湖南省长沙市长郡教育集团2018届九年级第一次模拟考试数学试题(含答案)
2018-2019 学年湖南省长沙市九年级(上)期末数学模拟试卷含答案

2018-2019 学年湖南省长沙市九年级(上)期末数学模拟试卷含答案一.选择题(共 12 小题,满分 36 分,每小题 3 分)1.已知m,n(m<n)是关于x的方程(x﹣a)(x﹣b)=2的两根,若a<b,则下列判断正确的是()A.a<m<b<n B.m<a<n<b C.a<m<n<d D.m<a<b<n 2.一元二次方程x2﹣2x﹣7=0 用配方法可变形为()A.(x+1)2=8B.(x+2)2=11C.(x﹣1)2=8D.(x﹣2)2=11 3.从生产的一批螺钉中抽取 1000 个进行质量检查,结果发现有 5 个是次品,那么从中任取1 个是次品概率约为()A.B.C.D.4.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为()A.k>﹣B.k>4 C.k<﹣1 D.k<45.如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的大小为()A.40°B.50°C.80°D.100°6.如图,△BC 的边A C 与⊙O 相交于C、D 两点,且经过圆心O,边A B 与⊙O相切,切点为B,如果∠C=26°,那么∠A 等于()A.26°B.38°C.48°D.52°7.如图,在R t△ABC 中,∠ACB=90°,∠A=30°,AC=4 ,BC 的中点为D.将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC,EF 的中点为G,连接DG.在旋转过程中,DG 的最大值是()A.4 B.6 C.2+2 D.88.下列关于抛物线y=﹣(x﹣5)2+2 有关性质的说法,错误的是()A.对称轴是直线x=5 B.开口向下C.与x轴有交点D.最小值是29.对于反比例函数y=,下列说法正确的是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0 时,y 随x 的增大而增大10.小兰和小潭分别用掷A、B 两枚骰子的方法来确定P(x,y)的位置,她们规定:小兰掷得的点数为x,小谭掷得的点数为y,那么,她们各掷一次所确定的点落在已知直线y=﹣2x+6 上的概率为()A.B.C.D.11.当k<0,x>0 时,反比例函数y=的图象在()A.第一象限B.第二象限C.第三象限D.第四象限12.如图为二次函数y=ax2+bx+c 的图象,则a x2+bx+c>0 的解集为()A.x<﹣3 B.﹣3<x<1 C.x>2 D.x>1二.填空题(共 6 小题,满分 18 分,每小题 3 分)13.已知反比例函数y=(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,那么它的图象所在的象限是第象限.14.在同一平面直角坐标系内,将函数y=2x2+4x+1 的图象沿x轴方向向右平移2 个单位长度后再沿y轴向下平移1个单位长度,得到图象的解析式是.15.如图,△ABC 是⊙O 的内接正三角形,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC 的周长为.16.在半径为12 的⊙O 中,150°的圆心角所对的弧长等于.17.将一副扑克牌中的两张牌红桃A和黑桃2都从中间剪开,分成四块,这四块背面完全一样,将它们洗匀后,背面朝上,任取两张,恰好能拼成一张牌的概率是.三.解答题(共 7 小题,满分 66 分)18.已知关于x 的一元二次方程(a+1)x2﹣x+a2﹣3a﹣3=0 有一根是 1.(1)求a 的值;(2)求方程的另一根.19.如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,﹣1)、B(1,﹣3)、C(4,﹣4),(1)作出△ABC 关于原点O 对称的△A1B1C1;(2)写出点A1、B1、C1 的坐标.21.某水果商场经销一种高档水果,原价每千克 50 元.(1)连续两次降价后每千克 32 元,若每次下降的百分率相同,求每次下降的百分率;(2)这种水果进价为每千克 40 元,若在销售等各个过程中每千克损耗或开支 2.5 元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值.22.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC 交抛物线的对称轴于点E,O 是原点,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,连结OE,且S△ABP=2S△BOE,求P 点坐标.23.如图,在平面直角坐标系xOy 中,已知正比例函数y1=﹣2x 的图象与反比例函数y2=的图象交于A(﹣1,a),B两点.(1)求出反比例函数的解析式及点B 的坐标;(2)观察图象,请直接写出满足y≤2 的取值范围;(3)点P 是第四象限内反比例函数的图象上一点,若△POB 的面积为 1,请直接写出点P的横坐标.24.如图,Rt△ABC 中,∠ACB=90°,以BC 为直径的⊙O 交AB 于点D,过点D 作⊙O 的切线交CB 的延长线于点E,交AC 于点F.(1)求证:点F 是AC 中点;(2)若∠A=30°,AF=,求图中阴影部分的面积.参考答案一.选择题(共 12 小题,满分 36 分,每小题3 分)1.【解答】解:∵(x﹣a)(x﹣b)=2,∴m、n可看作抛物线y=(x﹣a)(x﹣b)与直线y=2的两交点的横坐标,∵抛物线y=(x﹣a)(x﹣b)与x轴的两交点坐标为(a,0),(b,0),如图,∴m<a<b<n.故选:D.2.【解答】解:一元二次方程x2﹣2x﹣7=0 用配方法可变形为(x﹣1)2=8,故选:C.3.【解答】解:∵从生产的一批螺钉中抽取 1000 个进行质量检查,结果发现有 5个是次品,∴从中任取1个是次品概率约为:=.故选:B.4.【解答】解:∵关于x 的一元二次方程x2+(2k+1)x+k2=0 有两个不相等的实数根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣.故选:A.5.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.6.【解答】解:如图,连接OB,∵AB 与⊙O 相切,∴OB⊥AB,∴∠ABO=90°,∵OB=OC,∠C=26°,∴∠OBC=∠C=26°,∴∠COB=180°﹣26°﹣26°=128°,∴∠A=128°﹣90°=38°,故选:B.7.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=AC÷cos30°=4 ÷=8,BC=AC•tan30°=4 ×=4,∵BC 的中点为D,∴CD=BC=×4=2,连接CG,∵△ABC 绕点C 顺时针旋转任意一个角度得到△FEC,EF 的中点为G,∴CG=EF=AB=×8=4,由三角形的三边关系得,CD+CG>DG,∴D、C、G 三点共线时DG 有最大值,此时DG=CD+CG=2+4=6.故选:B.8.【解答】解:∵y=﹣(x﹣5)2+2,∴抛物线对称轴为直线x=5,开口向下,顶点坐标为(5,2),∴抛物线与x 轴有两个交点,有最大值 2,∴最小值是2,故选:D.9.【解答】解:∵当x=2 时,可得y=1≠﹣1,∴图象不经过点(2,﹣1),故A不正确;∵在y=中,k=2>0,∴图象位于第一、三象限,且在每个象限内y 随x 的增大而减小,故B、D不正确;又双曲线为中心对称图形,故C 正确,故选:C.10【解答】解:列表得:∴一共有36种情况,她们各掷一次所确定的点落在已知直线y=﹣2x+6上的有(1,4),(2,2).∴她们各掷一次所确定的点落在已知直线y=﹣2x+6 上的概率为=.故选:B.11【解答】解:∵在反比例函数y=中,k<0,∴函数图象分别在二、四象限,又∵x>0,∴函数图象在第四象限.故选:D.12【解答】解:由题意二次函数y=ax2+bx+c的图象与x轴交于两点为:(﹣3,0)、(1,0),∴由图象可知:当﹣3<x<1 时,y>0,因此ax2+bx+c>0 的解集为:﹣3<x<1.故选:B.二.填空题(共 6 小题,满分 18 分,每小题 3 分)13【解答】解:满足二次项系数不为 1,有一个根为﹣2 的一元二次方程可为2x2﹣8=0.故答案为 2x2﹣8=0.14【解答】解:∵反比例函数y=(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在的象限是第一、三象限.故答案为:一、三.15.【解答】解:y=2x2+4x+1=2(x+1)2﹣1,∵图象沿x 轴方向向右平移 2 个单位长度后再沿y 轴向下平移 1 个单位长度,∴所得新的抛物线解析式为:y=2(x﹣1)2﹣2,故答案为:y=2(x﹣1)2﹣2.16【解答】解:∵⊙O 是等边△ABC 的外接圆,OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N 分别是AC、AB 的中点,∴MN 是等边△ABC 的中位线,∵MN=1,∴AB=AC=BC=2MN=2,∴△ABC 的周长为:3AB=6.故答案是:6.17【解答】解:根据弧长的公式l=得到:=10π.故答案是:10π.18【解答】解:将剪开的红桃A 记为A、A′,剪开的黑桃 2 记为 2、2′,画树状图如下:由树状图知,共有12 种等可能结果,其中恰好能拼成一张牌的有4种结果,所以恰好能拼成一张牌的概率为=,故答案为:.三.解答题(共 7 小题,满分 66 分)19.【解答】解:(1)将x=1代入方程(a+1)x2﹣x+a2﹣3a﹣3=0可得(a+1)﹣1+a2﹣3a﹣3=0,解可得:a=﹣1,a=3;a=﹣1 时,原方程是一元一次方程,故舍去;则a=3;(2)由(1)得:a=3,则原方程为 4x2﹣x﹣3=0,且其中有一根为 1,设另一根是m,则m•1=m=﹣,故m=﹣.20【解答】解:画树状图为:共有 9 种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为 2,所以两次抽取的牌上的数字都是偶数的概率==.21【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图知点A1的坐标为(﹣2,1)、B1的坐标为(﹣1,3)、C1的坐标为(﹣4,4).22【解答】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(不合题意,舍去)或a=0.2.答:每次下降的百分率为20%;(2)设一次下降的百分率为b,根据题意,得:50(1﹣b)﹣2.5≥40,解得b≤0.15.答:一次下降的百分率的最大值为 15%.23.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)当x=0 时,y=﹣x2+2x+3=3,∴点C的坐标为(0,3);∵抛物线的解析式为y=﹣x2+2x+3,∴顶点D的坐标为(1,4).(3)设点P的坐标为(m,n)(m>0,n>0),设直线BC 的解析式为:y=∴解得: ,kx +b ,∵B (3,0),C (0,3),∴直线 BC 的解析式为:y =﹣x +3,∵点 E 在对称轴上,∴E (1,2),∴S △BOE = ×2×3=3,S △ABP = 4n =2n ,∵S △ABP =2S △BOE ,∴2n =2×3,∴n =3,∴﹣m 2+2m +3=3,解得:m 1=0(不合题意,舍去),m 2=2,∴点 P 的坐标为(2,3).24.【解答】解:(1)把 A (﹣1,a )代入 y =﹣2x ,可得 a =2,∴A (﹣1,2),把 A (﹣1,2)代入 y =,可得 k =﹣2,∴反比例函数的表达式为 y =﹣,∵点 B 与点 A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2 的取值范围是 x <﹣1 或 x >0;(3)作 BM ⊥x 轴于 M ,PN ⊥x 轴于 N ,∵S 梯形 MBPN =S △POB =1,设 P (m,﹣),则(2+)(m ﹣1)=1 或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0 或 m 2+m +1=0,解得 m = ∴P 点的横坐标25.【解答】(1)证明:连接 O D 、CD ,如图,∵BC 为直径,∴∠BDC =90°,∵∠ACB =90°,或 m = ,为 .∴AC 为⊙O 的切线,∵EF 为⊙O 的切线,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴点F 是AC 中点;(2)解:在R t△ACB 中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD 为等边三角形,∴∠BOD=60°,∵EF 为切线,∴OD⊥EF,在R t△ODE 中,DE =OD=,∴S 阴影部分=S△ODE﹣S 扇形BOD=×1×﹣=﹣π.2122。
长郡教育集团2017-2018学年(秋)初三上第一次月考-解析版(1)

长郡教育集团初中课程中心2018学年度初三第一次限时检测数学满分120分 时间120分钟一、选择题(本大题共12小题,每小题3分,满分36分)1.直线2y x =-与y 轴交点的坐标为( )A .(0,2)B .(2,0)C .(2,0)-D .(0,2)-【答案】D【考点】一次函数图象上点的坐标特征2.下列各点在函数6y x=-图像上的是( ) A .()2,3-- B .()3,2 C .()1,6- D .()6,1--【答案】C【考点】反比例函数图象上点的坐标特征3.一条排水管的截面如图所示,已知排水管的截面圆半径5OB =,截面圆圆心O 到水面的距离OC 是3,则水面宽AB 是( )A .6 B. 4 C.10 D.8【答案】D【考点】勾股定理、垂径定理的应用【解析】解:4.如图,已知AB CD EF ,那么下列结论正确的是( ) A.AD BC DF CE = B. BC DF CE AD = C.C D B C E F B E = D. CD AD EF AF= 5,3OB OC ==222253428BC OB OC OC ABAB BC ∴=-=-=⊥∴==【答案】A【考点】平行线分线段成比例;5.下列两个图形一定相似的是( )A. 任意两个等边三角形B. 任意两个直角三角形C. 任意两个等腰三角形D. 两个等腰梯形【答案】A【考点】相似的判定6.一次函数y kx k =-与反比例函数(0)k y k x=≠在同一个坐标系中的图象可能是( )A B C D【答案】B【考点】一次函数的图象与系数的关系;反比例函数的图象【解析】当0k >时,一次函数y kx k =-的图象过一、三、四象限,反比例函数k y x =的图象在一、三象限, ∴A 、C 不符合题意,B 符合题意;当0k <时,一次函数y kx k =-的图象过一、二、四象限,反比例函数k y x =的图象在二、四象限, ∴D 不符合题意.故选:B7.O 的半径为5,圆心O 到直线l 的距离为6,则直线l 与O 的位置关系是( )A. 相离B. 相切C. 相交D. 无法确定。
2018年初三一诊考试数学试卷及答案

2018年初三一诊考试数学试题答案及解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)﹣的相反数是()A.5B.C.﹣D.﹣52.(3分)已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm33.(3分)如图,立体图形的俯视图是()A.B.C.D.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°(6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.47.3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1B.2C.﹣7D.08.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为△x,AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)因式分解:9a3b﹣ab=.10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.11.(3分)已知一组数据:3,3,4,5,5,则它的方差为.12.(3分)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商F (品共支付 16 元,B 购 5 件甲商品和 3 件乙商品共支付 25 元,求一件甲商品和一件乙商品各售多少元.设甲商品售价 x 元/件,乙商品售价 y 元/件,则可列出方程组.13.(3 分)如图,在 Rt △ABC 中,∠A=30°,BC=2 ,以直角边 AC 为直径作⊙O 交 AB 于点 D ,则图中阴影部分的面积是.14.(3 分)已知 x 1,x 2 是关于 x 的方程 x 2+ax ﹣2b=0 的两实数根,且 x 1+x 2=﹣2, x 1•x 2=1,则 b a 的值是.15.(3 分)对于实数 a ,b ,我们定义符号 max {a ,b }的意义为:当 a ≥b 时, max {a ,b }=a ;当 a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于 x 的函数为 y=max {x +3,﹣x +1},则该函数的最小值是.16.(3 分)如图,在正方形 ABCD 中,AC 为对角线,E 为 AB 上一点,过点 E 作EF ∥AD ,与 AC 、DC 分别交于点 G , ,H 为 CG 的中点,连接 DE ,EH ,DH ,FH .下列结论:①EG=DF ;②∠AEH +∠ADH=180°;③△EHF ≌△DHC ;④若,其中结论正确的有 .△DHC= ,则 3S △EDH =13S三、解答题(本大题共 8 个题,共 72 分)17.(10 分)(1)计算:|﹣2|﹣(π﹣2015)0+( )﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+ ),其中 a=.18. 6 分)如图,分别过点C 、B 作△ABC 的 BC 边上的中线 AD 及其延长线的垂线,垂足分别为 E 、F .求证:BF=CE .(19.8分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20.(8分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2参考答案一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1-8.B A C B B A CA二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)9. ab (3a +1)(3a ﹣1) .10. 45° .11.12.13.14...﹣ π ..15. 2 .16. ①②③④ .三、解答题(本大题共 8 个题,共 72 分)17.(1)|﹣2|﹣(π﹣2015)0+( )﹣﹣2sin60°+=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+ ;(2)==÷(2+ )=,当 a=时,原式= = ﹣1.( (18.证明:根据题意,知 CE ⊥AF ,BF ⊥AF ,∴∠CED=∠BFD=90°,又∵AD 是边 BC 上的中线,∴BD=DC ;在 Rt △BDF 和 Rt △CDE 中,∠BDF=∠CDE (对顶角相等),BD=CD ,∠CED=∠BFD ,∴△BDF ≌△CDE (AAS ),∴BF=CE (全等三角形的对应边相等).19.解:(1)四个年级被抽出的人数由小到大排列为 30,45,55,70,∴中位数为 50;(2)根据题意得:3000×(1﹣25%)=2250 人,则该校帮助父母做家务的学生大约有 2250 人;(3)画树状图,如图所示:所有等可能的情况有 12 种,其中恰好是甲与乙的情况有 2 种,则 P== .20、解:1)设每辆 B 型自行车的进价为 x 元,则每辆 A 型自行车的进价为(x +400)元,根据题意,得= ,解得 x=1600,经检验,x=1600 是原方程的解,x +400=1 600+400=2 000,答:每辆 A 型自行车的进价为 2 000 元,每辆 B 型自行车的进价为 1 600 元;(2)由题意,得 y=(2100﹣2000)m +(1750﹣1600) 100﹣m )=﹣50m +15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随x的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.21.解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.22.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S △OBC=×BO×xC=×3×4=6.23.解:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,∴AC=6,则 BC=6.在 Rt △APO 中,∵AC ⊥OP ,∴△PAC ∽△AOC ,∴AC 2=OC•PC ,解得 PC=9,∴OP=PC +OC=13.在 Rt △ PBC 中 , 由 勾 股 定 理 , 得PB==3,∵AC=BC ,OA=OE ,即 OC 为△ABE 的中位线.∴OC= BE ,OC ∥BE ,∴BE=2OC=8.∵BE ∥OP ,∴△DBE ∽△DPO ,∴=,即=,解得 BD=.24.解:(1)将 A (0,1),B (﹣ 9,10)代入函数解析式,得,解得,抛物线的解析式 y=+2x +1;(2 分)(2)∵AC ∥x 轴,A (0,1),∴ x 2+2x +1=1,解得 x 1=﹣6,x 2=0(舍),即 C 点坐标为(﹣6,1),∵点 A ( 0,1),点 B (﹣9,10),∴直线 AB 的解析式为 y=﹣x +1,设 P (m ,m 2+2m +1),∴E (m ,﹣m +1),∴PE=﹣m +1﹣( m 2+2m +1)=﹣ m 2﹣3m ,∵AC⊥PE,AC=6,(4分)∴S四边形AECP =S△AEC+S△APC=AC•EF+AC•PF,=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0,∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)(3)∵y=x2+2x+1=(x+3)2﹣2,∴顶点P(﹣3,﹣2).∴PF=2+1=3,CF=6﹣3=3,∴PF=CF,PC=3,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∵A(0,1),B(﹣9,10),∴AB==9,∴在直线AC上存在满足条件得点Q,设Q(t,1),∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,CQ=2,(7分)∴Q(﹣4,1);(8分)②当△CPQ∽△ACB时,则=,,∴=,CQ=9,(9分)∴Q(3,1);综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)11/11。
2017-218长郡初三第一次

17.如图所示,△ABC 中, D 为△ABC 的边 AC 上一点,若 ABD = ACB , AD = 3 , DC = 1 ,则 AB = __________.
A
D
B
C
18.在平面直角坐标系 xOy 中,四边形 ODEF 和四边形 ABCD 都是正方形,点 F 在 y 轴的正半轴上, 点 C 在边 DE 上,反比例函数 y = 4 的图象过点 B 、 E ,则 AB 的长为____________.
).
x
y y
O
x
A.
y
Ox
C.
O
x
B.
y
O
x
D.
7.⊙ O 的半径为 5 ,圆心 O 到直线 l 的距离为 6 ,则直线 l 与⊙ O 的位置关系是( ).
A.相离
B.相切
C.相交
D.无法确定
8.历史上,雅各布·伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在 0.5 左右摆动”, 那么投掷一枚硬币10 次,下列说法正确的是( ).
长郡教育集团初中课程中心
2017—2018 学年度初三第一次限时检测
数学
一、选择题(本大题共 12 小题,每小题 3 分,满分 36 分).
1.直线 y = x − 2 与 y 轴交点的坐标为( ).
A. (0,2)
B. (2,0)
C. (−2,0)
D. (0,−2)
2.下列各点在函数 y = − 6 图象上的是( x
y(万件)
A(4,40) 40
30
20
B(8,20)
10
C(28,0)
O 4 8 12 1620 24 28 x(元/件)
长郡教育集团2018-2019学年初三第一次月考数学试卷

"1& + & 若关于" 的方程 则& # ( ! 1 2 ! 的解为正数 "% + + % "
的取值范围是!!!!!! 如图 将 正方形 * # $ ! , . / 放 在 平 面 直 角 坐 标 系 中 * 是坐标原点 点 , 的坐标为 则点 . 的坐标为 ! + !!!!! ! 三 解答题 本大题共 $ 小题 第# 第 & ! " 题每题 ' 分 第! 第! ! # ! !题每题$分 + ! ,题每题&分 ) ! '题每题# "分 ! 解一元二次方程 # & ! '分 "1 ! "% , 2 " !
2018年湖南省长沙市九年级(上)第一次适应性测试数学试卷

2018年湖南省长沙市九年级(上)第一次适应性测试数学试卷一、选择题(每小题3分,共36分.)1.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°2.如图,在质地和颜色都相同的三张卡片的正面分别写有﹣2,﹣1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=﹣x﹣1上方的概率为()A.B.C.D.13.已知A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系的是()A.y2>y1>y3B.y1>y2>y3C.y3>y2>y1D.y1>y3>y24.下列函数中,当x>0时,y随x的增大而减小的是()A.y=B.y=﹣C.y=3x+2 D.y=x2﹣35.如图,若DC∥FE∥AB,则有()A. B. C. D.6.如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P 的坐标为()A.(﹣1,0) B.(﹣1,﹣1)C.(﹣2,﹣1)D.(﹣2,0)7.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k ≠0)上,则k的值为()A.4 B.﹣2 C.D.﹣8.如图,在△ABC中,∠A=90°,AB=AC=3,现将△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,则边BC在旋转过程中所扫过的面积为()A.πB.2π C.3π D.4π9.反比例函数的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为()A.2 B.﹣2 C.4 D.﹣410.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.1 B.2 C.3 D.411.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A.B.C.D.12.已知△ABC的面积是1,A1、B1、C1分别是△ABC三边上的中点,△A1B1C1的面积记为S1;A2、B2、C2分别是△A1B1C1三边上的中点,△A2B2C2的面积记为S2;以此类推,则△A4B4C4的面积S4是()A.B.C.D.二、填空题(每小题3分,共18分.)13.一个多边形的内角和是720°,那么这个多边形是______边形.14.已知扇形的圆心角为60°,半径为2,则扇形的弧长为______(结果保留π).15.把分母中的根号去掉,得到的最简结果是______(结果保留根号).16.分式方程的解为______.17.如图,已知AB切⊙O于点B,OA与⊙O交于点C,点P在⊙O上,若∠BPC=25°,则∠BAC的度数为______.18.某校八年级一班40名学生进行体能达标测试,根据测试结果绘制了如图所示的统计图,则从这40名学生中任取一人,其测试结果是“良好”等级的概率为______.三、解答题(本大题共8小题,共66分.)19.计算:|﹣3|+(﹣)﹣2﹣(+1)0﹣2tan60°.20.先化简,再求值:(+),其中a,b满足+|b﹣|=0.21.从某校参加科普知识竞赛的学生试卷中,抽取一个样本了解竞赛成绩的分布情况,将样本分成A、B、C、D、E五个组,绘制成如图所示的频数分布直方图,图中A、B、C、D、E各小组的长方形的高的比是l:4:6:3:2,且A组的频数是5,请结合直方图提供的信息,解答下列问题.(1)通过计算说明,样本数据中,中位数落在哪个组?并求该小组的频率;(2)估计该校在这次竞赛中,成绩高于80分的学生人数占参赛人数的百分比.22.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是线段AB、BC的中点,连接DE,将△DBE沿直线BC翻折得△FBE,连接FC、DC.(1)求证:四边形BFCD为菱形;(2)若AB=12,sinA=,求四边形ABFC的面积.23.长沙市市政绿化工程中有一块面积为160m2的矩形空地,已知该矩形空地的长比宽多6m.(1)请算出该矩形空地的长与宽;(2)规划要求在矩形空地的中间留有两条互相垂直且宽度均为1m的人行甬道(其中两条人行甬道分别平行于矩形空地的长和宽),其余部分种上草.如果人行甬道的造价为260元/m2,种草区域的造价为220元/m2,那么这项工程的总造价为多少元?24.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上的一个动点(不与B 点重合).(1)过动点D作射线DE交线段AB于点E,使∠BDE=∠A.设BD=x,AE=y,求y 与x的函数关系式,并求出自变量x的取值范围;(2)以点D为圆心,DC长为半径作⊙D,当⊙D与AB边相切时,求线段BD的长.25.在直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点称为“好点”.(1)求直线y=﹣x+2与两坐标轴围成的平面图形中(含边界),所有“好点”的坐标;(2)求证:函数y=(k为正整数)的图象上必定含有偶数个“好点”;(3)若二次函数y=kx2+(2k+1)x+2k﹣1的图象与x轴相交得到两个不同的“好点”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“好点”?26.若关于x的二次函数y=ax2+bx+c(a>0,c>1,a、b、c是常数)与x轴交于两个不同的点A(c,0),B(x,0),与y轴交于点P,其图象顶点为点M,点O为坐标原点,且当0<x<c时,总有y>0.(1)求常数b的取值范围;(2)当x1=c时,对于任意给定的常数a、b、c,若点Q(+c,y)在对应的二次函数的图象上,过点Q作QK⊥x轴于点K,试问△AQK与△BPO全等吗?证明你的结论;(3)当x>0时,求证:ax(x+1)+bx(x+2)+c(x+1)(x+2)>0.2018年湖南省长沙市九年级(上)第一次适应性测试数学试卷参考答案与试题解析一、选择题(每小题3分,共36分.)1.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°【考点】旋转的性质.【专题】计算题.【分析】利用旋转的性质计算.【解答】解:∵∠ABC=60°,∴旋转角∠CBC1=180°﹣60°=120°.∴这个旋转角度等于120°.故选:A.【点评】本题考查了旋转的定义,明确三角尺的度数的常识并熟记旋转角的定义是解题的关键.2.如图,在质地和颜色都相同的三张卡片的正面分别写有﹣2,﹣1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=﹣x﹣1上方的概率为()A.B.C.D.1【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(x,y)在直线y=﹣x﹣1上方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,点(x,y)在直线y=﹣x﹣1上方的有:(﹣2,1),(﹣1,1),(1,﹣1),∴点(x,y)在直线y=﹣x﹣1上方的概率为: =.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.已知A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系的是()A.y2>y1>y3B.y1>y2>y3C.y3>y2>y1D.y1>y3>y2【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征分别计算出y1、y2、y3的值,然后比较大小即可.【解答】解:∵A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,∴y1=2,y2=1,y3=﹣,∴y1>y2>y3.故选B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4.下列函数中,当x>0时,y随x的增大而减小的是()A.y=B.y=﹣C.y=3x+2 D.y=x2﹣3【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分别利用反比例函数、一次函数及二次函数的性质判断后即可确定正确的选项.【解答】解:A、∵k>0,∴在第一象限内y随x的增大而减小;B、∵k<0,∴在第四象限内y随x的增大而增大;C、∵k>0,∴y随着x的增大而增大;D、∵y=x2﹣3,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小.故选A.【点评】本题综合考查二次函数、反比例函数、正比例函数的增减性(单调性),是一道难度中等的题目.5.如图,若DC∥FE∥AB,则有()A. B. C. D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,根据题意直接列出比例等式,对比选项即可得出答案.【解答】解:∵DC∥FE∥AB,∴OD:OE=OC:OF(A错误);OF:OE=OC:OD(B错误);OA:OC=OB:OD(C错误);CD:EF=OD:OE(D正确).故选D.【点评】考查了平行线分线段成比例定理,要明确线段之间的对应关系.6.如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P 的坐标为()A.(﹣1,0) B.(﹣1,﹣1)C.(﹣2,﹣1)D.(﹣2,0)【考点】坐标与图形变化-旋转.【分析】首先找出两个三角形的对应点,然后连接任意两组对应点,两条线段的交点即为点P的位置.【解答】解:连接AD,CF交点为P.根据图形可知点P的坐标为(﹣1,﹣1),∴旋转中心P点的坐标为(﹣1,﹣1),故选B.【点评】本题主要考查的是旋转图形的性质,明确中心对称图形的对应点的连线经过对称中心是解题的关键.7.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k ≠0)上,则k的值为()A.4 B.﹣2 C.D.﹣【考点】翻折变换(折叠问题);待定系数法求反比例函数解析式.【分析】设点C的坐标为(x,y),过点C作CD⊥x轴,作CE⊥y轴,由折叠的性质易得∠CAB=∠OAB=30°,AC=AO=2,∠ACB=AOB=90°,用锐角三角函数的定义得CD,CE,得点C的坐标,易得k.【解答】解:设点C的坐标为(x,y),过点C作CD⊥x轴,作CE⊥y轴,∵将△ABO沿直线AB翻折,∴∠CAB=∠OAB=30°,AC=AO=2,∠ACB=AOB=90°,∴CD=y=AC•sin60°=2×=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD=30°,∵BC=BO=AO•tan30°=2×=,CE=|x|=BC•cos30°==1,∵点C在第二象限,∴x=﹣1,∵点C恰好落在双曲线y=(k≠0)上,∴k=x•y=﹣1×=﹣,故选D.【点评】本题主要考查了翻折的性质,锐角三角函数,反比例函数的解析式,理解翻折的性质,求点C的坐标是解答此题的关键.8.如图,在△ABC中,∠A=90°,AB=AC=3,现将△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,则边BC在旋转过程中所扫过的面积为()A.πB.2π C.3π D.4π【考点】扇形面积的计算;旋转的性质.【专题】计算题.【分析】利用∠A=90°,AB=AC=3可判断△ABC为等腰直角三角形,则BC=AB=3,BD=CD,再根据旋转的性质得BC′=BC=3,所以BD=BC′,利用含30度的直角三角形三边的关系得到∠BC′D=30°,则∠DBC′=60°,由于边BC在旋转过程中所扫过的部分为扇形,于是根据扇形的面积公式可计算出边BC在旋转过程中所扫过的面积.【解答】解:作高AD,则C′点在AD的反向延长线上,如图,∵∠A=90°,AB=AC=3,∴△ABC为等腰直角三角形,∴BC=AB=3,BD=CD,∵△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,∴BC′=BC=3,∴BD=BC′,∴∠BC′D=30°,∴∠DBC′=60°,∴边BC在旋转过程中所扫过的面积==3π.故选C.【点评】本题考查了扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长).也考查了旋转的性质.9.反比例函数的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为()A.2 B.﹣2 C.4 D.﹣4【考点】反比例函数系数k的几何意义.【分析】根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.【解答】解:由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为4,又因为点M在第二象限内,所以可知反比例函数的系数为k=﹣4.故选D.【点评】本题主要考查反比例函数的比例系数k的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系,即S=|k|.10.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.1 B.2 C.3 D.4【考点】反比例函数系数k的几何意义.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故选:B.【点评】本题主要考查了反比例函数系数k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.11.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】本题可先由反比例函数y=﹣图象得到字母a的正负,再与一次函数y=ax+1的图象相比较看是否一致即可解决问题.【解答】解:A、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a<0故选项A错误.B、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a>0,且交于y轴于正半轴,故选项A正确.C、y=ax+1(a≠0)的图象应该交于y轴于正半轴,故选项C错误.D、由函数的图象可知a<0,由y=ax+1(a≠0)的图象可知a>0,故选项D错误.故选B.【点评】本题考查反比例函数的图象、一次函数的图象等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.12.已知△ABC的面积是1,A1、B1、C1分别是△ABC三边上的中点,△A1B1C1的面积记为S1;A2、B2、C2分别是△A1B1C1三边上的中点,△A2B2C2的面积记为S2;以此类推,则△A4B4C4的面积S4是()A.B.C.D.【考点】三角形中位线定理.【专题】规律型.【分析】由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,就可求出S=s△ABC=×1=,同样地方法得出S=,即可得出答案.【解答】解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∴S△A1B1C1:S△ABC=1:4,且S△ABC=1,∴S△A1B1C1=,∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A1B1C1的∽△A2B2C2且相似比为,∴S△A2B2C2=,依此类推:S=,故选D.【点评】本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用,能根据求出的数得出规律是解此题的关键.二、填空题(每小题3分,共18分.)13.一个多边形的内角和是720°,那么这个多边形是六边形.【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是六,故答案为:六.14.已知扇形的圆心角为60°,半径为2,则扇形的弧长为π(结果保留π).【考点】弧长的计算.【分析】已知扇形的圆心角为60°,半径为2,代入弧长公式计算.【解答】解:依题意,n=60,r=2,∴扇形的弧长===π.故答案为π.15.把分母中的根号去掉,得到的最简结果是+1 (结果保留根号).【考点】分母有理化.【分析】原式分子分母乘以有理化因式,化简即可得到结果.【解答】解:原式==+1,故答案为: +116.分式方程的解为x=2 .【考点】解分式方程.【分析】观察可得最简公分母是(2x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(2x﹣3),得1=2x﹣3,解得x=2.检验:把x=2代入(2x﹣3)=1≠0.∴原方程的解为:x=2.故答案为x=2.17.如图,已知AB切⊙O于点B,OA与⊙O交于点C,点P在⊙O上,若∠BPC=25°,则∠BAC的度数为40°.【考点】切线的性质.【分析】连接OB,得直角△ABO,再由圆周角∠BPC=25°,得同弧所对的圆心角∠BOC=50°,所以∠BAC为40°.【解答】解:连接OB,∵AB为⊙O的切线,∴∠OBA=90°,∵∠BPC=25°,∴∠BOC=2∠BPC=50°,∴∠BAC=90°﹣50°=40°,故答案为:40°.18.某校八年级一班40名学生进行体能达标测试,根据测试结果绘制了如图所示的统计图,则从这40名学生中任取一人,其测试结果是“良好”等级的概率为0.45 .【考点】概率公式.【分析】直接利用扇形统计图得出“合格”的所占比例,进而得出“良好”所占比例即可得出答案.【解答】解:由图形可得,“合格”的所占比例为:×100%=10%,则“良好”所占比例为:1﹣45%﹣10%=45%,故测试结果是“良好”等级的概率为:0.45.故答案为:0.45.三、解答题(本大题共8小题,共66分.)19.计算:|﹣3|+(﹣)﹣2﹣(+1)0﹣2tan60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】此题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值的运算,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|﹣3|+(﹣)﹣2﹣(+1)0﹣2tan60°=3+4﹣1﹣2=6﹣220.先化简,再求值:(+),其中a,b满足+|b ﹣|=0.【考点】分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】先化简,再求出a,b的值代入求解即可.【解答】解:(+)=[﹣]•,=•,=,∵a,b满足+|b﹣|=0.∴a+1=0,b﹣=0,解得a=﹣1,b=,把a=﹣1,b=,代入原式==﹣.21.从某校参加科普知识竞赛的学生试卷中,抽取一个样本了解竞赛成绩的分布情况,将样本分成A、B、C、D、E五个组,绘制成如图所示的频数分布直方图,图中A、B、C、D、E各小组的长方形的高的比是l:4:6:3:2,且A组的频数是5,请结合直方图提供的信息,解答下列问题.(1)通过计算说明,样本数据中,中位数落在哪个组?并求该小组的频率;(2)估计该校在这次竞赛中,成绩高于80分的学生人数占参赛人数的百分比.【考点】频数(率)分布直方图;用样本估计总体;中位数.【分析】(1)根据E组的频数是10,以及各小组的长方形的高的比求出即可;利用样本容量以及长方形的高求出各组频数即可;(2)利用样本容量得出成绩高于70分的学生人数占参赛人数的百分率.【解答】解:(1)设样本容量为x,由题意得,解得:x=80,所以样本容量是80.B、C、D、E各组的频数分别为:B:,C:,D:,E:.由以上频数知:中位数落在C组;C组的频数为30,频率为0.375.(2)样本中成绩高于80分的人数为15+10=25(人),估计学校在这次竞赛中成绩高于80分的人数占参赛人数的百分比为=31.25%.22.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是线段AB、BC的中点,连接DE,将△DBE沿直线BC翻折得△FBE,连接FC、DC.(1)求证:四边形BFCD为菱形;(2)若AB=12,sinA=,求四边形ABFC的面积.【考点】菱形的判定与性质;翻折变换(折叠问题).【分析】(1)根据四边相等的四边形是菱形即可证明.(2)先证明S四边形ABFC =3S△ADC=S△ABC,然后求出△ABC的面积即可.【解答】(1)证明:∵∠ACB=90°,BD=AD,∴CD=DB=DA,∵△BEF是由△BED翻折,∴BF=BD,BC是DF的垂直平分线,∴CF=CD,∴BF=FC=CD=DB,∴四边形BDCF是菱形.(2)解:在RT△ABC中,AB=12,sinA=,∴BC=AB•sinA=8,AC==4∵四边形BDCF是菱形,BD=AD,∴S△BCF =S△BCD=S△ACD,∴S四边形ABFC =3S△ADC=S△ABC=×××8=24.23.长沙市市政绿化工程中有一块面积为160m2的矩形空地,已知该矩形空地的长比宽多6m.(1)请算出该矩形空地的长与宽;(2)规划要求在矩形空地的中间留有两条互相垂直且宽度均为1m的人行甬道(其中两条人行甬道分别平行于矩形空地的长和宽),其余部分种上草.如果人行甬道的造价为260元/m2,种草区域的造价为220元/m2,那么这项工程的总造价为多少元?【考点】一元二次方程的应用.【分析】(1)直接利用已知假设出矩形的长与宽,进而得出方程求出答案;(2)首先表示出人行甬道和草区域的面积进而得出答案.【解答】解:(1)设该矩形空地的长为x m,则宽为(x﹣6)m,由题意可得:x(x﹣6)=160.化简得:x2﹣6x﹣160=0,解得x1=16,x2=﹣10(不合题意,舍去)当x=16时,x﹣6=16﹣6=10(m).答:该矩形空地的长为16 m,宽为10 m;(2)由题意可得:(16﹣1)(10﹣1)=135(m2),160﹣135=25(m2),135×220+25×260=29700+6500=36200(元),答:这项工程的总造价为36200元.24.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上的一个动点(不与B 点重合).(1)过动点D作射线DE交线段AB于点E,使∠BDE=∠A.设BD=x,AE=y,求y 与x的函数关系式,并求出自变量x的取值范围;(2)以点D为圆心,DC长为半径作⊙D,当⊙D与AB边相切时,求线段BD的长.【考点】切线的性质;等腰三角形的性质;相似三角形的判定与性质.【分析】(1)证明△ABC∽△DBE,得,代入即可得出y与x的函数关系式,再由x>0,y>0列不等式组求出x的取值;(2)作辅助线,构建直角三角形,利用∠B的正弦列式,与勾股定理求出AM的长结合得:,求出x的值,就是BD.【解答】解:(1)如图1,在△ABC与△DBE中,∠B=∠B,∠BDE=∠A,∴△ABC∽△DBE,∴,∵BD=x,AE=y,∴,即,∴8x=50﹣5y,∴,∵,∴,∴0<x<;(2)如图2,设以D为圆心,CD长为半径的⊙D与AB相切于点F,连接DF,则DF⊥AB于点F,设CD=x,∴在Rt△BDF中,,又过点A作AM⊥BC于点M,∵AB=AC,AM⊥BC,∴,∴,在Rt△ABM中,,∴,∴5x=48﹣3x,∴,则BD=10.25.在直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点称为“好点”.(1)求直线y=﹣x+2与两坐标轴围成的平面图形中(含边界),所有“好点”的坐标;(2)求证:函数y=(k为正整数)的图象上必定含有偶数个“好点”;(3)若二次函数y=kx2+(2k+1)x+2k﹣1的图象与x轴相交得到两个不同的“好点”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“好点”?【考点】二次函数综合题.【分析】(1)画出直线y=﹣x+2的图象,直接由图象得出“好点”的坐标;(2)根据反比例函数关于原点对称,直接得出结论;(3)由题意利用根与系数的关系得出得=求出x 1,x2,进而求出k,验证满足△=(2k+1)2﹣4k(2k﹣1)=﹣4k2+8k+1>0,最后分两种情况讨论计算.【解答】解:(1)如图,由直线y=﹣2+2的图象得出它与两坐标轴围成的平面图形中(含边界),所有“好点”的坐标为(0,0),(1,0),(2,0),(0,1),(0,2),(1,1),(2)∵k为正整数,k=xy,∴k至少能够分解成一组两个正整数的乘积,∴在位于第一象限的图象上至少有一个“好点”,∵双曲线的图象关于原点对称,∴函数y=(k为正整数)的图象上必定含有偶数个“好点”,(3)∵二次函数y=kx2+(2k+1)x+2k﹣1的图象与x轴相交得到两个不同的“好点”,∴当k≠0时,关于x的二次方程kx2+(2k+1)x+2k﹣1=0有两个不等的整数根x 1,x2,∴△=(2k+1)2﹣4k(2k﹣1)=﹣4k2+8k+1>0,①根据根与系数的关系得, =②消去k得,(x2﹣1)(x1﹣1)=5,∵x2,x1是整数,∴或或或,∴或或或,∴k=﹣或k=,而k=﹣或k=时,均满足△>0,①当时,此时.由其图象可以得到:其图象与x轴所围成的平面图形中(含边界),一共包含有5个“好点”.②当时,此时.由其图象可以得到:其图象与x轴所围成的平面图形中(含边界),一共包含有9个“好点”.26.若关于x的二次函数y=ax2+bx+c(a>0,c>1,a、b、c是常数)与x轴交于两个不同的点A(c,0),B(x,0),与y轴交于点P,其图象顶点为点M,点O为坐标原点,且当0<x<c时,总有y>0.(1)求常数b的取值范围;(2)当x1=c时,对于任意给定的常数a、b、c,若点Q(+c,y)在对应的二次函数的图象上,过点Q作QK⊥x轴于点K,试问△AQK与△BPO全等吗?证明你的结论;(3)当x>0时,求证:ax(x+1)+bx(x+2)+c(x+1)(x+2)>0.【考点】二次函数综合题.【分析】(1)根据当0<x<c时,总有y>0,建立不等式求出b的范围;(2)当x1=c时,对于任意给定的常数a、b、c,若点Q(+c,y)在对应的二次函数的图象上,直接确定出AK=BO,QK=PO,即可;(3)有条件直接得到0<<1,进而当自变量取时,必有函数值y>0,化简即可.【解答】解:(1)由题意可得c、x是方程ax2+bx+c=0的两个根,所以,所以.因为当0<x<c时,总有y>0,所以根据图象必有>c>0,所以0<ac<1.又因为ac2+bc+c=0(a>0,c>0),所以b=﹣ac﹣1.常数b的取值范围为﹣2<b<﹣1.(2)△AQK与△BPO全等.AK=BO,QK=PO,方法一:因为ac2+bc+c=0,b=﹣ac﹣1,所以.从而△AQK≌△BPO.方法二:根据对称性可得:点P与点Q关于此抛物线的对称轴对称,所以y=c.从而△AQK≌△BPO.(3)∵当0<x<1时,总有y>0.显然0<<1,∴当自变量取时,必有函数值y>0.即有0<,所以0<<.故当x>0时,ax(x+1)+bx(x+2)+c(x+1)(x+2)>0.。
湖南省长沙市长郡教育集团初中课程中心2018-2019学年九年级上学期期末考试数学解析

参考答案与试题解析一.选择题(共10小题)1.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为()A.978×103B.97.8×104C.9.78×105D.0.978×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:978000用科学记数法表示为:9.78×105,故选:C.2.下列四个几何体中,主视图与俯视图不同的几何体是()A.B.C.D.【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.【解答】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.4.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上【分析】根据事件发生的可能性大小判断即可.【解答】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.5.反比例函数y=﹣的图象在()A.第二、四象限B.第一、三象限C.第一、二象限D.第三、四象限【分析】直接利用反比例函数图象分布象限规律进而分析得出答案.【解答】解:反比例函数y=﹣的图形在:第二、四象限.故选:A.6.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.26【分析】由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC 的周长.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.7.对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)【分析】从y=2(x﹣1)2+2均可以直接确定函数的开口方向、对称轴、顶点坐标等.【解答】解:y=2(x﹣1)2+2,(1)函数的对称轴为x=1;(2)a=2>0,故函数开口向上;(3)函数顶点坐标为(1,2),开口向上,故函数与x轴没有交点;故选:D.8.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°【分析】根据平行线的性质可证∠D=∠AOD=50°,又根据三角形外角与内角的关系可证∠ACO=∠OAC=∠AOD=25°.【解答】解:∵OA∥DE,∴∠D=∠AOD=50°,∵OA=OC,∴∠ACO=∠OAC=∠AOD=25°.故选:D.9.下列一元二次方程中,两个实数根之和为2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=0 【分析】利用根与系数的关系进行判断.【解答】解:方程2x2+x﹣2=0的两个实数根之和为﹣;方程x2+2x﹣2=0的两个实数根之和为﹣2;方程2x2﹣x﹣1=0的两个实数根之和为;方程x2﹣2x﹣1=0的两个实数根之和为2.故选:D.10.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,=,DE=6,则BC 的长为()A.8 B.9 C.10 D.12【分析】根据相似三角形的性质可得=,再根据=,DE=6,即可得出=,进而得到BC长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,又∵=,DE=6,∴=,∴BC=10,故选:C.二.填空题(共6小题)11.计算:=﹣1 .【分析】根据负整数指数幂和零指数幂的定义求解即可.【解答】解:原式=1﹣2=﹣1.故答案为﹣1.12.正八边形的每个外角的度数和是360°.【分析】利用正多边形的外角和等于360度即可得出答案.【解答】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.13.分解因式:a2b﹣b3=b(a+b)(a﹣b).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b),故答案为:b(a+b)(a﹣b)14.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=100°.【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【解答】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF= 2 .【分析】利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【解答】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2.故答案为216.抛物线y=﹣x2+bx+c的部分图象如图所示,已知关于x的一元二次方程﹣x2+bx+c=0的一个解为x1=1,则该方程的另一个解为x2=﹣3 .【分析】函数的对称轴为:x=﹣1,其中一个交点坐标为(1,0),由函数的对称轴即可求解另外一个交点坐标.【解答】解:函数的对称轴为:x=﹣1,其中一个交点坐标为(1,0),则另外一个交点坐标为(﹣3,0),故答案为﹣3.三.解答题(共9小题)17.解方程:x2﹣4x﹣21=0.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣4x﹣21=0,(x﹣7)(x+3)=0,x﹣7=0,x+3=0,x1=7,x2=﹣3.18.先化简,后求值:,其中x=﹣1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=•=x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣3.19.如图,E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF.求证:BF=DE.【分析】根据DE⊥AC,BF⊥AC可以证明∠DEC=∠BFA=90°,由“HL”可证Rt△ABF≌Rt△CDE可得BF=DE.【解答】证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE;20.如图,△ABC.(1)尺规作图:①作出底边的中线AD;②在AB上取点E,使BE=BD;(2)在(1)的基础上,若AB=AC,∠BAC=120°,求∠ADE的度数.【分析】(1)①作线段BC的垂直平分线可得BC的中点D,连接AD即可.②以B为圆心,BD为半径画弧交AB于E,点E即为所求.(2)利用等腰三角形的性质,三角形的内角和定理求解即可.【解答】解:(1)如图,线段AD,点E即为所求.(2)如图,连接DE.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BD=BE,∴∠BDE=∠BED=(180°﹣30°)=75°,∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADB=90°,∴∠ADE=90°﹣∠ADE=90°﹣75°=15°.21.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【解答】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=,P(乙胜)=.∴P(甲胜)≠P(乙胜),故这个游戏不公平.22.某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品脚玩具上x元(0<x<60)元,销售利润为w元,请求出w关于x的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.【分析】(1)利用销售单价每涨1元,就会少售出10件玩具,再结合每件玩具的利润乘以销量=总利润进而求出即可;(2)利用每件玩具的利润乘以销量=总利润得出函数关系式,进而求出最值即可.【解答】解:(1)根据题意得:w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000;(2)w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,∴对称轴为x=65,∴当x=65时,W最大值=12250(元)答:商场销售该品牌玩具获得的最大利润是12250元,此时玩具的销售单价应定为65元.23.如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.【分析】(1)把点A坐标代入两个函数解析式即可解决问题.(2)设AC=x,利用勾股定理列方程可得AC的长;(3)分类讨论D的位置,根据已知三角形的面积相等列等式可得结论.【解答】解(1)∵直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(4,n),∴n=2×4=8,∴A(4,8),∴k=4×8=32;(2)设AC=x,则OC=x,BC=8﹣x,由勾股定理得:OC2=OB2+BC2,∴x2=42+(8﹣x)2,x=5,∴AC=5;(3)设点D的坐标为(x,0)分两种情况:①当x>4时,如图1,∵S△OCD=S△ACD,∴OD•BC=AC•BD,3x=5(x﹣4),x=10,②当0<x<4时,如图2,同理得:3x=5(4﹣x),x=,∴点D的坐标为(10,0)或(,0).24.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线;(3)若AB=12,AD=6,连接OD,求扇形BOD的面积.【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为⊙O的切线,只要证明∠ODE=90°即可;(3)根据三角函数的定义得到sin B===,求得∠B=60°,得到∠BOD=60°,根据扇形的面积公式即可得到结论.【解答】证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线;(3)∵AB=12,AD=6,∴sin B===,∴∠B=60°,∴∠BOD=60°,∴S扇形BOD==6π.25.如图1,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,当△EPC的面积为3cm2时,求t的值;(3)在运动过程中,当t取何值时,△EPQ与△ADC相似.【分析】(1)通过计算发现EQ=FQ=6,由此即可证明;(2)利用三角形的面积建立方程即可得出结论;(3)先判断出EQ=CQ,进而得出CE=2CQ,建立方程即可得出结论.【解答】(1)证明:若运动时间t=秒,则BE=2×=(cm),DF=(cm),∵四边形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四边形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)解:由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB==,在Rt△CPQ中,tan∠ACB===,∴PQ=t,∵△EPC的面积为3cm2,∴S△EPC=CE×PQ=×(8﹣2t)×t=3,∴t=2秒,即:t的值为2秒;(3)解:四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∵△EQP∽△ADC,∴∠CAD=∠QEP,∴∠ACB=∠QEP,∴EQ=CQ,∴CE=2CQ,由(1)知,CQ=t,CE=8﹣2t,∴8﹣2t=2t,∴t=2秒.即:t的值为2秒.。
2018-湖南长沙长郡集团九上期中考试试卷

2018-2019湖南长沙长郡集团期中考试九年级 数学试卷总分:120 分时量:120 分钟.一、选择题(本大题共 12 小题,每小题 3 分,共 36 分. 在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 2018的倒数是()A. 2018B. - 2018 1C.2018D. -1 2018 2. 若(2x -1)0= 1,则()11 11 A. x ≥ -2B. x ≠ - 2C. x ≤ -2D. x ≠23. 用代数式表示“ a 的3倍与b 的平方的差”,正确的是( )A. (3a - b )2B. 3(a - b )2C. (a - 3b )2D. 3a - b24. 如图,已知 AB // CD , ∠A = 80︒,则∠1的度数是()A. 100︒ C. 80︒B. 110︒ D. 120︒5. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条角平分线的交点C. 三条边的垂直平分线的交点D. 三条高的交点6. 若关于 x 的一元二次方程 m 2 x 2- (2m -1)x +1 = 0有两个实数根,则 m 的取值范围是()A.m <1 4B.m ≤1 4C.m ≥1 4D. m ≤ 1且 m ≠ 047. 现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60︒. 其中不正确的命题的个数是( )A. 1个B. 2个C. 3个D. 4 个3 18. 一个不透明布袋里装有1个白球、 2个黑球、3个红球,它们除颜色外均相同,从中任意摸出一个球, 则是红球的概率为( ) 1 1 A. B.631 2 C.D.239.二次函数 y = ax 2+ bx + c 的图象如图所示,则一次函数 y = bx + b 2- 4ac 与反比例函数 y =a +b + cx在同一坐标系内的图象大致为()A B CD10. 圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为()A. 36B. 48C. 72D. 14411. 如图,点 P (3a , a )是反比例函数 y = k (k > 0)与ΘO 的一个交点,图中阴影部分的面积为10,则反x比例函数的解析式为( )12. 如图,正∆ABC 的边长为 2,过点 B 的直线l ⊥ AB ,且∆ABC 与∆A 'BC '关于直线l 对称, D 为线段BC '上一动点,则 AD + CD 的最小值是()A. 4B. 3C. 2D. 2 +二、填空题(本大题共有 6 小题,每小题 3 分,共 18 分. 不需写出解答过程,请把答案直接填写在答题卡相应位置上)13. 函数 y = ,当 x = 2时没有意义,则 a = ; x - 2a14. 因式分解: m 2- mn + mx - nx =;15. 已知有理数 m , n 满足⎛m + ⎝n ⎫2⎪ ⎭ + n 2 - 4 = 0,则 m 3n 3的值为;23416.如图,在∆ABC中,∠C = 90︒,∠B = 24︒,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP,射线AP交BC 于点D,则∠ADB =;17.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上,点A、B的度数分别为86︒、30︒,则∠ACB的大小为;18.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45︒,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(-1,0),则点A经过连续2018次这样的变换得到的点A2018的坐标是.三、解答题(本大题共8 小题,第19、20 题每题6 分,第21、22 题每题8 分,第23、24 题每题9 分,第25、26 题每题10 分)⎧2x - 6 ≤ 3x - 5,并把解集表示在数轴上.19.(6 分)解不等式组⎨⎩6x - 3 < 6 - 3x20. (6 分)已知x = 2017,y = 2018,求代数式21.(8 分)湖南省博物馆自2017年11月29日重新开放以来,收到市民的广泛关注,十月初,八年级(1)班学生小颖对全班同学这十个多月来去省博物馆的次数做了调查统计,并制成了如图不完整的统计图表.八年级(1)班学生去省博物馆的次数统计表请你根据统计图表中的信息,解答下列问题:(1)填空: a =,b =;(2)求扇形统计图中“ 0次”的扇形所占圆心角的度数;(3)从全班去过省博物馆的同学中随机抽取1人,谈谈对博物馆的印象和感受,求恰好抽中去过“ 4次及以上”的同学的概率.22.(8 分)如图,平行四边形 ABCD 中, BD ⊥ AD , ∠A = 45︒, E 、 F 分别是 AB 、CD 上的点, 且 BE = DF ,连接 EF 交 BD 于O . (1)求证: BO = DO ;(2) 若 EF ⊥ AB ,延长 EF 交 AD 的延长线于G ,当 FG = 1时,求 AE 的长.去省博物馆的次数0 次1 次2 次3 次4 次 及以上 人数812a10423.(9 分)如图 1,已知在⊙O 中,点C 为劣弧 AB 上的中点,连接 AC 并延长至 D ,使CD C A ,连接 DB 并延长交⊙O 于点 E ,连接 AE . (1)求证: AE 是⊙O 的直径;(2)如图 2,连接 EC , ⊙O 的半径为5, AC 的长为4,求阴影部分的面积之和.图 1图 224.(9 分)随着生活水平的提高,人们越来越注重营养健康,有一种有机水果 A 在市场上特别受欢迎,某大型超市以10元/千克的价格在产地收购了6000千克 A 水果,立即将其冷藏,请根据下列信息解决问题:①水果 A 的市场价每天每千克上涨0.1元; ②平均每天有10千克的该水果损坏,不能出售; ③每天的冷藏费用为300元; ④该水果最多保存110天;(1)若将这批 A 水果存放 x 天后一次性出售,则 x 天后这批水果的销售单价为 元; (2)将这批 A 水果存放多少天后一次性出售所得利润为9600元?(3) 将这批 A 水果存放多少天后一次性出售可获得最大利润?最大利润是多少?1 25.(10 分)已知y是关于x的函数,若其函数图象经过点P(t, t ),则称点P为函数图象上的“郡点”,例如:y = 2x -1上存在“郡点” P(1,1).(1)直线(填写直线解析式)上的每一个点都是“郡点”,双曲线y = 上的“郡点”x是;重合)的坐标为A(x , y )、B(x , y ),求x2 +x2的最小值.1 12 2 1 2(3)若函数y =1x2 +(n -k +1)x +m +k -1的图象上存在唯一的一个“郡点”,且当- 2 ≤n ≤1时,4m的最小值为k,求k的值.26.(10 分)如图,在平面直角坐标系中,直线y =-x + 3与x轴、y轴分别交于点B、C;抛物线y =-x2 +bx +c经过B、C两点,并与x轴交于另一点A.(1)求该抛物线所对应的函数关系式;(2)设P(x, y)是(1)所得抛物线上的一个动点,过点P作直线l ⊥x轴于点M,交直线BC于点N.①若点P在第一象限内,试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时x的值,若不存在,请说明理由;②求以BC为底边的等腰∆BPC的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
20. 先化简,再求求值:
x2 2x 1 3 1 ,其中 x 2 2 . 2 x 1 x 1
3
四、解答题(共 2 小题,每小题 8 分,共 16 分) 21. “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市 民对去年销量较好的肉馅粽(咸) 、豆沙馅粽(甜) 、红枣馅粽(甜) 、蛋黄馅粽(咸) (以下 分别用 A 、 B 、 C 、 D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进 行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
)
1
7. 已知等腰 ABC 的两条边的长度是一元二次方程 x 6 x 8 0 的两根,则 ABC 的周 长是( A. 10 8. 不等式组 ) B. 8 C. 6 ) D. 8 或 10
2
2 x 1 5 的解集在数轴上表示为( 8 4 x 0
9. 如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是(
长郡教育集团初中课程中心
2017 2018 学年度初三第一次模拟考试
数学
考试时间: 2018 年 5 月 28 日 7 : 50 9 : 50 注意事项: 1. 答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准 考证号、考室和座位号; 2. 必须在答题卡上答题,在草稿纸、试题卷上答题无效; 3. 答题时,请考生注意各大题题号后面的答题提示; 4. 请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁; 5. 答题卡上不得使用涂改液、涂改胶和贴纸; 6. 本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分. 一、选择题(本大题共有 12 小题,每小题 3 分,共 36 分,在每小题所给出的四个选项中, 恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. A. 4 2. 函数 y A. x
16 的值等于(
) C. 4 D.
B. 4
4
3 2
1 中,自变量 x 的取值范围为( ) 2x 3 3 3 B. x C. x 且 x 0 2 2
)
D. x
3 2
3. 下列图形中,是轴对称图形的是(
A A. 2a 3a 6a C a a 2a
4 2
B ) B. 3a D.
;
18. 某大型超市从生产基地购进一批水果,运输过程中质量损失 20% ,假设不计超市其他 费用,如果超市要想至少获得 20% 的利润,那么这种水果的售价在进价的基础上应至少提 %. 高 三、解答题(共 2 小题,每小题 6 分,共 12 分) 19. 计算:
1 2 2 1 sin 30 . 2
请根据以上信息回答: (1)本次参加抽样调查的市民有多少人? (2)将两幅不完整的图补充完整; (3)若有外型完全相同的 A 、 B 、 C 、 D 粽各一个,煮熟后,小王吃了两个,用列表或 画树状图的方法,求他吃到的两个粽子都是甜味的概率.
4
22. 如图是一座人行天桥的示意图,天桥的高度是 10 米, CB DB ,坡面 AC 的倾斜角为
2
; 事件;
16. 已知一个圆锥的母线长为 10 cm ,将侧面展开后所得扇形的圆心角是 144 ,则这个圆 锥的底面圆的半径是 cm ; 17. 如图, ABC 与 A1 B1C1 为位似图形,点 O 是它们的位似中心,位似比是 1 : 2 ,已知
ABC 的面积为 3 ,那么 A1 B1C1 的面积是
2
t
A. B. C. D.
27 秒时, ABE ∽ QBP . 其中正确的是( 2 Nhomakorabea)
①② ①③④ ③④ ①②④
2
二、填空题(本大题共有 6 小题,每小题 3 分,共 18 分,不需要写出解答过程,请把答案 直接填写在答题卡相应位置上) 13. 时光飞逝,小学、初中的学习时光已过去,九年的在校时间大约有 16200 小时,请将数 ; 16200 用科学记数法表示为 14. 因式分解: m n 6mn 9n 15. 任意抛掷一枚硬币,则“正面朝上”是
45 , 为了方便行人推车过天桥, 市政部门决定降低坡度, 使新坡面 DC 的坡度为 i 3 : 3 ,
若新坡脚外需留 3 米宽的人行道,问离原坡脚( A 点处)10 米的建筑物是否需要拆除?(参 考数据: 2 1.414 , 3 1.732 )
五、解答题(本大题共 2 小题,每小题 9 分,共 18 分) 23. 如图, ABC 内接于 O , AB 为 O 的直径, ACB 的平分线 CD 交 O 于点 D , 过点 D 作 O 的切线 PD , 交 CA 的延长线于点 P , 过点 A 作 AE CD 于点 E , 过点 B 作 BF CD 于点 F . (1)求证: PD // AB ; (2)求证: DE BF ; (3)若 AC 6 , tan CAB
C
D
4. 下列运算中,计算正确的是(
2 3
27 a 6
a b 2 a 2 ab b 2
)
5. 若一组数据 3 , x , 4 , 5 , 6 的众数是 3 ,则这组数据的中位数为( A. 3 B. 4 C. 5 D. 6 6. 若 y kx 4 的函数值 y 随 x 的增大而减小,则 k 的值可能是下列的( A. 4 B. 0 C. 1 D. 3
12. 如图 1 所示, E 为矩形 ABCD 的边 AD 上一点,动点 P 、 Q 同时从点 B 出发,点 P 以
1 cm / 秒的速度沿折线 BE ED DC 运动到点 C 时停止,点 Q 以 2 cm / 秒的速度沿 BC
运动到点 C 时停止,设 P 、 Q 同时出发 t 秒时, BPQ 的面积为 y cm ,已知 y 与 t 的函 数关系图象如图 2 所示(其中曲线 OG 为抛物线的一部分,其余各部分均为线段)所示,则 下列结论:① BE BC ;②当 t 6 秒时, ABE PQB ;③点 P 运动了 18 秒;④当
)
10. 下列说法正确的是( A. 同位角相等 C 等腰三角形两底角相等
) B. 三点可以确定一个 D. 对角线相等且垂直的四边形是正方形 )
11. 如图, A 、 D 是 O 上的两个点, BC 是直径,若 D 32 ,则 OAC ( A. 64 B. 58 C. 72 D. 55