三角函数图像与性质题型专题

合集下载

三角函数图像与性质-知识点总结及题型归纳讲义

三角函数图像与性质-知识点总结及题型归纳讲义

专题七《三角函数》讲义7.3 三角函数的图像与性质知识梳理.三角函数的图像与性质1.正弦、余弦、正切函数的图象与性质函数y=sin x y=cos x y=tan x 图象定义域R R错误!值域[-1,1][-1,1]R奇偶性奇函数偶函数奇函数单调性在⎣⎡⎦⎤-π2+2kπ,π2+2kπ(k∈Z)上是递增函数,在⎣⎡⎦⎤π2+2kπ,3π2+2kπ(k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在⎝⎛⎭⎫-π2+kπ,π2+kπ(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是⎝⎛⎭⎫kπ+π2,0(k∈Z)对称中心是⎝⎛⎭⎫kπ2,0(k∈Z)题型一. 三角函数图像的伸缩变换1.要得到函数y =3sin (2x +π3)的图象,只需要将函数y =3cos2x 的图象( ) A .向右平行移动π12个单位 B .向左平行移动π12个单位C .向右平行移动π6个单位D .向左平行移动π6个单位2.(2017•新课标Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.(2021春•闵行区校级期中)函数y =cos (2x +φ)的图象向右平移π2个单位长度后与函数y =sin (2x +2π3)的图象重合,则|φ|的最小值为 .4.(2016春•南通期末)将函数f(x)=sin(ωx +φ),(ω>0,−π2<φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π4个单位长度得到y =sin x 的图象,则f(π6)= .5.(2015•湖南)将函数f (x )=sin2x 的图象向右平移φ(0<φ<π2)个单位后得到函数g (x )的图象.若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,有|x 1﹣x 2|min =π3,则φ=( ) A .5π12B .π3C .π4D .π6题型二. 已知图像求解析式1.图是函数y =A sin (ωx +φ)(x ∈R )在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变2.已知函数y =sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则( )A .ω=π2,φ=−π4 B .ω=π2,φ=π4C .ω=π,φ=−π4D .ω=π,φ=π43.已知函数f (x )=A cos (ωx +φ)的图象如图所示,f (π2)=−23,则f (0)=( )A .−23B .−12C .23D .124.已知函数f (x )=A tan (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,下列关于函数g (x )=A cos (ωx +φ)(x ∈R )的表述正确的是( )A .函数g (x )的图象关于点(π4,0)对称B .函数g (x )在[−π8,3π8]递减 C .函数g (x )的图象关于直线x =π8对称D .函数h (x )=cos2x 的图象上所有点向左平移π4个单位得到函数g (x )的图象题型三. 三角函数的性质 考点1.单调性1.函数y =sin (﹣2x +π3)的单调递减区间是( ) A .[k π−π12,k π+5π12],k ∈Z B .[2k π−π12,2k π+5π12],k ∈ZC .[k π−π6,k π+5π6],k ∈ZD .[2k π−π6,2k π+5π6],k ∈Z2.已知函数f(x)=Asin(x +φ)(A >0,−π2<φ<0)在x =5π6时取得最大值,则f (x )在[﹣π,0]上的单调增区间是( ) A .[−π,−5π6] B .[−5π6,−π6] C .[−π3,0]D .[−π6,0]3.已知函数f (x )=sin (2x +π3)在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( ) A .{a |0<a ≤π12} B .{a |0<a ≤π2} C .{a |a =k π+π12,k ∈N *} D .{a |2k π<a ≤2k π+π12,k ∈N *} 4.已知ω>0,函数f (x )=sin (ωx +π4)在区间(π2,π)上单调递减,则实数ω的取值范围是( ) A .[12,54] B .[12,34]C .(0,12]D .(0,2]考点2.周期性、奇偶性、对称性1.已知函数f (x )=cos 2x +sin 2(x +π6),则( )A .f (x )的最小正周期为π,最小值为12B .f (x )的最小正周期为π,最小值为−12C .f (x )的最小正周期为2π,最小值为12D .f (x )的最小正周期为2π,最小值为−122.已知f (x )=sin2x +|sin2x |(x ∈R ),则下列判断正确的是( ) A .f (x )是周期为2π的奇函数 B .f (x )是值域为[0,2]周期为π的函数 C .f (x )是周期为2π的偶函数 D .f (x )是值域为[0,1]周期为π的函数3.将函数y =sin2x −√3cos2x 的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是( ) A .712π B .π4C .π12D .π64.已知函数f (x )=a sin x ﹣b cos x (ab ≠0,x ∈R )在x =π4处取得最大值,则函数y =f (π4−x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(3π2,0)对称 C .奇函数且它的图象关于点(3π2,0)对称 D .奇函数且它的图象关于点 (π,0)对称考点3.三角函数性质综合1.(2019•天津)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g (π4)=√2,则f (3π8)=( )A .﹣2B .−√2C .√2D .22.(2015•天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R ,若函数f (x )在区间(﹣ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为 .3.(2014•大纲版)若函数f (x )=cos2x +a sin x 在区间(π6,π2)是减函数,则a 的取值范围是 .4.(2016•新课标Ⅰ)若函数f (x )=x −13sin2x +a sin x 在(﹣∞,+∞)单调递增,则a 的取值范围是( ) A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]5.(2013•安庆二模)已知函数f (x )=sin (ωx +π6),其中ω>0,若f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值、无最大值,则ω等于( )A .403B .283C .163D .436.(2014•北京)设函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0)若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f(2π3)=﹣f (π6),则f (x )的最小正周期为 .题型四. 三角函数最值1.函数f (x )=15sin (x +π3)+cos (x −π6)的最大值为( ) A .65B .1C .35D .152.函数f (x )=cos (ωx +π3)(ω>0)在[0,π]内的值域为[﹣1,12],则ω的取值范围为( ) A .[32,53]B .[23,43]C .[23,+∞)D .[23,32]3.已知函数f (x )=cos2x +sin x ,则下列说法中正确的是( ) A .f (x )的一条对称轴为x =π4 B .f (x )在(π6,π2)上是单调递减函数C .f (x )的对称中心为(π2,0)D .f (x )的最大值为14.若0<x ≤π3,则函数y =sin x +cos x +sin x cos x 的值域为 .5.已知函数f(x)=2sinωx ⋅cos 2(ωx 2−π4)−sin 2ωx(ω>0)在区间[−2π5,5π6]上是增函数,且在区间[0,π]上恰好取得一次最大值1,则ω的取值范围是( ) A .(0,35]B .[12,35]C .[12,34]D .[12,52)6.已知函数f (x )=cos x •sin (x +π3)−√3cos 2x +√34,x ∈R (1)求f (x )的最小正周期;(2)求f (x )在闭区间[0,π2]上的最大值和最小值及相应的x 值;(3)若不等式|f (x )﹣m |<2在x ∈[0,π2]上恒成立,求实数m 的取值范围.题型五.三角函数零点1.已知函数f (x )=sin ωx −√3cos ωx (ω>0),若方程f (x )=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为 .2.已知函数f (x )=√3sin ωx cos ωx +cos 2ωx −12,(ω>0,x ∈R ),若函数f (x )在区间(π2,π)内没有零点,则ω的取值范围( ) A .(0,512] B .(0,512]∪[56,1112]C .(0,58]D .(0,56]∪[1112,1)3.函数f(x)=2sin(2ωx +π6)(ω>0)图象上有两点A (s ,t ),B (s +2π,t )(﹣2<t <2),若对任意s ∈R ,线段AB 与函数图象都有五个不同交点,若f (x )在[x 1,x 2]和[x 3,x 4]上单调递增,在[x 2,x 3]上单调递减,且x 4−x 3=x 2−x 1=23(x 3−x 2),则x 1的所有可能值是课后作业. 三角函数的图像与性质1.函数f (x )=A sin (ωx +φ)(A >0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g (x )=A sin ωx 的图象,只需将函数y =f (x )的图象( )A .向左平移π3个单位长度B .向左平移π12个单位长度 C .向右平移π3个单位长度D .向右平移π12个单位长度2.关于函数y =2sin (3x +π4)+1,下列叙述正确的是( ) A .其图象关于直线x =−π4对称 B .其图象关于点(π12,1)对称 C .其值域是[﹣1,3]D .其图象可由y =2sin (x +π4)+1图象上所有点的横坐标变为原来的13得到 3.已知函数f (x )=(12a −√3)sin x +(√32a +1)cos x ,将f (x )的图象向右平移π3个单位长度得到函数g (x )的图象,若对任意x ∈R ,都有g (x )≤g (π4),则a 的值为 . 4.已知函数f (x )=sin (ωx +φ)(ω>1,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,则ω和φ的值分别为( )A .23,π4B .2,π3C .2,π2D .103,π25.已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,−π4为f (x )的零点:且f (x )≤|f (π4)|恒成立,f (x )在区间(−π12,π24)上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .176.已知函数f (x )=2sin (ωx −π6)sin (ωx +π3)(ω>0),若函数g (x )=f (x )+√32在[0,π2]上有且只有三个零点,则ω的取值范围为( )A .[2,113) B .(2,113) C .[73,103) D .(73,103)。

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。

高考数学专题复习:三角函数的图像与性质

高考数学专题复习:三角函数的图像与性质

高考数学专题复习:三角函数的图像与性质一、单选题1.函数()41sin 2x xf x x -=⋅的部分图像可能是( ) A . B .C .D .2.已知函数()y f x =的图象如图所示,则此函数的解析式可能是( )A .()sin 733x xxf x -=- B .()sin 733x xxf x -=- C .()cos 733x xxf x -=- D .()cos 733x xxf x -=- 3.函数()sin 6f x A x πω⎛⎫=+ ⎪⎝⎭()0ω>的部分图象如图,()f x 的最小正零点是512π,则()f x =( )A .72sin 12x π⎛⎫+⎪⎝⎭B .2sin 26x π⎛⎫+ ⎪⎝⎭C .2sin 26x π⎛⎫-+ ⎪⎝⎭D .sin(2)6x π+4.函数()43f x cos x ππ⎛⎫=- ⎪⎝⎭图象的一条对称轴可能是直线x =( )A .53-B .13- C .3π D .43π5.现有四个命题: ①()0,1x ∃∈,tan 2x x +=; ②ππ,42x ⎛⎫∀∈ ⎪⎝⎭,1tan 4tan 1x x +≥-; ③函数()cos tan f x x x x =+的图象存在对称中心;④函数函数()πtan 23f x x ⎛⎫=- ⎪⎝⎭的最小为π.其中真命题的个数是( ) A .1B .2C .3D .46.将函数()sin(2)f x x ϕ=-的图象向右平移6π个单位长度后,得到的图象关于y 轴对称,则ϕ的值可以为( ) A .2π-B .6πC .3π D .2π 7.将函数()πsin 26f x x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6个单位,得到函数()g x 的图象,则下列说法不正确的是( ) A .函数()g x 的周期为π B .π162g ⎛⎫= ⎪⎝⎭C .函数()g x 是奇函数D .直线πx =是函数()g x 的一条对称轴8.已知函数()sin (0)f x x ωω=>在3,44ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是( )A .[)2,+∞B .(]0,2C .2,3⎡⎫+∞⎪⎢⎣⎭D .20,3⎛⎤⎥⎝⎦9.已知函数()1sin ,0,21cos ,0,2x x f x x x ⎧+<⎪⎪=⎨⎪+≥⎪⎩若()f x 在区间3,2a π⎡⎤-⎢⎥⎣⎦上至少有5个零点,()f x 在区间[],a π-上至多有5个零点,则正数a 的取值范围是( ) A .138,63ππ⎡⎤⎢⎥⎣⎦ B .1310,63ππ⎡⎫⎪⎢⎣⎭C .1910,63ππ⎡⎫⎪⎢⎣⎭D .819,36ππ⎡⎤⎢⎥⎣⎦10.函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,那么=2f π⎛⎫⎪⎝⎭( )AB .12CD11.函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是( )A .()3sin 42f x x ππ⎛⎫=+ ⎪⎝⎭B .3()3sin 44f x x ππ⎛⎫=+ ⎪⎝⎭C .()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭D .3()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭12.下列函数为偶函数的是( ) A .2cos y x x = B .sin y x =- C .tan2y x = D .cos sin y x x =+二、填空题13.设函数()sin f x x =,[],x a b ∈,其值域为1,12⎡⎤-⎢⎥⎣⎦,设b a -最大值为M ,最小值为N ,则M N -=________14.函数sin 35y x π⎛⎫=- ⎪⎝⎭的最小正周期为________.15.已知()()cos f x x ωϕ=+(0>ω,π02ϕ<<)的图像过点10,2⎛⎫ ⎪⎝⎭,要使该函数解析式为()πcos 23f x x ⎛⎫=+ ⎪⎝⎭,还应该给出的一个条件是________.16.若函数()()sin 0y x ωϕω=+>的部分图象如图,则ω=________.三、解答题17.已知函数()sin 6f x x πωϕ⎛⎫=+- ⎪⎝⎭(0ϕπ<<,0>ω)图象的一条对称轴方程为12x π=,且()f x 相邻的两个零点间的距离为2π.(1)求()f x 的解析式; (2)求方程()34f x =在区间[]0,2π内的所有实数根之和.18.已知函数()4sin()10,||2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,且(0)3f =.(1)求ω和ϕ的值.(2)将函数()f x 的图象向右平移3π个单位长度(纵坐标不变),得到函数()g x 的图象, ①求函数()g x 的单调递增区间;②求函数()g x 在0,3π⎡⎤⎢⎥⎣⎦上的最大值.19.已知()()()()()()2sin cos sin 2cos 6211cos cos cos 22x x x x f x x x x πππππππ⎛⎫---⋅--⋅- ⎪⎝⎭=⎛⎫-⋅-++ ⎪⎝⎭.(1)化简函数()f x 的解析式; (2)设函数()324g x f x π⎛⎫=+⎪⎝⎭,求函数()g x 的单调增区间.20.已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)求函数()f x 在区间,44ππ⎛⎤- ⎥⎝⎦上的值域.21.已知函数()15sin 22cos 242f x x x π⎛⎫=--+ ⎪⎝⎭,(1)求()f x 的最小正周期和单调区间;(2)若()2f x t =在744ππ⎡⎤⎢⎥⎣⎦,上有4个解,求t 的取值范围.22.已知点()()11,A x f x ,()()22,B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,P ,当12()()4f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的单调减区间;(2)求函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域; (3)若方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解,求实数m 的取值范围.参考答案1.A 【分析】确定函数的奇偶性,排除两个选项,再根据特殊的函数值排除一个后可得. 【详解】4141()sin()sin ()22x x x x f x x x f x -----=⋅-=⋅=,为偶函数,排除BD ,又(0)0f =,排除C . 故选:A . 2.D 【分析】由图象知()f x 是奇函数且当0x +→时()f x →+∞,结合各选项的解析式,利用奇偶性定义排除偶函数选项及0lim ()x f x +→=-∞的选项即可. 【详解】由图象知:()f x 是奇函数,而()()sin(7)sin 7()3333()x x x x f x x xf x -----===---,即为偶函数,排除A ;同理B 中()f x 也是偶函数,排除;当0x +→时,由图知()f x →+∞,而cos 71x →且33x x ->,此时cos 73(3)x xxf x -=→-∞-,故排除C. 故选:D 3.B 【分析】由图可得2A =,令()0f x =有(61)6k x πω-=,根据()f x 的最小正零点是512π求ω,即可写出()f x 的解析式.【详解】由图知:2A =,令()2sin()06f x x πω=+=,∴sin()06x πω+=,则(61)66k k x πππωωω-=-=,∵()f x 的最小正零点是512π,且0>ω, ∴当1k =时,55612x ππω==,得2ω=. ∴()2sin(2)6f x x π=+.故选:B 4.A 【分析】先计算出函数的对称轴,再适当地取k 的值进而得到答案. 【详解】 令(3)Z x k k πππ-=∈,解得()1Z 3k x k =+∈. 当2k =-时,53x =-.故选:A. 5.B 【分析】根据单调性判断①,结合基本不等式判断②,根据函数的奇偶性判断③,由正切型函数的周期判断④. 【详解】因为()tan f x x x =+在()0,1上单调递增,且()00f =,()π11tan11tan 24f =+>+=, 所以()0,1x ∃∈,tan 2x x +=.①正确当ππ,42x ⎛⎫∈ ⎪⎝⎭时,tan 1x >,()1,x ∀∈+∞,1111311x x x x +=-++≥--,当且仅当2x =时等号成立,②错;因为()()cos tan f x x x x f x -=--=-,所以()cos tan f x x x x =+为奇函数, 图象关于原点对称.③正确;函数()πtan 23f x x ⎛⎫=- ⎪⎝⎭的最小正周期π2T =.④错误.故①③为真命题. 故选:B . 6.B写出平移后解析式,再由对称性得出ϕ值. 【详解】平移后解析式为()sin 2()sin(2)63g x x x ππϕϕ⎡⎤=--=--⎢⎥⎣⎦,它的图象关于y 轴对称,则,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈,只有B 满足.故选:B . 7.C【分析】由三角函数图象变换写出()g x 的解析式,然后余弦函数性质判断各选项. 【详解】由题意()sin 2()sin(2)cos 2662g x x x x πππ⎡⎤=++=+=⎢⎥⎣⎦,最小正周期是22T ππ==,A 正确; 1cos 632g ππ⎛⎫== ⎪⎝⎭,B 正确;()cos(2)cos 2()g x x x g x -=-==,()g x 是偶函数,C 错误;()cos 21g ππ==为最大值,x π=是()g x 的一条对称轴,D 正确.故选:C . 8.D【分析】根据正弦型函数的单调性,结合题意进行求解即可. 【详解】 当22()22k x k k Z πππωπ-≤≤+∈时,因为0>ω,所以有11(2)(2)()22k x k k Z ππππωω-⋅≤≤+⋅∈,因此函数()sin (0)f x x ωω=>的递增区间为:2222[,]()k k k Z ππππωω-+∈,因为函数()sin (0)f x x ωω=>在3,44ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以令0k =,且有32424ππωππω⎧⎪≤⎪⎪⎨⎪-⎪-≥⎪⎩,因为0>ω,所以解得:203ω<≤,9.B 【分析】作出1sin 2x =-与1cos 2x =-的图象,结合图象即可求解【详解】因为方程1sin 2x =-在[),0π-上的解为56π-,6π-,所以当()f x 在区间[],a π-上至多有5个零点时,100.3a π<<因为方程1cos 2x =-在30,2π⎡⎤⎢⎥⎣⎦上的解为23π,43π,所以当()f x 在区间3,2a π⎡⎤-⎢⎥⎣⎦上至少有5个零点时,136a π-≤-,即136a π≥ 综上,正数a 的取值范围是1310,63ππ⎡⎫⎪⎢⎣⎭故选:B 10.B 【分析】本题可根据最大值为1求出1A =,然后根据周期的14为4π求出2ω=,再然后根据过点,13π⎛⎫⎪⎝⎭求出6πϕ=-,最后代入2x π=,即可得出结果.【详解】因为最大值为1,所以1A =,()()sin f x x ωϕ=+,因为周期的14为4π,所以最小正周期为π,2ω=,()()sin 2f x x ϕ=+,因为过点,13π⎛⎫⎪⎝⎭,2πϕ<,所以21sin 3πϕ⎛⎫=+⎪⎝⎭,解得6πϕ=-,()sin 26f x x π⎛⎫=- ⎪⎝⎭, 则51sin sin6226f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,11.C 【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可. 【详解】由函数图象可知函数的最大值为3,所以3A =, 由函数图象可知函数的最小正周期为4(62)16⨯-=, 因为0>ω,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭, 由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<, 所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭, 故选:C 12.A 【分析】根据奇偶性的定义判断各选项函数的奇偶性即可. 【详解】A :22()()cos()cos ()y f x x x x x f x =-=--==且x ∈R ,偶函数;B :()sin()sin ()y f x x x f x =-=--==-且x ∈R ,奇函数;C :()tan2()tan 2()y f x x x f x =-=-=-=-且24k x ππ≠+ ()k ∈Z ,奇函数; D :()cos()sin()cos sin y f x x x x x =-=-+-=-且x ∈R ,非奇非偶函数. 故选:A 13.23π【分析】令117sin ,2+26x x k ππ=-∴=或2122,6x k k k Z ππ=-∈,.令33sin 1,2,2x x k k Z ππ=∴=+∈.求出,M N 即得解.令117sin ,2+26x x k ππ=-∴=或2122,6x k k k Z ππ=-∈,.令33sin 1,2,2x x k k Z ππ=∴=+∈.当172+6a k ππ=或2122,,6a k k k Z ππ=-∈,且332,2b k k Z ππ=+∈所以3122()3b a k k ππ-=--或3222()3b a k k ππ-=-+.当320k k -=时,23b a N π-==;当2126a k ππ=-,且172,6b k k Z ππ=+∈时, 所以1242()3b a k k ππ-=-+.当120k k -=时,43b a M π-==.所以23M N π-=.故答案为:23π 14.23π 【分析】根据正弦函数的周期求解. 【详解】函数sin 35y x π⎛⎫=- ⎪⎝⎭的最小正周期为23T π=.故答案为:23π. 15.2ω=或周期πT = 【分析】由余弦型三角函数的周期可判断所需条件. 【详解】解:由图像过点10,2⎛⎫ ⎪⎝⎭可知3πϕ=,若求出解析式还需要一个和ω相关的量,故可直接给出条件2ω=或周期T π=. 故答案为:2ω=或周期T π=. 16.4根据正弦函数图象的对称性求得函数的周期,进而可求得ω. 【详解】由正弦函数图象的对称性得函数的周期00242T x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,所以22ππω=,解得4ω=.故答案为:4.17.(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)133π. 【分析】(1)依题意可得T π=,即可求出ω,再根据函数的对称轴求出ϕ,即可求出函数解析式; (2)作出()y f x =与34y =的大致图象,根据函数的对称性计算可得; 【详解】 (1)()f x 相邻的两个零点间的距离2π, ∴()f x 的最小正周期222T πππω==⨯=,∴2ω=.又函数()f x 图象的一条对称轴方程为2x π=,∴21262k πππϕπ⨯+-=+()k Z ∈,即2k πϕπ=+()k Z ∈,而0ϕπ<<,∴2ϕπ=. 故()sin 23f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()f x 的最小正周期为π,所以()f x 在[]0,2π内恰有2个周期. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈,即函数的对称轴为,122k x k Z ππ=+∈,因为34<,作出()y f x =与34y =的大致图象如图.由图可知两个图象在[]0,2π内有4个交点,横坐标依次为1x ,2x ,3x ,4x , 且1x 与2x 关于712x π=对称,3x 与4x 关于1912x π=对称, 所以1276x x π+=,34196x x π+=, 故所有实数根之和为133π18.(1)2ω=,6π=ϕ;(2)①,(k )2k k πππ⎡⎤+∈⎢⎥⎣⎦Z ;②最大值为3.【分析】(1)根据正弦型函数的最小正周期公式,结合特殊角的三角函数值进行求解即可; (2)根据正弦型函数图象的变换性质,得到()g x 的解析式. ①根据余弦型函数的单调性进行求解即可; ②根据余弦型函数的最值性质进行求解即可. 【详解】解:(1)()f x 的最小正周期为π,0>ω 所以2ππ=ω, 即2ω=. 又因为(0)3f =, 所以1sin 2ϕ=,因为|2πϕ<,所以6π=ϕ. (2)由(1)可知()4sin 216f x x π⎛⎫=++ ⎪⎝⎭,函数()f x 的图象向右平移3π个单位长度(纵坐标不变), 所以2()()4sin(2)14cos 21336g x f x x x πππ=-=-++=-+. ①由2[2,2]()x k k k Z πππ∈+∈,得函数()g x 的单调递增区间为,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦.②因为03x π≤≤,所以2023x π≤≤. 当223x π=, 即3x π=时,函数()g x 取得最大值,最大值为33g π⎛⎫= ⎪⎝⎭.19.(1)()2cos f x x =-;(2)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈. 【分析】(1)利用三角上的诱导公式,准确运算,即可求解;(2)由(1)得到()2sin 24g x x π⎛⎫=+ ⎪⎝⎭,结合三角函数的性质,即可求解.【详解】(1)结合诱导公式得()()()()()()2sin cos sin 2cos 6211cos cos cos 22x x x x f x x x x πππππππ⎛⎫---⋅--⋅- ⎪⎝⎭=⎛⎫-⋅-++ ⎪⎝⎭ ()()()()22cos sin cos cos sin cos x x x x x xπ⋅-⋅-=-⋅-2sin cos 12cos 2cos cos sin cos x x x x x x x -=⋅⋅⋅=---, 所以函数()2cos f x x =-.(2)根据(1)可得()322cos 22sin 24244g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=-++=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,令222242k x k πππππ-+≤+≤+,k Z ∈,得388k x k ππππ-+≤≤+,k Z ∈, 所以函数()g x 的单调增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈. 20.(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)1,12⎛⎤- ⎥⎝⎦.【分析】(1)由最大值求得A ,由周期求得ω,代入一个点的坐标求得ϕ,得解析式; (2)求出x ωϕ+的范围,然后由正弦函数的性质得出值域. 【详解】解:(1)根据函数()()sin (0,)2f x x πωϕωϕ=+><的部分图象,可得32134123πππω⋅=-,求得2ω=,∴最小正周期22T ππ==, 再根据五点法作图可得23πϕπ+=,;3πϕ∴=∴函数()f x 的解析式为()sin(2)3f x x π=+.(2)?,44x ππ⎛⎤∈- ⎥⎝⎦,52,366x πππ⎛⎤∴+∈- ⎥⎝⎦1sin 2,132x π⎛⎫⎛⎤∴+∈- ⎪ ⎥⎝⎭⎝⎦,函数()f x 在区间,44ππ⎛⎤- ⎥⎝⎦上的值域1,12⎛⎤- ⎥⎝⎦21.(1)2T π=,单调增区间是52244k k ππππ⎡⎤++⎢⎥⎣⎦,,单调减区间是592244k k ππππ⎡⎤++⎢⎥⎣⎦,,k Z ∈;(2)(22t ⎤⎡∈-⋃⎦⎣.【分析】(1)利用二倍角公式结合二次函数化简函数,利用周期的概念求得周期,利用复合函数单调性求得函数单调性;(2)根据x 的范围求得2t 的范围,从而求得结果. 【详解】解:(1)()215cos 22cos cos 2cos 2224244f x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=---+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2cos 114x π⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,∵()()22cos 211cos 12144x x f x f x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=--+= ⎪ ⎪ ⎪ ⎪⎝⎭⎭⎝⎭+⎝⎝⎭,所以()f x 的最小正周期是2T π=,设cos 4m x π⎛⎫- ⎝=⎪⎭,[]1,1m ∈-,则函数()211y m =-+在[]1,1-上单调递减,对于函数cos cos 44y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当224k x k ππππ≤-≤+,k Z ∈,即 x ∈52244k k ππππ⎡⎤++⎢⎥⎣⎦,时,cos 4y x π⎛⎫=- ⎪⎝⎭单调递减, 当2224k x k πππππ+≤-≤+,k Z ∈,即 x ∈592244k k ππππ⎡⎤++⎢⎥⎣⎦,时,cos 4y x π⎛⎫=- ⎪⎝⎭单调递增,故函数()f x 单调增区间是52244k k ππππ⎡⎤++⎢⎥⎣⎦,,单调减区间是592244k k ππππ⎡⎤++⎢⎥⎣⎦,,k Z ∈.()2由上述单调性知若()2f x t =在744ππ⎡⎤⎢⎥⎣⎦,上有4个解,且74f π⎛⎫ ⎪⎝⎭27cos 1144ππ⎛⎫⎛⎫=--+=⎪ ⎪⎝⎭⎝⎭2,且34f π⎛⎫ ⎪⎝⎭23cos 1144ππ⎛⎫⎛⎫=--+= ⎪ ⎪⎝⎭⎝⎭2,()54f x f π⎛⎫≤ ⎪⎝⎭25cos 11544ππ⎛⎫⎛⎫=--+= ⎪⎪⎝⎭⎝⎭所以225t ≤<,所以(22t ⎤⎡∈-⋃⎦⎣.22.(1)()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)(]0,2;(3)112⎧⎫⎨⎬⎩⎭或(]10,0- 【分析】(1)利用三角函数的定义求出ϕ的值,由题意知223T ππω==可得ω的值,进而可得()f x 的解析式,利用整体代入法以及正弦函数的单调性即可求解; (2)由x 的范围求出33x π-的范围,利用正弦函数的性质即可求解; (3)设()(]0,2f x t =∈,将问题转化为y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,数形结合可得112m -=-或010m ≤-<,即可求解. 【详解】(1)因为角ϕ的终边经过点(1,P ,所以tan ϕ= 因为02πϕ-<<,所以3πϕ=-,因为当12()()4f x f x -=时,12x x -的最小值为3π, 所以223T ππω==,可得:3ω=,所以()2sin 33f x x π⎛⎫=- ⎪⎝⎭,令()3232232k x k k Z πππππ+≤-≤+∈解得:()52112183183k k x k Z ππππ+≤≤+∈, 所以函数()f x 的单调减区间为()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)当4,99x ππ⎛⎫∈ ⎪⎝⎭时,033x ππ<-<, 所以0sin 313x π⎛⎫<-≤ ⎪⎝⎭,所以()02sin 323f x x π⎛⎫<=-≤ ⎪⎝⎭,所以函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域为(]0,2,(3)设()(]0,2f x t =∈,因为方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 则230t t m -+=在(]0,2t ∈内有一根或两个相等的实根,因为23m t t -=-,所以y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,作出y m =-与(]23,0,2y t t t =-∈的图象,由图知:当16t =时211136612y ⎛⎫=⨯-=- ⎪⎝⎭;当0t =时,0y = ;当2t =时,232210y =⨯-=, 所以112m -=-或010m ≤-≤直线y m =-与(]23,0,2y t t t =-∈的图象只有一个交点, 当10m -=时,2t =,此时方程()2sin 323f x x π⎛⎫=-= ⎪⎝⎭只有一解,不符合题意,所以112m -=-或010m ≤-<,即方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 所以:112m =或100m -<≤所以实数m 的取值范围为:112⎧⎫⎨⎬⎩⎭或(]10,0-。

第11讲 三角函数的图象与性质6大题型(解析版)

第11讲 三角函数的图象与性质6大题型(解析版)

第11讲三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【答案】B【分析】根据函数图象得到()f x 、()g x 的解析式,然后利用图象平移的结论进行图象平移即可.【详解】根据图象可得2A =,周期T π=,因为2T πω=,所以2ω=,()()2sin 2f x x ϕ=+,将,23π⎛⎫ ⎪⎝⎭代入()f x 可得()2222sin 2332k k πππϕϕπ⎛⎫=+⇒+=+∈⎪⎝⎭Z ,解得()26k k πϕπ=-+∈Z ,因为0πϕ-<<,所以6πϕ=-,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭,()2sin 2g x x =,因为()2sin 212f x x π⎛⎫=- ⎪⎝⎭,所以()f x 向左平移12π个单位长度即可得到()g x 的图象.故选:B.【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .62B .32C .22D .1-【答案】A【分析】由函数()f x 的部分图象以及五点法作图,求出()f x 的解析式,再计算2f π⎛⎫⎪⎝⎭的值.【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴【答案】C【分析】根据已知图象可确定相关参数,求得函数解析式,判断A;根据正弦函数的图象的平移变换规律可得平移后的解析式,判断B;利用正弦函数的单调性可判断C ;将7π12x =代入函数中解析式求得其值,可判断D.【详解】由题意得,πππ43124T =-=,则2ππ,2T T ω===,而π212f ⎛⎫= ⎪⎝⎭,即ππ2π(Z)62k k ϕ+=+∈,解得π2π(Z)3k k ϕ=+∈,∵||2ϕπ<,∴π3ϕ=,∴π()2sin 23f x x ⎛⎫=+ ⎪⎝⎭,故A 正确;函数()f x 的图象向右平移6π个单位长度后,得到π2sin 26f x x ⎛⎫-= ⎪⎝⎭,该函数图象关于原点对称,放B 正确;∵2ππ,3x ⎡⎤∈--⎢⎥⎣⎦,∴π5π2,π33x ⎡⎤+∈--⎢⎥⎣⎦,则()f x 在2ππ,3⎡⎤--⎢⎥⎣⎦上先增后减,故C 错误;∵7π3π2sin 2122f ⎛⎫==- ⎪⎝⎭,∴直线712x π=为()f x 图象的一条对称轴,故D 正确.故选:C .4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象【答案】C【分析】由已知图象求得函数解析式,将πx =代入解析式,由其结果判断A;求出函数的对称中心可判断B;当ππ,36x ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,]622x +∈-,结合正弦函数的单调性判断C;根据三角函数图象的平移变换可得平移后函数解析式,判断D.【详解】由函数图象可知,2A =,最小正周期为5ππ4()π126T =-=,所以2π2πω==,将点π(,2)6代入函数解析式中,得:π22sin()3ϕ=+,结合π2ϕ<,所以π6ϕ=,故π()2sin(2)6f x x =+,对于A ,当πx =时,π(π)2sin(2π)16f =+=,故直线πx =不是()f x 图象的一条对称轴,A 错误;对于B ,令π()2sin(2)06f x x =+=,则πππ2π,Z,,Z 6122k x k k x k +=∈∴=-+∈,即()f x 图象的对称中心为ππ(,0)122k -+,Z k ∈,故B 错误;对于C ,当ππ,36x ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,]622x +∈-,由于正弦函数sin y x =在ππ[,]22-上递增,故()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;对于D ,将()f x 的图象向左平移π12个单位长度后,得到πππ()2sin[2()]2sin(2)1263g x x x =++=+的图象,该函数不是奇函数,故D 错误;故选:C5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。

专题46 三角函数的图象与性质(多选题)(解析版)

专题46 三角函数的图象与性质(多选题)(解析版)

专题46 三角函数的图象与性质(多选题)一、题型选讲题型一 、三角函数的基本概念例1、(2020届山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+【答案】AB【解析】由题意知sin 0α<,cos 0α>,tan 0α<. 选项Asin 0tan αα>; 选项B ,cos sin 0αα->; 选项C ,sin cos 0αα<; 选项D ,sin cos αα+符号不确定. 故选:AB.变式1、(2020·枣庄市第三中学高三月考)下列函数,最小正周期为的偶函数有( ) A . B .C .D .【答案】BD【解析】对于A 选项,函数为奇函数,不符合题意. 对于B 选项,函数是最小正周期为的偶函数,符合题意. 对于C 选项,函数的最小正周期为,不符合题意. 对于D 选项,函数,是最小正周期为的偶函数,符合题意. 故选:BD变式2、定义:角θ与ϕ都是任意角,若满足+=2πθϕ,则称θ与ϕ“广义互余”.已知1sin(+)=-4πα,下列角β中,可能与角α“广义互余”的是()A. sin βB. 1cos(+)=4πβC. tan βD. tan β 【答案】ACπtan y x =|sin |y x =2cos y x =sin 22y x π⎛⎫=- ⎪⎝⎭tan y x =sin y x =π2cos y x =2ππsin 2cos 22y x x ⎛⎫=-= ⎪⎝⎭π【解析】:11sin()sin sin 44πααα+=-=-∴=,cos α=,对于A ,sin sin()cos 2πβαα=-=可能成立,角β可能与角α“广义互余”,故A 符合条件;对于B ,假设角β与角α“广义互余”,11cos()cos()sin 244ππβαα+=--=-=-≠,故B 不符合条件;对于C ,tan β=,即sin ββ=,又22sin cos 1ββ+=,故sin β=若广义互余即cos α=,即C 符合条件;对于D ,tan β=即sin ββ=,又22sin cos 1ββ+=,故sin β=,若广义互余即cos α=,故D 不符合条件 故选:.AC题型二、三角函数的性质的简单运用例2、(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( ) A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 【答案】ABD【解析】()sin 2sin 2cos 242x x x g x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭0,4x π⎛⎫∈ ⎪⎝⎭则20,2x π⎛⎫∈ ⎪⎝⎭,()cos2g x x =-单调递增,为偶函数,A 正确C 错误;最大值为1,当32x π=-时23x π=-,为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确; 故选:ABD变式1、(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( )A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 【答案】AC【解析】因为直线4x π=是()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的对称轴,所以()342k k Z ππϕπ⨯+=+∈,则()4k k Z πϕπ=-+∈,当0k =时,4πϕ=-,则()sin 34f x x π⎛⎫=- ⎪⎝⎭,对于选项A,sin 3sin 312124f x x x πππ⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为()sin 3sin3x x -=-,所以12f x π⎛⎫+ ⎪⎝⎭为奇函数,故A 正确; 对于选项B,()232242k x k k Z πππππ-+<-<+∈,即()21212343k kx k Z ππππ-+<<+∈,当0k =时,()f x 在,124ππ⎡⎤-⎢⎥⎣⎦当单调递增,故B 错误;对于选项C,若()()122f x f x -=,则12x x -最小为半个周期,即21323ππ⨯=,故C 正确; 对于选项D,函数()f x 的图象向右平移4π个单位长度,即()sin 3sin 3sin 344x x x πππ⎡⎤⎛⎫--=-=- ⎪⎢⎥⎝⎭⎣⎦,故D错误 故选:AC变式2、(2020·山东日照·高三月考)将函数的图像向左平移个单位,得到函数的图像,sin y x =2π()y f x =则( )A .是偶函数B .的最小正周期为C .的图像关于直线对称D .的图像关于点对称【答案】AD【解析】函数的图象向左平移个单位后, 得到函数的图象, 为偶函数,故A 正确; 的周期为,排除B ;因为,所以的图象不关于直线对称,排除C ;,故D 正确 故选:AD.变式3、(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称 【答案】ABD()y f x =()y f x =π()y f x =2x π=()y f x =,02π⎛⎫- ⎪⎝⎭sin y x =2π()sin cos 2f x x x π⎛⎫=+= ⎪⎝⎭()cos f x x =()cos f x x =2πcos 022f ππ⎛⎫== ⎪⎝⎭()f x 2x π=cos 022f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭【解析】函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图像向右平移2π个单位长度得到()ππsin 223g x x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦2πsin 23x ⎛⎫=- ⎪⎝⎭.由于7π7π2ππsin sin 112632g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故7π12x =是()g x 的对称轴,B 选项正确. 由于π2π2πsin sin 00333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故,03π⎛⎫ ⎪⎝⎭是()g x 的对称中心,D 选项正确. 由π2ππ2232x -≤-≤,解得π7π1212x ≤≤,即()g x 在区间π7π,1212⎡⎤⎢⎥⎣⎦上递增,故A 选项正确、C 选项错误. 故选:ABD.变式4、(2020届山东省潍坊市高三上期末)已知()()22210f x cosx x ωωω=->的最小正周期为π,则下列说法正确的有( )A .2ω=B .函数()f x 在[0,]6π上为增函数C .直线3x π=是函数()y f x =图象的一条对称轴D .5,012π⎛⎫⎪⎝⎭是函数()y f x =图象的一个对称中心 【答案】BD【解析】()cos 222sin 26f x x x x πωωω⎛⎫=+=+⎪⎝⎭, 22ππω=,1ω∴= ()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭ ,故A 不正确;当0,6x π⎡⎤∈⎢⎥⎣⎦时,2,662x πππ⎡⎤+∈⎢⎥⎣⎦是函数sin y x =的单调递增区间,故B 正确; 当3x π=时,52366πππ⨯+=,51sin 162π=≠±,所以不是函数的对称轴,故C 不正确;、当512x π=时,52126πππ⨯+=,sin 0π=,所以5,012π⎛⎫⎪⎝⎭是函数()y f x =的一个对称中心,故D 正确. 故选:BD题型三、三角函数图像与性质的综合运用例3、(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为【答案】ACD【解析】由题:()22cos cos(2)1cos 2sin 2)24f x x x x x x ππ=-+-=+=+,由2y x =的图象向左平移8π个单位,得到)))84y x x ππ=+=+,所以选项A 正确;令222,242k x k k Z πππππ-≤+≤+∈,得其增区间为3[,],88k k k Z ππππ-+∈ ()f x 在(0,)8π单调递增,在(,)82ππ单调递减,所以选项B 不正确;解()0,2,4f x x k k Z ππ=+=∈,得:,28k x k Z ππ=-∈,[0,]x π∈, 所以x 取37,88ππ,所以选项C 正确;3[,0],2[,],sin(2)[24444x x x πππππ∈-+∈-+∈-,()[f x ∈, 所以选项D 正确. 故选:ACD变式1、已知函数())3f x x π=+,则下列结论正确的是( )A .函数()f x 的最小正周期为πB .函数()f x 在[0,π]上有2个零点C .当x =56π时,函数()f x 取得最大值 D .为了得到函数()f x的图象,只要把函数())3g x x π=+图象上所有点的横坐标变为原来的12倍(纵坐标不变) 【答案】ABCD 【详解】22T ππ==,则A 正确; 当x ∈[0,π]时,23x π+∈3,37ππ⎡⎤⎢⎥⎣⎦,此时余弦函数cos y x =只有两个零点,则可知B 正确; 因为23x π+∈3,37ππ⎡⎤⎢⎥⎣⎦,所以当223x ππ+=时,即x =56π时,函数()f x 取得最大值,则可知C 正确;函数())3g x x π=+图象上所有点的横坐标变为原来的12倍(纵坐标不变)得出23y x π⎛⎫=+ ⎪⎝⎭的图象,则D 正确;.变式2、已知函数()sin()(0)f x x ωϕω=+>满足()()001f x f x =+=且()f x 在()00,1x x +上有最大值,无最小值,则下列结论正确的是( ) A .0112f x ⎛⎫+= ⎪⎝⎭B .若00x =,则()sin 4f x x ππ⎛⎫=+⎪⎝⎭C .()f x 的最小正周期为4D .()f x 在(0,2020)上的零点个数最少为1010个【答案】AC 【详解】对A ,()00,1x x +的区间中点为012x +, 根据正弦曲线的对称性知0112f x ⎛⎫+= ⎪⎝⎭,故A 正确; 对B ,若00x =,则()0sin 211sin 122f f ϕωϕ⎧==⎪⎪⎨⎛⎫⎛⎫⎪=+= ⎪ ⎪⎪⎝⎭⎝⎭⎩,()f x 在()00,1x x +上有最大值,无最小值, ∴24k ϕπ=+π,则()42k k z πωπ=+∈, ωπ∴≠,故B 错误;对C ,()()0000211sin 122sin 2x f x f x x ωϕωϕ⎧+⎛⎫⎛⎫+=+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪=+=⎪⎩,又()f x 在()00,1x x +上有最大值,无最小值,002122224x k x k πωϕππωϕπ+⎧+=+⎪⎪∴⎨⎪+=+⎪⎩,(其中k z ∈),解得:2πω=,2242T πππω∴===,故C 正确;对D ,当4T =时,区间(0,2020)的长度恰好为505个周期, 当()00f =时,即k ϕπ=时,()f x 在开区间(0,2020)上零点个数至多为50521010⨯=个零点,故D 错误.变式3、(2020·山东高三开学考试)将函数的图象向右平移个单位长度后得到函数的图象,且,则下列说法正确的是( ) A .为奇函数 B . C .当时,在上有4个极值点()()πcos 02f x x ωω⎛⎫=-> ⎪⎝⎭π2()g x ()01g =-()g x π02g ⎛⎫-= ⎪⎝⎭5ω=()g x ()0,πD .若在上单调递增,则的最大值为5【答案】BCD 【解析】∵ ∴,且, ∴,即为奇数,∴为偶函数,故A 错. 由上得:为奇数,∴,故B 对. 由上得,当时,,,由图像可知在上有4个极值点,故C 对,∵在上单调,所以,解得:,又∵, ∴的最大值为5,故D 对 故选:BCD.二、达标训练()g x π0,5⎡⎤⎢⎥⎣⎦ω()()πcos sin 02f x x x ωωω⎛⎫=-=> ⎪⎝⎭()sin ()2g x x πω⎡⎤=-⎢⎥⎣⎦(0)1g =-()1222k k Z πωπ⎛⎫-=-∈ ⎪⎝⎭14k ω=-()sin ()cos 2g x x x πωω⎡⎤=-=±⎢⎥⎣⎦ω()cos 022g ππω⎛⎫-=±-= ⎪⎝⎭5ω=5()sin(5)cos52g x x x π=-=-25T π=()g x ()0,π()g x π0,5⎡⎤⎢⎥⎣⎦π052T πω-≤=05ω<≤14k ω=-ω1、已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( ) A .2π为()f x 的一个周期 B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【详解】根据函数()cos 6f x x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确. 当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误; 函数()cos 6f x x π⎛⎫=+⎪⎝⎭在5,26ππ⎛⎫⎪⎝⎭上单调递减,在5,6ππ⎛⎫ ⎪⎝⎭上单调递增,故C 错误;7()cos 6f x x ππ⎛⎫+=+⎪⎝⎭, 73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.2、已知函数()()πcos 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的最小正周期为π,其图象的一条对称轴为5π12x =,则( ) A .π3ϕ=B .函数()f x 的图象可由sin 2y x =的图象向左平移π3个单位长度得到C .函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域为1,2⎡-⎢⎣⎦D .函数()f x 在区间ππ,2⎡⎤--⎢⎥⎣⎦上单调递减【答案】BC【详解】()()πcos 0,02f x x ωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,22Tπω∴==,又2x π=为()f x 的对称轴,52,0122k ππϕπϕ∴⨯+=<<,=6πϕ∴, ()cos(2)6f x x π∴=+;对于A ,=6πϕ,A 错;对于B ,sin 2y x =的图象向左平移π3个承位长度得到2sin(2)3y x π=+,而2sin(2)sin(2)cos(2)()3266y x x x f x ππππ=+=++=+=,所以,B 对;对于C ,7cos 22666x x ππππ≤⇒≤+≤,1cos(2)62x π∴-≤+≤,则函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域为1,2⎡-⎢⎣⎦,C 对;对于D ,11522666x x πππππ-≤≤-⇒-≤+≤-,cos x 在11,6ππ⎡⎤--⎢⎥⎣⎦单调递减,在5,6ππ⎡⎤--⎢⎥⎣⎦单调递增,()f x ∴在ππ,2⎡⎤--⎢⎥⎣⎦上不是单调的,D 错;3、已知函数()()sin (0,0,0)f x A x A ωϕωϕπ=+>><<的最小正周期为4,其图象的一个最高点为1,23A ⎛⎫ ⎪⎝⎭,下列结论正确的是( ) A .ωπ= B .3πϕ=C .将()f x 图象上各点的横坐标变为原来的12,纵坐标不变,得到()h x 图象;再将()h x 图象向右平移16个单位长度,得到函数2sin 6y x ππ⎛⎫=+ ⎪⎝⎭的图象 D .() y f x =的图象关于1x =对称 【答案】BC 【详解】由已知24πω=,2πω=,A 错;2A =,2sin()223πϕ1⨯+=,23k πϕπ=+,k Z ∈,又0ϕπ<<,∴3πϕ=.B 正确;∴()2sin 23f x x ππ⎛⎫=+⎪⎝⎭,将()f x 图象上各点的横坐标变为原来的12,纵坐标不变,得()2sin()3h x x ππ=+,再将()h x 图象向右平移16个单位长度,得图象的解析式为2sin ()2sin()636y x x πππππ⎡⎤=-+=+⎢⎥⎣⎦,C 正确;大()f x 中,令1x =,5,2362x k k Z πππππ+=≠+∈,D 错.4、已知函数()3sin sin3f x x x =+,则( ) A .()f x 是奇函数 B .()f x 是周期函数且最小正周期为2π C .()f x 的值域是[4,4]- D .当(0,)x π∈时()0f x >【答案】ABD【详解】A.()3sin()sin(3)3sin sin3()f x x x x x f x -=-+-=--=-,故()f x 是奇函数,故A 正确;B.因为sin y x =的最小正周期是2π,sin3y x =的最小正周期为23π,二者的“最小公倍数”是2π,故2π是()f x 的最小正周期,故B 正确;C.分析()f x 的最大值,因为3sin 3x ≤,sin31x ≤,所以()4f x ≤,等号成立的条件是sin 1x =和sin31x =同时成立,而当sin 1x =即2()2x k k ππ=+∈Z 时,336()2x k k ππ=+∈Z ,sin31x =-故C 错误; D.展开整理可得()2()3sin sin cos2cos sin 2sin 4cos 2f x x x x x x x x =++=+,易知当(0,)x π∈时,()0f x >,故D 正确.5、已知函数()sin() f x x ωϕ=+(其中0,0 ωϕπ><<)图象的两条相邻的对称轴之间的距离为2π,16f π⎛⎫= ⎪⎝⎭,下列结论正确的是( ) A .()sin 26f x x π⎛⎫=+⎪⎝⎭B .将函数()y f x =的图象向右平移6π个单位后得到函数sin2y x =的图象 C .当0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 有且只有一个零点D .()f x 在06π⎡⎤⎢⎥⎣⎦,上单调递增 【答案】ACD【详解】由题意,函数图象的两条相邻的对称轴之间的距离为2π,16f π⎛⎫= ⎪⎝⎭,可得T π=, 因为0 ω>,则2T w ππ==,解得2w =,即sin(2)16πϕ⨯+=, 解得2,32k k Z ππϕπ+=+∈,因为0ϕπ<<,所以6π=ϕ,即函数()f x 的解析式()sin 26f x x π⎛⎫=+ ⎪⎝⎭,所以A 正确; 对于B 中,函数()f x 的图象向右平移6π个单位,得到()sin[2()]66g x x ππ=-+ πsin(2)6x =-的图象,所以B 不正确;对于C 中,由0,2x π⎛⎫∈ ⎪⎝⎭,所以72(,)666x πππ+∈,当512x π=时,函数5()012f π=, 所以C 正确;对于D 中,当06x π⎡⎤∈⎢⎥⎣⎦,时,2[,]662x πππ+∈,根据正弦函数的性质,可得函数()f x 在该区间上单调递增,所以D 正确.6、函数()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>><⎪⎝⎭的部分图像如图所示,下列结论中正确的是( )A .直线23x π=-是函数()f x 图像的一条对称轴B .函数()f x 的图像关于点,062k ππ⎛⎫-+ ⎪⎝⎭k Z ∈对称 C .函数()f x 的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦k Z ∈D .将函数()f x 的图像向右平移12π个单位得到函数()sin(2)4g x x π=+的图像【答案】BC【详解】由图知:()min 1f x =-,所以1A =, 因为741234T πππ=-=,T π=,即2ππω=,2ω=。

三角函数的图像与性质练习题

三角函数的图像与性质练习题

三角函数的图像与性质练习题一、选择题1. 在三角函数sin(x)的定义域内,函数值的范围是:A. (-∞, ∞)B. [-1, 1]C. [0, 1]D. [0, 2π]2. 函数y = cos(x)的一个周期是:A. πB. 2πC. π/2D. 4π3. 函数y = tan(x)的导数是:A. sec^2(x)B. cos^2(x)C. sin^2(x)D. csc^2(x)4. 在函数y = sin(x)的图像中,当x = π/2时,函数值等于:B. 1C. -1D. 不存在5. 函数y = cos(x)的对称轴是:A. y轴B. x轴C. 原点D. 平行于x轴且距离x轴1个单位的直线6. 函数y = tan(x)在定义域内的奇点是:A. x = 0B. x = π/2C. x = πD. x = 2π7. 函数y = sin^2(x) + cos^2(x)等于:A. 1B. 0C. 28. 函数y = sin(x) + cos(x)的一个周期是:A. 2πB. 4πC. π/2D. π/4二、填空题1. 函数y = sin(x)在区间[0, π]内的最小值是____,最大值是____。

2. 函数y = cos(2x)的周期是____。

3. 函数y = cos(x)在区间[-π/2, π/2]内的最小值是____,最大值是____。

4. 函数y = tan(x)的定义域是____。

5. 函数y = sin(2x)的一个周期是____。

6. 函数y = cos(x)的对称中心是____。

7. 函数y = tan(x)在区间[0, π]内的最小值是____,最大值是____。

8. 函数y = sin^2(x)的对称轴是____。

三、解答题1. 画出函数y = sin(x)在区间[0, 2π]上的图像。

2. 画出函数y = cos(2x)的图像,并求出它在区间[0, 2π]上的最小值和最大值。

3. 画出函数y = tan(x)在区间[-π/2, π/2]上的图像,并指出它的所有零点。

专题5.4 三角函数图像与性质(原卷版)

专题5.4   三角函数图像与性质(原卷版)

专题5.4三角函数图像与性质1.正弦函数R x x y ∈=,sin 的性质.(1).定义域:R .(2).值域:sin [1,1]x ∈-.(3).周期性:周期函数,周期是)0(,2≠∈k Z k k 且π,最小正周期为π2.(4).奇偶性:奇函数,其图象关于原点对称.(5).单调性:增区间:2,2()22k k k Z ππππ-++∈()减区间:32,2()22k k k Z ππππ++∈()(6).对称性:对称轴:)(,2Z k k x ∈+=ππ,对称中心:)(),0,(Z k k ∈π2.余弦函数R x x y ∈=,cos 的性质.(1).定义域:R .(2).值域:]1,1[cos -∈x (3).周期性:周期函数,周期是)0(,2≠∈k Z k k 且π,最小正周期为π2.(4).奇偶性:偶函数,其图象关于y 轴对称.(5).单调性:减区间:)(),2,2(Z k k k ∈+πππ增区间:)(),22,2(Z k k k ∈++ππππ(6).对称性:对称轴:)(,Z k k x ∈=π,对称中心:)(),0,2(Z k k ∈+ππ3.正切函数x y tan =的图象与性质.(1).定义域:},2|{Z k k x R x x ∈+≠∈ππ且.(2).值域:R(3).周期性:周期函数,周期是)0(,≠∈k Z k k 且π,最小正周期为π.(4).奇偶性:奇函数,其图象关于原点对称.(5).单调性:增函数,)2,2(ππππ+-k k 为增区间.(6).对称性:对称中心:)(),0,2(Z k k ∈π4.正弦型函数R x A x A y ∈>+=,0),sin(ϕω的性质.(1).定义域:R .(2).值域:],[A A -(3).周期性:周期函数,周期是||2ωπ=T .(4).奇偶性:当Z k k ∈=,πϕ时为奇函数;当Z k k ∈±=,2ππϕ时为偶函数.(5).单调性:当0>ω时:令Z k k x k ∈+≤+≤+-,2222ππϕωππ,求解增区间.令Z k k x k ∈+≤+≤+,22322ππϕωππ,求解减区间.当0<ω时:注意单调区间的转化.(6).对称性:对称轴:令)(,2Z k k x ∈+=+ππϕω,求解对称轴方程,对称轴处取最值.对称中心:令)(,Z k k x ∈=+πϕω,求解对称中心坐标.5.余弦型函数R x A x A y ∈>+=,0),cos(ϕω的性质.(1).定义域:R .(2).值域:],[A A -(3).周期性:周期函数,周期是||2ωπ=T .(4).奇偶性:当Z k k ∈=,πϕ时为偶函数;当Z k k ∈±=,2ππϕ时为奇函数.(5).单调性:当0>ω时:令Z k k x k ∈+≤+≤,22ππϕωπ,求解减区间.令Z k k x k ∈+≤+≤+,222ππϕωππ,求解增区间.当0<ω时:注意单调区间的转化.(6).对称性:对称轴:令)(,Z k k x ∈=+πϕω,求解对称轴方程,对称轴处取最值.对称中心:令)(,2Z k k x ∈+=+ππϕω,求解对称中心坐标.一、单选题1.已知函数()tan 2f x x =,则()A .()f x 的最小正周期为π,对称中心为1,0,2k k Zπ⎛⎫∈ ⎪⎝⎭B .()f x 的最小正周期为π,对称中心为1,0,4k k Zπ⎛⎫∈ ⎪⎝⎭C .()f x 的最小正周期为2π,对称中心为1,0,2k k Z π⎛⎫∈ ⎪⎝⎭D .()f x 的最小正周期为2π,对称中心为1,0,4k k Z π⎛⎫∈ ⎪⎝⎭2.用“五点法”作函数cos 46y x π⎛⎫=- ⎪⎝⎭在一个周期内的图像时,第四个关键点的坐标是A .5,012π⎛⎫⎪⎝⎭B .5,112π⎛⎫- ⎪⎝⎭C .5,112π⎛⎫ ⎪⎝⎭D .5,012π⎛⎫-⎪⎝⎭3.若函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭(0)>ω在区间()2ππ,内没有最值,则ω的取值范围是()A .][117012612⎛⎤⋃ ⎥⎝⎦,,B .][1120633⎛⎤⋃ ⎥⎝⎦,,C .7012⎛⎤⎥⎝⎦,D .1233⎡⎤⎢⎥⎣⎦,4.已知函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间,2ππ⎡⎤⎢⎥⎣⎦内单调递减,则实数ω的取值范围是()A .2,13⎡⎤⎢⎥⎣⎦B .24,33⎡⎤⎢⎥⎣⎦C .[)1,2D .3,22⎡⎫⎪⎢⎣⎭5.已知()()()sin 0,0f x x ωϕωϕπ=+><≤是R 上的奇函数,若()f x 的图象关于直线4x π=对称,且()f x 在区间,2211ππ⎡⎤-⎢⎥⎣⎦内是单调函数,则6f π⎛⎫= ⎪⎝⎭()A .B .12-C .12D .26.函数ππ5πtan ,,6612y x x ⎛⎫⎛⎫=-∈- ⎪ ⎪⎝⎭⎝⎭的值域为()A .()B .3⎛⎫- ⎪ ⎪⎝⎭C .(,(1,)-∞+∞D .3⎛⎫ ⎪ ⎪⎝⎭7.已知1tan tan αα≥且22,ππα⎛∈-⎫⎪⎝⎭,则α的取值范围为()A .,04π⎡⎫-⎪⎢⎣⎭B .,0,442πππ⎡⎫⎡⎫-⎪⎪⎢⎢⎣⎭⎣⎭C .0,4π⎛⎤ ⎥⎝⎦D .,0,244πππ⎛⎤⎛⎤--⋃ ⎥⎥⎝⎦⎝⎦8.已知函数()()sin f x x α=+在,43x ππ⎛⎫∈- ⎪⎝⎭上单调递增,则α的值可以是()A .3π-B .4π-C .4πD .3π9.函数()23sin 23f x x π⎛⎫=- ⎪⎝⎭的一个单调递减区间是()A .7131212ππ⎡⎤⎢⎥⎣⎦,B .71212ππ⎡⎤⎢⎥⎣⎦,C .22ππ⎡⎤-⎢⎥⎣⎦,D .566ππ⎡⎤-⎢⎥⎣⎦,10.已知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在[]0,2π上有且只有4个零点,则ω取值范围是()A .1519,44⎡⎫⎪⎢⎣⎭B .1519,88⎡⎫⎪⎢⎣⎭C .1721,44⎡⎫⎪⎢⎣⎭D .1721,88⎡⎫⎪⎢⎣⎭11.函数1tan 24y x π⎛⎫=+ ⎪⎝⎭的定义域是()A .4,2xx k k Z ππ⎧⎫≠-+∈⎨⎬⎩⎭∣B .2,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣C .32,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣D .,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣12.函数sin(2)4y x π=-的单调减区间是()A .3[,],(Z)88k k k ππππ-+∈B .3[2,2],(Z)88k k k ππππ-+∈C .37[22],(Z)88k k k ππππ++∈D .37[,Z)88k k k ππππ++∈13.已知函数()sin()f x x ϕ=+为偶函数,则ϕ的取值可以为()A .π2-B .πC .π3D .014.记函数()sin 4f x x b πω⎛⎫=++ ⎪⎝⎭(0>ω)的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则10f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .315.已知函数()sin 0,0,2y A x m A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的最大值为4,最小值为0,且该函数图象的相邻两个对称轴之间的最短距离为2π,直线6x π=是该函数图象的一条对称轴,则该函数的解析式是()A .4sin 26y x π⎛⎫=+ ⎪⎝⎭B .2sin 226y x π⎛⎫=++ ⎪⎝⎭C .2sin 23y x π⎛⎫=-++ ⎪⎝⎭D .2sin 23y x π⎛⎫=++ ⎪⎝⎭二、多选题16.已知函数()tan 23f x x π⎛⎫=+ ⎪⎝⎭,则下列说法正确的是()A .()f x 在定义域内是增函数B .6y f x π⎛⎫=- ⎪⎝⎭是奇函数C .()f x 的最小正周期是πD .()f x 图像的对称中心是,0,46k k Z ππ⎛⎫-∈⎪⎝⎭17.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =,记()()sin cos g x x f x x =+⋅,下列结论正确的是()A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫- ⎪⎝⎭的零点个数为3个D .若()g x 大于1的零点从小到大依次为12,,x x ⋅⋅⋅,则1273x x π<+<18.已知函数()()tan 0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点,03π⎛⎫ ⎪⎝⎭和5,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间2,33ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=()A .3πB .6πC .3π-D .6π-19.设函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[]0,π上有且仅有3条对称轴,则()A .()f x 在[]0,π上有且仅有2个最大值点B .()f x 在[]0,π上有且仅有2个零点C .ω的取值范围是710,33⎡⎫⎪⎢⎣⎭D .()f x 在0,10π⎛⎫⎪⎝⎭上单调递增20.已知函数()sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,则下列命题正确的是()A .若()f x 在[0,)π上有10个零点,则3943,44ω⎛⎤∈ ⎥⎝⎦B .若()f x 在[0,)π上有11条对称轴,则3943,44ω⎛⎤∈ ⎥⎝⎦C .若()f x =22在[0,)π上有12个解,则21,122ω⎛⎤∈ ⎥⎝⎦D .若()f x 在,32ππ⎛⎫⎪⎝⎭上单调递减,则35,42ω⎡⎤∈⎢⎥⎣⎦21.函数()214f x x π⎛⎫=++ ⎪⎝⎭,对于任意的[)0,1a ∈,方程()()10f x a x m -=≤≤仅有一个实数根,则m 的取值可以为()A .8πB .58πC .38πD .34π22.已知函数()tan 3f x x π⎛⎫=+ ⎪⎝⎭,则下列关于()f x 的判断正确的是()A .在区间,6ππ⎛⎫⎪⎝⎭上单调递增B .最小正周期是πC .图象关于直线6x π=成轴对称D .图象关于点,06π⎛⎫⎪⎝⎭成中心对称三、解答题23.已知()sin ,()cos f x x g x x==(1)函数()y f x ω=(0>ω)在区间[)0,p 上恰有三条对称轴,求ω的取值范围.(2)函数2()2()()6,h x g x af x a =-++为常数,①当9a =-时,求函数h (x )的零点;②当[,]62x ππ∈-,恒有()0h x >,求实数a 的取值范围.24.已知函数()cos (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,图象上任意两条相邻对称轴间的距离为2π.(1)求函数的单调区间和对称中心.(2)若关于x 的方程22sin cos 40x m x --=在02x π⎛⎫∈ ⎪⎝⎭,上有实数解,求实数m 的取值范围.25.已知函数2π()sin(2)3f x x =+.(1)请用五点法做出()f x 一个周期内的图像;(2)若函数()()g x f x m =-在区间π[0,2上有两个零点,请写出m 的取值范围,无需说明理由.26.已知函数()()3sin 2f x x πϕϕ=+∈-,(,2π)函数关于4x π=对称.(1)求()f x ϕ的值及的解析式;(2)用五点法在下列直角坐标系中画出()f x 在744ππ⎡⎤-⎢⎥⎣⎦,上的图象;(3)写出()f x 的单调增区间及最小值,并写出取最小值时自变量x 的取值集合.27.已知函数()1sin 62f x x π⎛⎫=+- ⎪⎝⎭.(1)求函数()f x 的单调递增区间;(2)求函数()f x 在区间[]0,2π上的所有零点之和.。

三角函数概念图像与性质复习题型总结(最全)

三角函数概念图像与性质复习题型总结(最全)

三角函数概念和性质复习1.终边相同的角: 与角α终边相同角的集合为(1)试写出与角16800终边相同的最小正角和最大负角.(2)已知与角的终边相同, 则为第象限角.(3)第二象限角的集合为________________________________________(4)如果角为第三象限角, 则为第________________象限角2.弧度制(1), , 度≈(2)弧长公式: = , 扇形面积公式: =(1)扇形的圆心角为1200, 半径为6cm, 扇形的弧长是cm.(2)若弧度的圆心角所对的弧长为cm, 则这个圆心角所在的扇形面积为.3.任意角的三角函数定义角终边上任意一点P的坐标, 它与原点的距离是.规定: = ;= ;.(1)①已知角的终边经过点, 则= .②已知角的终边过点, 且, 则= .③已知角的终边在直线上, 则= ;= .(1)已知0tan cos <⋅θθ,则角θ是第 象限角.(2)设角 是三角形的一个内角, 在 中, 有可能取负值. (3)函数cos sin tan sin cos tan x x xy x x x=++的值域为 . 5.同角三角函数关系: ①平方关系: ;②商关系: .(1)①已知 , 且 是第二象限角, 则 = ; = . ②若 , 则 = ; = . ③已知 , 则 的值为__________.(2)化简:①若 是第二象限角, 则 = ;= ; ③若(,0)2πα∈-,= (3)已知 . ①求 的值;②求sin αcos α-sin2α的值.(4)①已知 , 求 及 的值.6.诱导公式(2)已知 , 且 , 则sin( )= . (3)整体角思维应用(角的内在关系)①已知, 则 = . ②已知 且 , 则 = . ③已知1sin(),64x π+=则25sin()sin ()63x x ππ-+-= .7.三角函数的周期设 为常数, 且 , 则 的周期T= ; 的周期T= ; 的周期T= . (1)①函数cos(2)3y x π=-的最小正周期是 ; ②函数tan(3)6y x ππ=+的最小正周期是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A、 y sin(3x 2) 2
B、 y sin(3x 6) 2
C、 y sin(3x 2) 2
D、 y sin(3x 6) 2
4..将函数
的图象上所有点的横坐标伸长到原来的 倍(纵坐标不变),
再将所得的图象向左平移 个单位,得到的图象对应的解析式是
()
3
3
A.3π
B. 4 3
C. 3 2
D. 7 6

6·如果函数 y=sin2x+acos2x 的图象关于直线 x=- 对称,那么 a 等于( )
8
A. 2
B.- 2
C.1
D.-1
平移问题

1.把曲线 ycosx+2y-1=0 先沿 x 轴向右平移 个单位,再沿 y 轴向下平移 1 个单位,得
3
A.
B.
C.
D.
5.若函数 y=f(x)的图象上每点的纵坐标保持不变,横坐标伸长到原来的 2 倍,然后再将整个

1
图象沿 x 轴向左平移 个单位,沿 y 轴向下平移 1 个单位,得到函数 y= sinx 的图象,则
2
2
y=f(x)是( )
1

A.y= sin(2x+ )+x- )+1
2
到的曲线方程是( ) A.(1-y)sinx+2y-3=0 C.(y+1)sinx+2y+1=0
B.(y-1)sinx+2y-3=0 D.-(y+1)sinx+2y+1=0
2.将函数 y sin x 的图像上所有的点向右平行移动 个单位长度,再把所得各点的横坐 10
标伸长到原来的 2 倍(纵坐标不变),所得图像的函数解析式是
B. y sin( x 5 )(x R) 2 12
C. y sin( x )(x R) 2 12
D. y sin( x 5 )(x R) 2 24
7..将函数 y sin 2x 的图象向左平移 个单位, 再向上平移 1 个单位,所得图象的函数解 4

(2)f (x)在(0, )上是增函数,求 ω 最大值。
3
9..已知函数
f(x)=2sin
x(
>0)在区间[


,
]上的最小值是-2,则
的最小值等于(
34

2
3
A.
B.
C.2
D.3
3
2
9·.函数 y Asin(x ) ( A,, 为常数, A 0, 0 )在闭区间[ , 0]上的图象
三角函数图像与性质题型专题
值域
1.函数 y=cos2x-3cosx+2 的最小值为( )
A.2
B.0
1
C.-
D.6
4
2.函数 y sin2 x sin x 1 的值域为
A. 1,1
B.

5 4
,
1
C.

5 4
,1
D.
1,
5 4
,
3.函数 y 2 cos x 的最大值为________ 2 cos x sin -1
3
4.若 f (x) 2sinx(0 1) 在区间[0, ]上的最大值是 2 ,则 =________. 3
5.使 y sin x (ω>0)在区间[0,1]至少出现 2 次最大值,则 ω 的最小值为( )
A. 5 2
B. 5 4
C.π
D. 3 2
6.函数 y sin(2x )(0 ) 是 R 上的偶函数,则 的值是( )
4.函数 f( ) = cos -2的最大值和最小值分别是
4 (A) 最大值 3和最小值 0
4 (C) 最大值 -3和最小值 0
3 (B) 最大值不存在和最小值 4
3 (D) 最大值不存在和最小值-4
参数问题求(和 )
()
1.已知函数 f (x) sin x ( 0, 0 ) 是 R 上的偶函数,其图象关于点
如图所示,则 =
.
11·已知函数 f (x) sin( x )( 0) 的图象如图所示,则 =
14·.若函数
y

cos(x
)
(

0)

的图象相邻两条对称轴间距离为
,则
等于
3
2

1
A.
2
B.12
C.2
D.4
关对称轴对称中心的题

1·函数 y=2sin(x+ )图象的一条对称轴方程是( )
M
( 3 4
, 0)
对称,且在区间
0,
2

上是单调函数,求

的值
,
2.设 ω>0,若函数 f(x)=2sinωx 在[- 3 4 ,]上单调递增,则 ω 的取值范围是 _________.
3. 若函数 f (x) 2sin(2kx ) 的最小正周期T 满足1 T 2 ,则自然数 k 的值为______.
A y sin(2x ) 10
C) y sin(1 x ) 2 10
B y sin(2x ) 5
D y sin(1 x ) 2 20
3.把函数 y f (x) 的图象沿着直线 x y 0 的方向向右下方平移 2 2 个单位,得到函数
y sin 3x 的图象,则 ( )
3

A.x=-
2
B.x=0

C.x=
6

D.x=-
6
2
3·. 函数 y sin(2x 5 ) 的一条对称轴方程( A ) 2
A. x 2
B. x 4
C. x 8
D. x 5 4
2·. f (x) sin 2 x cos 2 x 的图象中相邻的两条对称轴间距离为 ( )
2
2
1

C.y= sin(2x- )+1
2
4
1 1
D.y= sin( x+ )+1
2 24
6..将函数 y sin(x )(x R) 的图象上所有的点向左平行移动 个单位长度,再把图象
6
4
上各点的横坐标扩大到原来的 2 倍(纵坐标不变),则所得到的图象的解析式为
A. y sin(2x 5 )(x R) 12
1
A. 0 B.

C.
D.
4
2
7.将函数 y sin 4x 的图象向左平移 个单位,得到 y sin(4x ) 的图象,则 等
12
A. 12
B. 3

C.
3

D.
12
8. f (x) 2 3 sin(3x ) (ω>0) 3
(1)若 f (x +θ)是周期为 2π 的偶函数,求 ω 及 θ 值; .
相关文档
最新文档