初三数学.圆中三大切线定理.学生版

合集下载

九年级数学圆的切线

九年级数学圆的切线
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
问:直线AB与圆有没有明确的公共点
C
O
A
辅助线:连接OB
只需再证:AB ⊥ OB
例2.如图A是⊙O外的一点,AO的延长线交
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
根据作图直线l是切线满足两个条件 1.经过半径的外端
O
D
l
几何语言
OD是⊙O的半径
OD⊥l于D
2.与半径垂直
切线的判定定理
经过半径的外端并且垂直于这条半径的直 线是圆的切线
l是⊙O的切线
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r
求证:直线l是⊙O的切线
问:圆与直线l有没有明确共同点
O.
辅助线: OA ⊥l
只需证OA是⊙O的半径
A
l
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r 求证:直线l是⊙O的切线
证明:过点O作OA ⊥l,A为垂足。
O.
OA=d=r
点A在⊙O上
A
l
OA是⊙O的半径 l是⊙O的切线
定理:当圆心到直线的距离等于圆的半径时,该直 线是这个圆的切线。
一 判断题
于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°, 求证:直线AB是⊙O的切线
B
证明:连接OBCO NhomakorabeaA
∠C=30° ° AB=BC
∠BOA=60 ∠A= ∠C=30 °
∠OBA=90 ° OB是半径
直线AB是⊙O的切线
练习二
1如图,AB是⊙O的直径,AT=AB,∠ABT=45º。

中考与切线有关的定理

中考与切线有关的定理

1与切线有关的定理一、切线的性质及判定 1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心. 2. 切线的判定:定义法:和圆只有一个公共点的直线是圆的切线; 距离法:到圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线长和切线长定理:⑴ 切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.①切线的判定定理设OA 为⊙O 的半径,过半径外端A 作l ⊥OA ,则O 到l 的距离d=r ,∴l 与⊙O 相切.因此,我们得到:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 注:定理的题设①“经过半径外端”,②“垂直于半径”,两个条件缺一不可.结论是“直线是圆的切线”.举例说明:只满足题设的一个条件不是⊙O 的切线.l AlAl证明一直线是圆的切线有两个思路:(1)连接半径,证直线与此半径垂直;(2)作垂线,证垂足在圆上②切线的性质定理及其推论切线的性质定理:圆的切线垂直于过切点的半径. 二、内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.P22. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3.直角三角形的内切圆半径与三边关系OF ED C BACBA CBAcbacba(1) (2)图(1)中,设a b c ,,分别为ABC ∆中A B C ∠∠∠,,的对边,面积为S 则内切圆半径(1)s r p=,其中()12pa b c =++;图(2)中,90C∠=︒,则()12r a b c =+-cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长例2. 如图所示,已知:AB是⊙O的直径,BC是⊙O的切线,切点为B。

圆的切线知识点总结

圆的切线知识点总结

圆的切线知识点总结一、切线的定义在欧式几何中,对圆的切线有以下几种定义:1. 如果一条直线与圆相交于两点,那么这条直线就被称为圆的切线。

2. 一条直线与圆相交于圆上的一点,那么这条直线就是圆的切线。

3. 一条直线与圆相切于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的切线。

这三种定义表达了切线与圆的位置关系,指出了切线与圆的相交情况以及位置特征。

二、切线的性质1. 切线与半径垂直圆的半径与切线的交点处相互垂直。

2. 切线定理若直线l与圆相切于点P,直线l与直径所夹的角为直角。

3. 切线长度相等过圆外一点作一切线与圆相交于A、B两点,连接线A、B,若CA=CB,则线段CA与线段CB构成圆的切线。

4. 切线的判定若直线l经过圆外一点,分别与圆上两点A、B相连,若线段AB的中点恰好是圆心O,那么直线l即为圆的切线。

5. 切线的唯一性圆外一点到圆的切线唯一。

以上是切线的主要性质,这些性质在解题时常常起到重要的作用,特别是在证明几何问题时,能够帮助我们理解和应用切线的知识。

三、切线与圆的位置关系1. 内切线如果一条直线与圆相交于圆上的一点,但直线上的其他点都在圆的内部,那么这条直线就是圆的内切线。

2. 外切线如果一条直线与圆相交于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的外切线。

3. 相切线如果一条直线与圆相切于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的相切线。

切线与圆的位置关系在解题时十分重要,通过分析切线和圆的位置关系,可以帮助我们求解许多几何问题。

四、切线的判定方法1. 切线与圆的位置关系我们可以通过切线与圆的位置关系来判断一条直线是否为圆的切线,如切线的定义所述,可以分析直线与圆的相交情况以及位置特征来判定切线。

2. 对于圆外一点到圆的切线的判定,我们可以利用中位线作图,利用几何思维判定出直线是否为圆的切线。

3. 切线定理的应用切线定理是判定切线的重要原理之一,通过利用切线定理,可以判定一条直线是否为圆的切线。

圆中三大切线定理

圆中三大切线定理

14 初三秋季·第2讲·尖子班·学生版围田地漫画释义满分晋级阶梯圆7级期末复习之圆中的 重要结论及应用圆6级期末复习之圆的综合 圆5级圆中三大切线定理 2圆中三大切线定理15中考内容中考要求ABC圆的有关概念 理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系 能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题 圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题 垂径定理 会在相应的图形中确定垂径定理的条件和结论 能用垂径定理解决有关问题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点画圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系 了解圆与圆的位置关系 能利用圆与圆的位置关系解决简单问题弧长 会计算弧长 能利用弧长解决有关问题 扇形会计算扇形面积能利用扇形面积解决有关问题圆锥的侧面积和全面积会求圆锥的侧面积和全面积 能解决与圆锥有关的简单实际问题圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考中考考点分析中考内容与要求16 初三秋季·第2讲·尖子班·学生版查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。

要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。

初中数学知识归纳圆的切线与切线定理计算方法

初中数学知识归纳圆的切线与切线定理计算方法

初中数学知识归纳圆的切线与切线定理计算方法初中数学知识归纳:圆的切线与切线定理计算方法在初中数学中,圆是一个重要的几何概念。

掌握圆的性质和相关定理,对于解决与圆相关的数学问题至关重要。

本文将对初中数学中与圆的切线及切线定理相关的计算方法进行归纳和总结。

一、切线的定义与性质在圆上,如果一条直线与圆相交,且与圆的交点只有一个,那么这条直线被称为圆的切线。

切线具有以下性质:1. 切线与半径的关系:切线与连接切点和圆心的半径垂直,即切线与半径的夹角是直角。

2. 切线的长度:从切点到切线上的圆心的距离是切线的长度。

3. 切线的唯一性:圆的外切线和内切线只有一条。

二、切线定理的计算方法1. 切线与切线的关系:圆外一点到圆的切线与该点连线的夹角等于切线与半径的夹角。

2. 切线与弦的关系:切线与一条弦的夹角等于弦所对的圆心角的一半。

3. 弦的长度计算:如果两条切线相交于圆的外点,那么两条切线的积等于外切点到两个切点的弦的积。

即切线外点到切点的线段的长度分别为a和b,那么a*b等于两条切线的积。

4. 弦切角公式:圆上的两条弦所对的圆心角之和等于两条弦所对的弧所对的圆心角的一半。

5. 切线长度计算:给定圆的半径R和切线与半径的夹角α,可以使用三角函数来计算切线的长度。

切线的长度等于R乘以正切函数的值,即L = R * tan(α)。

三、实例解析下面通过几个实例来应用切线定理的计算方法:示例1:已知圆的半径R为5cm,求切线与半径的夹角α为30°时的切线长度L。

解答:根据切线长度的计算公式L = R * tan(α),代入已知数据,可得L =5 * tan(30°) = 5 * 1/√3 ≈ 2.88cm。

示例2:圆的直径是10cm,切线与半径的夹角α为45°,求切线的长度L。

解答:由于圆的直径等于半径的两倍,所以半径R = 直径/2 = 10/2 = 5cm。

根据切线长度的计算公式L = R * tan(α),代入已知数据,可得L = 5 * tan(45°) = 5 * 1 ≈ 5cm。

初中数学知识归纳圆的切线与切线定理的计算方法

初中数学知识归纳圆的切线与切线定理的计算方法

初中数学知识归纳圆的切线与切线定理的计算方法圆是初中数学中非常重要的一个几何概念,而切线与切线定理也是与圆密切相关的概念和定理。

在本文中,我们将对圆的切线和切线定理进行归纳并介绍计算方法。

一、圆的切线圆的切线是指与圆只有一个公共点的直线。

切线的特点是与圆相切于切点,并且切点在切线上。

根据切线的定义,我们可以得出切线具有以下性质:1. 切线与半径垂直在圆的任意切点处,切线与通过该点的半径垂直相交。

这是切线与圆的一个重要性质,在计算切线时会用到。

2. 切线的切点切线与圆相切于切点,而切点位于切线上。

这也是切线的定义之一,切点的坐标可以通过计算得出。

二、切线定理的计算方法切线定理是描述切线与半径之间的关系的一组定理。

我们将介绍几个常用的切线定理及其计算方法。

1. 切线长定理切线长定理描述了切线和半径之间的关系。

对于与圆相切的切线来说,切线上的两个切点到圆心的距离乘积等于这两个切点分别到圆心的距离的平方。

具体计算方法如下:假设切线与圆相切于点A和点B,圆的半径为r,圆的圆心为O。

则有以下关系成立:AO × BO = AC² = BC²其中,AO和BO分别表示点A和点B到圆心O的距离,AC和BC分别表示点A和点B到圆心O的距离。

2. 外切线定理外切线定理指出,如果一条直线同时与两个相交圆的外切,那么它们的切点与连接圆心的直线构成一个等边三角形。

具体计算方法如下:对于与两个圆相切的外切线来说,它的两个切点与两个圆心之间形成的三角形是等边三角形。

设两个圆的半径分别为r₁和r₂,切点之间的距离为d,则有以下关系成立:d = r₁ + r₂其中,d表示切点之间的距离,r₁和r₂表示两个圆的半径。

三、圆的切线与切线定理的应用举例为了更好地理解切线和切线定理的计算方法,我们举例说明。

例题1:已知一个圆的半径为3 cm,点A是这个圆上的一个切点,连接点A和圆心O的线段OA与圆相交于一点B。

初中数学知识归纳圆的切线与切圆

初中数学知识归纳圆的切线与切圆

初中数学知识归纳圆的切线与切圆初中数学知识归纳:圆的切线与切圆圆是数学中重要的几何概念之一,学习圆的性质和应用对于初中数学的学习至关重要。

其中,圆的切线与切圆是我们需要重点掌握的内容之一。

本文将对这一知识点进行归纳总结,帮助大家更好地理解和应用。

第一部分:切线的定义和性质在开始讨论圆的切线与切圆之前,我们首先来了解一下切线的定义和性质。

1. 切线的定义在几何中,圆与直线相切时,我们称这条直线为圆的切线。

切线与圆接触点形成的线段称为切线段。

2. 切线的性质(1)切线与半径垂直切线与半径的相交点处,切线和半径互相垂直。

(2)切线只有一个切点切线与圆只能有一个切点,这是切线独特的性质。

(3)切线和半径的夹角切线和半径之间的夹角可以通过用切点的弧度与此弧对应的圆心角进行计算。

夹角的度数等于其对应的圆心角的一半。

第二部分:切线的判定条件了解了切线的定义和性质后,我们继续学习切线的判定条件。

1. 定理1:半径与切线的垂直性若直线与圆相交于圆心和一点,则该直线为圆的切线。

2. 定理2:切线的唯一性若直线与圆相交于圆上两点,则这条直线不是圆的切线。

3. 定理3:勾股定理若直角三角形中,直角边长分别为a、b,斜边长为c(c为圆的半径),则该直角三角形是一个切三角形。

第三部分:切圆和切线的性质切圆与切线是密切相关的,下面我们来了解一下切圆和切线的性质。

1. 切圆的定义切圆是指在一个圆内部,同时与圆内的一点P相切的圆。

2. 切圆和切线的关系切圆与切线之间有以下关系:(1)切线是切圆的直径线段,直径线段刚好是切线所经过的圆心。

(2)相切的两个圆,切点处的切线是两个圆的公共切线。

第四部分:应用实例下面我们通过几个具体的实例来应用所学的知识。

实例1:已知AB为圆O的直径,且C为圆上一点,求线段AC的长度。

解:根据圆的性质,可知AC为切线段,且与直径垂直,所以AC = AO/2。

实例2:已知圆A和圆B相切于点C,且圆A与直线AB相切于点D,求证:CD是直线BC的角平分线。

圆中三大切线定理

圆中三大切线定理

14初三秋季·第2讲·尖子班·学生版围田地漫画释义满分晋级阶梯暑期班第六讲秋季班第六讲秋季班第八讲圆7级期末复习之圆中的重要结论及应用圆6级期末复习之圆的综合圆5级圆中三大切线定理秋季班第十五讲秋季班第十三讲秋季班第二讲2圆中三大切线定理15中考内容中考要求ABC圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点画圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系了解圆与圆的位置关系能利用圆与圆的位置关系解决简单问题弧长会计算弧长能利用弧长解决有关问题扇形会计算扇形面积能利用扇形面积解决有关问题圆锥的侧面积和全面积会求圆锥的侧面积和全面积能解决与圆锥有关的简单实际问题圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考中考考点分析中考内容与要求16初三秋季·第2讲·尖子班·学生版查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。

要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考内容
中考要求
A
B
C 圆的有关概念
理解圆及其有关概念
会过不在同一直线上的三
点作圆;能利用圆的有关概念解决简单问题
圆的性质
知道圆的对称性,了解弧、弦、圆心角的关系 能用弧、弦、圆心角的关系解决简单问题
能运用圆的性质解决有关问题 圆周角
了解圆周角与圆心角的关系;知道直径所对的圆周角是直角
会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题
能综合运用几何知识解决与圆周角有关的问题 垂径定理 会在相应的图形中确定垂径定理的条件和结论 能用垂径定理解决有关问题 点与圆的位置关系
了解点与圆的位置关系
直线与圆的位置关系
了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点画圆的切线;了解切线长的概念
能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题
能解决与切线有关的问题
圆与圆的位置关系 了解圆与圆的位置关系 能利用圆与圆的位置关系解决简单问题
弧长 会计算弧长 能利用弧长解决有关问题 扇形
会计算扇形面积
能利用扇形面积解决有关问题
圆锥的侧面积和全面积
会求圆锥的侧面积和全面积 能解决与圆锥有关的简单实际问题
中考内容与要求
暑期班第六讲秋季班第六讲
秋季班第八讲
圆中三大切线定理
圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。

要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。

年份2011年2012年2013年
题号20,25 8,20,25 8,20,25
分值13分17分17分
考点圆的有关证明,计
算(圆周角定理、
切线、等腰三角形、
相似、解直角三角
形);直线与圆的
位置关系
圆的基本性质,圆
的切线证明,圆同
相似和三角函数的
结合;直线与圆的
位置关系
圆中的动点函数图
像,圆的基本性质
(垂径定理、圆周角
定理),圆同相似和
三角函数的结合;
直线与圆的位置关

中考考点分析
知识互联网
题型一:切线的性质定理
题目中已知圆的切线,可以“连半径,标直角”,然后在直角三角形中利用勾股、相似或锐角三角函数解决问题。

【例1】 如图,在△ABC 中,BC AB =,以AC 为直径的⊙0与BC 边
交于点D ,过点D 作⊙O 的切线DE ,交AB 于点E ,若 DE ⊥AB .求证:BE AE 3=.
判定切线共有三种方法:定义法、距离法和定理法,其中常用的是距离法和定理法,可以总结为六字口诀,定理法是“连半径,证垂直”,距离法是“作垂直,证半径”,定理法的使用频率最高,必须熟练掌握。

思路导航
典题精练
思路导航
题型二:切线的判定定理
E O
D
C
B
A
【例2】 如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC
于点E ,过点A 作⊙O 的切线 交OE 的延长线于点F , 连结CF 并延长交BA 的延长线于点P . ⑴ 求证:PC 是⊙O 的切线.
⑵ 若AB =4,2 1::=PC AP ,求CF 的长.
【例3】 如图,已知Rt ABC △中,90ACB ∠=︒,BD 平分ABC ∠,以
D 为圆心、CD 长为半径作D ⊙,与AC 的另一个交点为
E .
⑴ 求证:AB 与D ⊙相切; ⑵ 若43AC BC ==,,求AE 的长.
【例4】 已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于
点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . ⑴ 求证:BE 与O ⊙相切;
⑵ 连结AD 并延长交BE 于点F ,9OB =,2
sin 3
ABC ∠=,
求BF 的长.
典题精练
E D
C
B
A
O
P
E
D
C B
A
切线长和切线长定理:
⑴ 在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.
⑵ 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
【引例】已知:如图,PA PB 、分别与O ⊙相切于A B 、两点.求证:⑴ APO BPO ∠=∠;
⑵ PA PB =;⑶ OP 垂直平分线段AB .
【解析】 连结OA OB , ∵PA PB ,分别与O ⊙相切,
∴PA OA PB OB ⊥⊥,, ∵OA OB =,OP=OP ∴AOP BOP △≌△ ∴APO BPO ∠=∠. ∴PA PB =,
由等腰三角形“三线合一”可知:OP AB ⊥且AC BC =, ∴OP 垂直平分线段AB .
【例5】 ⑴ 如图,PA PB DE 、、分别切O ⊙于A B C 、、,若10PO =,
PDE △周长为16,求O ⊙的半径.
典题精练
例题精讲
思路导航
题型三 切线长定理
C O
B A
P A
B
O C
C B
A
D
O
⑵ 梯形ABCD 中,AB CD ∥,O 是AB 上一点,以O 为圆心的半圆与AD CD BC 、、都相切.已知6AD =,4BC =,求AB 的长.
【例6】 ⑴ 如右图所示,ABC △的内切圆与三边AB 、BC 、CA 分别切
于D 、E 、F .13cm AB =,14cm BC =,11cm CA =,求AD 、BE 、CF 的长.
⑵ 如图,在ABC ∆Rt 中,︒=∠90C ,6=AC ,8=BC ,圆O 为 ABC ∆的内切圆,
点D 是斜边AB 的中点,则ODA ∠tan .
【例7】 已知:AB 是半圆O 的直径,点C 在BA 的延长线上运动(点C 与点A 不重合),以OC
为直径的半圆M 与半圆O 交于点D ,DCB ∠的平分线与半圆M 交于点E . (1) 求证:CD 是半圆O 的切线(图1); (2) 作EF AB ⊥于点F (图2),猜想EF 与已有的哪条线段的一半相等,并加以证明.
O
D
C
A
D
C
F O
E
图2 D
E
C 图1
F
E
D
A
O C
N
M
B
A
训练1. 如图,AB 是半圆的直径,直线MN 切半圆于C ,
AM MN BN MN ⊥⊥,,如果AM a =,BN b =,那么半圆的半径是
_____________.
训练2. 如图所示,ABC △中,内切O ⊙和边BC ,CA ,AB 分别相切于点D ,E ,F .若
70FDE ∠=︒,求A ∠的度数.
O
F
E
D C B
A
训练3. 如图,1O ⊙和2O ⊙为Rt ABC △的内切等圆,90C ∠=︒,43AC BC ==,,求1O ⊙的半
径r .
O 2
O 1
B
C
A
思维拓展训练(选讲)
O
D C
B A
O
A
B C D
O F
D E
C B
A
训练4. 已知,如图在矩形ABCD 中,点O 在对角线AC 上,以OA 长为半径的圆O 与AD AC
、分别交于点E F 、,ACB DCE ∠=∠. ⑴ 判断直线CE 与O ⊙的位置关系,并证明你的结论;
⑵ 若2
tan 22
ACB BC ∠==,,求O ⊙的半径.
题型一 切线的性质定理 巩固练习
【练习1】 如图,AB 与O ⊙相切于点B ,线段OA 与弦BC 垂直于点D ,
60AOB ∠=︒,4cm BC =,则切线AB = cm .
题型二 切线的判定定理 巩固练习
【练习2】 在平行四边形ABCD 中,1060AB AD m D ==∠=︒,,,以AB 为直径作O ⊙,
⑴ 求圆心O 到CD 的距离(用含m 的代数式来表示); ⑵ 当m 取何值时,CD 与O ⊙相切.
【练习3】 已知:如图,由正方形ABCD 的顶点A 引一条直线分别交BD 、
CD 及BC 的延长线于点E 、F 、G ,求证:CE 和CGF △的外接圆相切.
复习巩固
O
G
F E
D
C
【练习4】 如图,AB 是O ⊙的直径,BC AB ⊥于点B ,连接OC 交O ⊙于点E ,弦AD OC ∥,弦 DF AB ⊥于点G . ⑴ 求证:点E 是BD 的中点;
⑵ 求证:CD 是O ⊙的切线; ⑶ 若4
sin 5
BAD ∠=,O ⊙的半径为5,求DF 的长.
题型三 切线长定理 巩固练习
【练习5】 ⑴ 如图,O ⊙是ABC △的内切圆,D E F 、、是切点,18cm AB =,20cm BC =,12cm AC =,又直线MN 切O ⊙于G ,交AB BC 、于M N 、,则BMN △的周长为______________.
⑵ Rt ABC △中,9068C AC BC ∠=︒==,,,则ABC △的内切圆半径r =________. ⑶ 等腰梯形ABCD 外切于圆,且中位线MN 的长为10,那么这个等腰梯形的周长是
_____.。

相关文档
最新文档