圆 切线及切线长定理

合集下载

圆切线长定理弦切角定理切割线定理相交弦定理

圆切线长定理弦切角定理切割线定理相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数| |(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

(完整)圆切线证明的方法

(完整)圆切线证明的方法

切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可. 证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.图1图2证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质--与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么?解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .图3 OABCD2 31∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD。

3.7北九数学下第三章圆第七节切线长定理

3.7北九数学下第三章圆第七节切线长定理
B
A D
O
F
例题1图
E
C
2015.01
• 变式1:如图,△ABC的内切圆⊙O与BC,CA,AB分 别相切于点 D,E,F,且AB=9cm,BC=14cm, CA=13cm,求AF,BD,CE的长。(知识技能2)
A F O E
B
D 第 2题
C
2015.01
随堂练习
已知O的半径为3cm,点P和圆心O的距离为6cm,过P 作O的两条切线,求这两条切线的长。
2015.01
2、由(6)得出定理:
切线长定理:从圆外一点引圆的两条切线,它们的切 线长相等,圆心和这一点的连线平分两条切线的夹角 .
A
O B
P
2015.01
证明:切线长定理:从圆外一点引圆的两条切线,它们的切 线长相等,圆心和这一点的连线平分两条切线的夹角. 已知:如图,PA、PB是⊙O的两条切线,A、B是切点。 求证:PA=PB,PO平分∠APB 证明:连接OA、OB ∵PA、PB是⊙O的切线 ∴∠PAO=∠PBO=90° 在Rt△POA和Rt△POB中 ∵OA=OB,OP=OP ∴Rt△POA ≌Rt△POB ∴PA=PB ,PO平分∠APB A
∴AB= AB BC 10 24 26
2 2 2 2
∵⊙O分别与AB,BC,CA相切于D,E,F ∴OD⊥AB,OE⊥BC,OF⊥AC, BE=BD, AF=AD,CE=CF 又∵∠C=90°∴四边形OECF为正方形 ∴EC=FC=r∴BE=24-r,AF=10-r ∴AB=BD+AD=BE+AF=34-2r=26 ∴r=4 即⊙O半径为4
切线是到圆心距离等于圆的半径的直线,
而切线长是线段的长度,指过圆外一点做圆的切 线,该点到切点的距离。

圆的切线、切线长、线切角

圆的切线、切线长、线切角

CA圆的切线、切线长定理与弦切角定理一、圆的切线: 1.切线的判定:2.切线的性质:【运用举例】例1.如图,已知⊙O 所内接△ABC ,过点B 作直线BD ,∠DBC =∠A ,试说明,BD 与⊙O 相切。

例2.如图,已知CB 是⊙O 的切线,C 是切点,OB 交⊙O 于点D ,∠B =30,BD =6㎝,求BC 。

例3、如图,PA 、PB 切⊙O 于点A 、B ,点C 是⊙O 上一点,且∠ACB =65°,求∠P 的度数.例4、已知:如图AB 是⊙O 的直径,P 是AB 上的一点(与A 、B 不重合),QP ⊥AB ,垂足为P ,直线QA 交⊙O 于点C 点,过C 点作⊙O 的切线交直线QP 于点D ,求证:△CDQ 是等腰三角形.当P 点在AB 的延长线上时,其他条件不变,这个结论还成立吗?试说明.二、切线长定理 1、切线长:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长2、切线长定理:符号语言:∵PA 、PB 是O ⊙的切线,A 、B 是切点,∴,PA=PB 【运用举例】例1.在△ABC 中,AB=5cm BC=7cm AC=8cm, ⊙O 与BC 、AC 、 AB 分别相切于 D 、 E 、F ,则 AF=_____, BD=_______ 、CF=________例2、如图,PA 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为Q ,交PA 、PB 为E 、F 点,已知12PA cm ,求△PEF 的周长.例3、已知:如图,P 为⊙O 外一点,PA ,PB 为⊙O 的切线,A 和B 是切点,BC 是直径. 求证:AC∥OP.例4.如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径。

OCB AP三、弦切角定理及其推论1、弦切角:________________________________________________________________。

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

(PA长)2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB.(特殊情况)用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理(记忆的方法方法)圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

切线长定理及应用

切线长定理及应用

切线长定理及应用切线长定理是指在一个圆上,从圆外一点引出两条直线与圆相切,这两条直线的切线长相等。

这是一个非常重要的几何定理,其应用广泛,并被用于解决各种与圆相关的问题。

下面我将详细解释切线长定理及其应用。

首先,我们来证明切线长定理。

考虑一个圆C和直线L1与L2,L1和L2分别与圆C相切于点A和点B。

我们需要证明切线长AP等于切线长BP。

假设圆C的半径为r,圆心为O。

连接OA和OB,与切线AP和BP相交于点C 和点D。

根据切线与半径的性质,我们可以发现∠OAB = ∠OBA = 90度(因为OA和OB分别是切线AP和BP所在直线上的半径)。

因此,三角形OAB是等腰直角三角形,所以OA = OB = r。

另外,我们注意到OC = OD (根据切线与直径的性质),以及O为圆心,所以OC = OD = r。

因此,我们可以得出OC = OD = r,OA = OB = r,根据SSS(边-边-边)准则,三角形OAC和三角形OBD是全等的三角形。

根据全等三角形的定义,对应的角相等,因此∠OCA = ∠ODB。

又因为∠OCA =∠OAB(根据直角三角形性质),所以∠OAB = ∠ODB。

考虑直角三角形AOB和三角形BOC,他们共有角∠OBA和∠OAB。

又根据三角形内角和为180度的性质,我们知道∠OAB + ∠OBA + ∠OBA + ∠OCB = 180度(∠OBA + ∠OBA是两个直角)。

将前面得到的∠OAB = ∠OBA代入,我们可以得到2∠OBA + ∠OCB = 180度。

注意到∠OCB是圆心角,且∠BOA是圆周角,如果我们将∠OCB表示为α,将∠BOA表示为β,根据圆周角和圆心角的关系,我们知道α= 2β。

将α= 2β代入之前的等式,我们得到2∠OBA + 2∠OBA = 180度,化简之后得到4∠OBA = 180度,即∠OBA = 45度。

现在,考虑三角形OAB。

我们可以知道∠OAB = 45度,且OB = OA = r。

《切线长定理》与内切圆

《切线长定理》与内切圆

4.已知:△ABC中,∠A=70º,点O是内心,求 ∠BOC的度数。
A
O
B
C
5、已知△ABC的内切圆分别和BC、AC、AB切于
点D、E、F,BC=9cm,AC=13cm,AB=14cm,求AF、
BD和CE的长。
A
F
E
B
D
C
6.如图△ABC中,∠C=90,AC=6,BC=8,三角 形三边与⊙O均相切,切点分别是D、E、F,求⊙O 的半径。
A
P O
B
如何用尺规通过圆外一点画出圆的切线?
A
OO ·
P
B
1.认识切线长:
过圆外一点作圆的切线,这点和切点之间的线段长叫
做这点到圆的切线长.
A
O
·
P
B
切线与切线长是一回事吗?它们有什么区别与联系呢?
2.研究切线长的性质:A
切线长定理:
过圆外一点
引圆的两条
O
P
切线,它们 的切线长相
B
等。
你还会得到哪些结论?再连接AB呢?
切线长定理与内切圆
圆的性质定理:
圆的切线垂直于过切点的半径.
圆的判定定理:
过半径外端且垂直于这条半径的直线是圆的切线.
是基本思路)
新课导入:
过一点A作⊙O的切线,
1.当点A在圆内时,能画⊙O的切线吗? 2.当点A在圆上时,能画⊙O的切线吗? 3.当点A在圆外时,能画⊙O的切线吗?
1.如何过⊙O外一点P画出⊙O的切线? 如下左图,借助三角板,我们可以画出PA是⊙O的切线. 2.这样的切线能画出几条?
A
F
D
O
CE
B
7.已知四边形ABCD的边AB、BC、CD、DA分别与⊙O

切线长定理及其应用

切线长定理及其应用

切线长定理及其应用知识点一 切线长定义及切线长定理1. 切线长定义:过圆外一点作圆的切线,这点和 之间的线段长叫作这点到圆的切线长.注意切线长和切线的区别和联系:切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。

2. 切线长定理:过圆外一点引圆的两条切线,它们的切线长相等,即PA=PB.推论:(1)△PAB 是等腰三角形;(2)OP 平分△APB ,即△APO=△BPO ;(3)弧AM=弧BM ;(4)在Rt OAP ∆和Rt OBP ∆中,由AB OP ⊥,可通过相似得相关结论;如:222222,,OA OB OE OP AP BP PE PO AE BE OE EP ==⋅==⋅==⋅(5)图中全等的三角形有对,分别是:题型一 切线长定理的直接应用【例1】如图所示,△O 的半径为3cm ,点P 和圆心O 的距离为6cm ,经过点P 的两条切线与△O 切于点E 、F ,求这两条切线的夹角及切线长.【例2】如图,P A 、PB 、DE 分别切△O 于A 、B 、C ,△O 的半径长为6 cm ,PO =10 cm ,求△PDE 的周长.【例3】如图所示,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为__________.【过关练习】1.如图所示,PA、PB是△O的切线,A、B为切点,△OAB=30°.(1)求△APB的度数.(2)当OA=3时,求AP的长.2.如图所示,已知PA、PB、DE分别切O于A、B、C三点,△O的半径为5cm,△PED的周长为24cm,△APB=50°.求:(1)PO的长;(2)△EOD的度数.3.如图,在直角梯形ABCD 中,AB ∥CD,AB ⊥BC,以BC 为直径的△O 与AD 相切,点E 为AD 的中点,下列结论正确的个数是( )(1)AB+CD=AD;(2)DCE ABE BCE S S S △△△+=; (3)241BC CD AB =⋅; (4)∠ABE=∠DCE. A.1B.2C.3D.4知识点二 圆外切四边形1、四边形的内切圆定义:四边形的四条边都与圆相切,把这个四边形叫作圆外切四边形,把这个圆叫作圆的内切圆.2、圆外切四边形的性质:圆外切四边形两组对边之和.(如图,即AB +CD =AD +BC ) 题型一 四边形的内切圆计算【例1】已知四边形ABCD 的边AB 、BC 、CD 、DA 与△O 相切于P 、Q 、M 、N ,求证:AB+CD=AD+BC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第24章圆切线的性质及判定切线长定理
一.选择题(共21小题)
1.(2015•衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D
的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()
.D.
2.(2015•枣庄校级模拟)如图,P是⊙O外一点,PA是⊙O的切线,A为切点,PO与
⊙O相交于B点,已知∠P=28°,C为⊙O上一点,连接CA,CB,则∠C的度数为()
3.(2015•河西区一模)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小
为()
4.(2015•杭州模拟)如图,在△ABC中,∠BCA=60°,∠A=45°,AC=2,经过点C且与边AB相切的动圆与CB,CA分别相交于点M,N,则线段MN长度的最小值是()
.2C.2D.
5.(2014•天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若
∠B=25°,则∠C的大小等于()
6.(2015•临淄区校级模拟)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC
于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线,正确的个数是()
7.(2015•杭州模拟)已知:如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交
AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆与G、F两点,连接CF、BG.则下列结论:
①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正
确的是()
8.(2013秋•永川区期末)有下列结论:(1)平分弦的直径
垂直于弦;(2)圆周角的度数等于圆心角的一半;(3)等弧
所对的圆周角相等;(4)经过三点一定可以作一个圆;(5)
三角形的外心到三边的距离相等;(6)垂直于半径的直线是
圆的切线.
其中正确的个数为()
9.(2012•武汉模拟)正方形ABCD中,对角线AC、BD交于O,Q为CD上任意一点,
AQ交BD于M,过M作MN⊥AM交BC于N,连AN、QN.下列结论:
①MA=MN;②∠AQD=∠AQN;③S△AQN=S五边形ABNQD;④QN是以A为圆心,以
AB为半径的圆的切线.
其中正确的结论有()
A.①②③④B.只有①③④C.只有②③④D.只有①②10.(2015•滦平县二模)如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的
⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B
的方向移动,那么()秒钟后⊙P与直线CD相切.
11.(2011•台湾)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()
A.A B>CE>CD B.A B=CE>CD C.A B>CD>CE D.A B=CD=CE 12.(2011秋•青山区校级期中)已知:如图,以定线段AB为直径作半圆O,P为半圆上
任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连
接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:
①S四边形ABCD=AB•CD;
②AD=AB;
③AD=ON;
④AB为过O、C、D三点的圆的切线.
其中正确的个数有()
13.已知⊙O1和⊙O2外切于M,AB是⊙O1和⊙O2的外公切线,A,B为切点,若
MA=4cm,MB=3cm,则M到AB的距离是()
.cm B.cm C.cm D.cm 14.(2014•齐齐哈尔一模)如图,正方形ABCD边长为4cm,以正方形的一边BC为直径
在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()
15.(2011秋•武汉校级期中)如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC、CD、DA相切,若BC=2,DA=3,则AB的长()
A.等于4 B.等于5 C.等于6 D.不能确定。

相关文档
最新文档