教学过程设计探究新知形状与大小都完全相同的两个图形就是全等形。
要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同。
概括全等形的准确定义:能够完全重合的两个图形叫做全等形。
请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义。
仔细阅读课本中“全等”符号表示的要求。
二.探究新知:利用投影片演示将△ABC沿直线BC平移得△DEF;将△ABC 沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED。
甲DCAB FE乙DCAB丙DCABE议一议:各图中的两个三角形全等吗?不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED。
启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我阅读课本第32页内容教师就学生探究的结果做归纳总结,得出结论学生思考并回答注意强调书写时对应顶点字例题讲解们通过运动的方法寻求全等的一种策略。
第十二章全等三角形12.1全等三角形教案

在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:
《12.1 全等三角形》学历案-初中数学人教版12八年级上册

《全等三角形》学历案(第一课时)一、学习主题本节课的学习主题是“全等三角形”。
全等三角形是初中数学中的重要概念,涉及图形的性质、判定及其在实际生活中的应用。
本节课是《全等三角形》系列的第一课时,旨在使学生理解全等三角形的定义及常见性质,并学会根据题目给出的信息判定三角形是否全等。
二、学习目标1. 掌握全等三角形的概念,理解全等三角形的定义和性质。
2. 学会识别全等三角形的基本判定方法,如SSS、SAS、ASA等。
3. 培养观察、分析和解决问题的能力,能将实际问题抽象为数学问题。
4. 培养学生的空间想象能力和几何直观能力。
三、评价任务1. 课堂互动评价:通过课堂提问和小组讨论,评价学生对全等三角形概念的理解程度。
2. 作业评价:通过布置相关练习题,评价学生对全等三角形判定方法的掌握情况。
3. 课后测试评价:通过小测验或作业,评价学生综合运用所学知识解决问题的能力。
四、学习过程1. 导入新课:通过回顾之前学过的三角形知识,引出全等三角形的概念,让学生初步了解全等三角形的意义。
2. 新课学习:(1)讲解全等三角形的定义及性质。
(2)通过例题演示如何判定两个三角形是否全等,介绍SSS、SAS、ASA等判定方法。
(3)引导学生观察、分析和总结不同判定方法的特点及适用条件。
3. 课堂练习:提供一组三角形图形,让学生运用所学知识进行判定。
教师巡视指导,及时解答学生疑问。
4. 小组讨论:分组进行讨论,分享各自的解题思路和方法,加深对全等三角形知识的理解。
5. 课堂总结:总结全等三角形的概念、性质及判定方法,强调重点和难点内容。
五、检测与作业1. 课堂检测:进行小测验,检测学生对全等三角形知识的掌握情况。
2. 课后作业:布置相关练习题,包括选择题、填空题和解答题,巩固所学知识。
3. 作业批改与反馈:及时批改作业,了解学生掌握情况,针对共性问题进行讲解和反馈。
六、学后反思1. 教师反思:反思教学过程中存在的问题和不足,总结有效的教学方法和策略,为今后的教学提供借鉴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题《全等三角形》
一.内容及内容解析
本节内容是《全等三角形》中的第一课时,是学生在学习了三角形的有关概念、三角形的分类、内角和、内外角关系、三边关系后提出的,本节内容是三角形知识的延续,也是本章的开篇。
它主要是围绕着有特殊关系的两个三角形展开的,更是为学习全等三角形的判定和角的平分线的性质作铺垫,具有承上启下的作用。
因此本课时的重点是全等三角形的有关概念和性质。
二.目标及目标解析
1.让学生了解全等形、全等三角形的有关概念,知道三角形的全等变换,理解全等三角形的性质,会找对应元素,并培养学生数学概念的辨析能力、动手实践和识图能力。
【学习几何知识一般是从概念出发,而后根据概念得出性质,接着用性质解决问题。
该目标是本节课的核心目标,是数学知识体系构建的关键。
这是本节课的教学重点。
】
2.在探索全等三角形有关知识的过程中,发展学生的空间观念,培养学生的几何直觉。
3.让学生经历观察、操作、探究、交流、归纳、总结等过程,形成解决问题的策略和方法。
4.培养学生动手能力、识图能力和合作精神,让学生体验探索成功的喜悦。
三.教学问题诊断
本课时学生可能对全等三角形的对应元素的确定上出现问题,教师可以通过全等变换引导学生观察、想象、比较、归纳找对应元素的方法。
适当地安排学生动手操作,小组讨论,学生应该能够自己发现方法和规律。
教学中学生对平移、翻折、旋转变换分辨不清,或者想象不出,教师可以引导学生操作实物,也可以借助多媒体课件演示,让学生理解。
鉴于此,本节的教学难点是找全等三角形的对应元素。
四.教学支持条件
课前学生准备了一些全等三角形学具,教师设计了多媒体课件,这为达成本节课的学习目标奠定了基础。
学生具有一定的自学能力、合作意识,学生的学习积极性较强。
五.教学过程设计
教学流程
教学过程:
(一)展示图片,感知全等
展示图片, 感知全等
【设计意图】通过展示图片给学生直观的印象,初步感知全等形就在我们身边,激发学习兴趣。
(二)归纳概括,形成概念
问题:以上各组中的两个图形在形状和大小上具有什么共同特征?它们能够完全重合吗?
【归纳】能够完全
..的两个图形叫做全等形。
叫做全等三角形。
【练习一】判断:
1.两个五角星是全等形。
()
2.任意两个等边三角形是全等三角形。
()
3.全等三角形的面积相等。
()
4.能够完全重合的两个三角形是全等三角形。
()
【设计意图】通过观察、比较、动手操作、归纳形成概念,并及时设计变式题巩固全等形和全等三角形的概念,增强学生对概念的理解和辨析能力。
(三)变换图形,认识全等
1.把△ABC沿直线BC平移得到△DEF。
(如
A D
图甲
①②
⑦
⑧
图甲)
问题1:图甲中的两个三角形能够完全重合吗?若能,请写出重合的顶点、重合的边、重合的角。
2.如图乙,把△ABC 沿直线BC 翻折180°,得到△DBC 。
图丙中的△ABC绕点A旋转180°得到△ADE。
问题2:图乙、丙中的两个三角形能够完全重合吗?说一说它们重合的元素。
【归纳】1.一个图形经过平移、翻折、旋转后,位置虽然变化了,但________、________都没有改变,即平移前后的图形__________。
2.全等三角形的有关概念:
①对应顶点:把两个全等三角形重合到一起,重合的顶点叫对应顶点;
②对应边:________________________________________
③对应角:________________________________________
3.全等的表示方法:
全等用符号≌表示,读作“全等于”。
其中符号∽表示形状相同,=表示大小相等,二者合起来表示全等。
例如图甲中的△ABC 与△DEF 全等,记作△ABC ≌△DEF 。
其中对应顶点A、D均在1号位置,对应顶点B、C均在2号位置,对应顶点C、F均在3号位置。
即用符号表示全等三角形时,对应顶点的字母必须写在对应的位置上。
【练习二】1.用全等符号表示图乙、图丙中的全等三角形。
2.指出下图中的全等三角形的对应顶点、对应边和对应角。
图乙
A
B C D 图丙 A E B C D
A D A D
【讨论】怎样寻找全等三角形的对应边、对应角?
①由对应边能确定对应角吗?(对应边的对角是对应角)
②由对应角能确定对应边吗?(对应角的对边是对应边)
③有公共的边是对应边吗?公共角呢?(公共边是对应边,公共角是对应角)
④有对顶角的,对顶角是对应角吗?(对顶角是对应角)
⑤两个全等三角形中,最长的边是对应边吗?最短的边呢?最大的角呢?最小的角呢?
【设计意图】通过全等变换,引导学生发现全等三角形的对应顶点、对应边和对应角,归纳出全等三角形的三个子概念、全等三角形的表示法。
练习二第一题训练全等符号的运用,第二题训练学生找对应元素的能力。
一组讨论题引导学生分组讨论寻找全等三角形对应元素的方法,及时总结方法和经验,有利于今后的学习。
(四)重合比较,得出性质
问题:请大家将自己手中的两个全等三角形重合起来,观察对应边的大小和对应角的大小。
你发现了什么?请用文字叙述你的发现。
【归纳】全等三角形的____________________,____________________。
【练习三】如图,△ABF ≌△EDC 。
1. 如果AB=3cm ,DC=8cm ,BC=1cm ,
2. 则DE=_______,CF=_______;
3. 如果∠B=100°,∠E=50°,则
4. ∠A=_______,∠AFC=_______。
3.判断:全等三角形的周长相等( )
【设计意图】学生从动手操作到理性归纳,得出全等三角形的性质定理。
突出性质的形成过程,同时巩固了全等三角形的概念的本质特征——能够完全重合。
练习三旨在对性质的简单应用和巩固。
(五)归纳小结,内化新知
1.本节课你学到的知识有哪些?
2.介绍一下你找全等三角形的对应边和对应角的方法。
3.在求全等三角形中的边或角的问题时,可以利用全等三角形的性质转化为求它们的对应边或对应角。
(六)目标检测,反馈新知
1.下列命题是真命题的是( )
A .形状相同的两个图形是全等形;B.面积相等的两个三角形是全等三角形;
C.两个等腰直角三角形是全等三角形;D.边长相等的两个正方形是全等形。
2.图中的两个全等三角形可以看作一个
通过( )变换得到另一个的。
A B
C
D E F
A .平移 B.翻折 C.旋转 D.不确定
3.上题中的△AMC 与△BDM全等,请用全等符号表示这两个三角形,并指出它们的对
应边和对应角。
4.如图,△ABC≌△DEC,CA和CD,
CB和CE是对应边。
∠ACD和∠BCE相 等吗?为什么?
【设计意图】第1题针对两个核心概念进行检测,加强学生对概念的理解和应用;第2题让生认识全等变换,增强学生的空间想象能力;第三题检测学生用全等符号表示全等三角形和寻找全等三角形的对应元素的能力;第4题让生利用全等三角形的性质进行说理。
这一组题较好地反馈了学生对新知的掌握程度。
六、教学反思:
反思这节课的教学,我认为有以下三点比较成功:
1.课前的充分准备为课堂上的教学提供了保障。
学生通过学具的操作、教师应用多媒体课件演示解决了学生的学习困难。
学生对全等三角形的对应元素的寻找变得简单,教学难点得到较好地突破。
2.重视新知的形成过程,师生交流、生生交流激烈。
课堂不再是教师的一言堂,学生不再是新知的接收器。
学习中,学生经历了观察、操作、探究、交流、归纳、总结等过程,形成解决问题的策略和方法。
学法多样,导法合理。
学生动手能力、识图能力得到较大地提高,合作精神加强了,每个学生都体验探索成功的喜悦。
3.课堂练习题设计合理,目标检测题针对性强。
新知的巩固和反馈非常重要,如何打造高效课堂?必要的练习和检测不可缺少。
本节设计了三个小练习分别对所学的三个知识点进行及时训练,符合及时巩固的教学原则。
目标检测较好地反映了学生的知识掌握情况,这节课学生学习效果非常理想。
本节课也存瑕疵。
比如,课堂各个环节的时间把握不够准确,学生的语言表达不够准确,多媒体课件的制作技术还不够熟练等。
这些问题在今后的教学中慢慢探索、逐一解决。
C A
B E D。