【教育资料】上海交通大学附属中学2017-2018学年度第一学期 高一数学月考二试卷学习精品
2017-2018学年上海市交大附中高一(上)期末数学试卷(解析版)

2017-2018学年上海市交大附中高一(上)期末数学试卷一、选择题(本大题共4小题,共20.0分) 1. “x <2”是“x 2<4”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件2. 设函数f (x )={1x <0−1x>0,则(a+b)+(a−b)⋅f(a−b)2(a ≠b )的值为( )A. aB. bC. a ,b 中较小的数D. a ,b 中较大的数3. 如图中,哪个最有可能是函数y =x2x 的图象( )A.B.C.D.4. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A. f(x)为奇函数 B. f(x)为偶函数 C. f(x)+1为奇函数 D. f(x)+1为偶函数 二、填空题(本大题共12小题,共54.0分)5. 若关于x 的不等式x−ax+1≥0的解集为(-∞,-1)∪[4,+∞),则实数a =______. 6. 设集合A ={x ||x -2|<1},B ={x |x >a },若A ∩B =A ,则实数a 的取值范围是______. 7. 一条长度等于半径的弦所对的圆心角等于______弧度.8. 若函数f (x )=log 2(x +1)+a 的反函数的图象经过点(4,1),则实数a =______. 9. 若f(x)=x 13−x −2,则满足f (x )>0的x 的取值范围是______.10. 已知f (x )={a x ,x ≥1(7−a)x−4a,x<1是(-∞,+∞)上的增函数,那么a 的取值范围是______. 11. 定义在R 上的偶函数y =f (x ),当x ≥0时,f (x )=lg (x 2+3x +2),则f (x )在R上的零点个数为______. 12. 设f (x )=x 4+ax 3+bx 2+cx +d ,f (1)=1,f (2)=2,f (3)=3,则14[f(0)+f(4)]的值为______.13. 设f -1(x )为f (x )=4x -2+x -1,x ∈[0,2]的反函数,则y =f (x )+f -1(x )的最大值为______. 14. 已知函数f (x )={(x −a)2,x ≤0x +4x +3a ,x >0,且f (0)为f (x )的最小值,则实数a 的取值范围是______.15.设a、b∈R,若函数f(x)=x+ax+b在区间(1,2)上有两个不同的零点,则f(1)的取值范围为______.16.已知下列四个命题:①函数f(x)=2x满足:对任意x1,x2∈R,x1≠x2,有f(x1+x22)≤12[f(x1)+f(x2)];②函数f(x)=log2(x+√x2+1),g(x)=1+22x−1均为奇函数;③若函数f(x)的图象关于点(1,0)成中心对称图形,且满足f(4-x)=f(x),那么f(2)=f(2018);④设x1,x2是关于x的方程|log a x|=k(a>0,a≠1)的两根,则x1x2=1其中正确命题的序号是______.三、解答题(本大题共5小题,共76.0分)17.解关于x的不等式:(log2x)2+(a+1a )log12x+1<018.设a∈R,函数f(x)=3x+a3x+1;(1)求a的值,使得f(x)为奇函数;(2)若f(x)<a+33对任意的x∈R成立,求a的取值范围19.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x+5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.20. 已知函数f 1(x )=e |x -2a +1|,f 2(x )=e |x -a |+1,x ∈R .(1)若a =2,求f (x )=f 1(x )+f 2(x )在x ∈[2,3]上的最小值;(2)若|f 1(x )-f 2(x )|=f 2(x )-f 1(x )对于任意的实数x ∈R 恒成立,求a 的取值范围;(3)当4≤a ≤6时,求函数g (x )=f 1(x)+f 2(x)2−|f 1(x)−f 2(x)|2在x ∈[1,6]上的最小值.21. 对于定义在[0,+∞)上的函数f (x ),若函数y =f (x )-(ax +b )满足:①在区间[0,+∞)上单调递减,②存在常数p ,使其值域为(0,p ],则称函数g (x )=ax +b 是函数f (x )的“逼进函数”.(1)判断函数g (x )=2x +5是不是函数f (x )=2x 2+9x+11x+2,x ∈[0,+∞)的“逼进函数”;(2)求证:函数g (x )=12x 不是函数f (x )=(12)x ,x ∈[0,+∞)的“逼进函数” (3)若g (x )=ax 是函数f (x )=x +√x 2+1,x ∈[0,+∞)的“逼进函数”,求a 的值.答案和解析1.【答案】B【解析】解:由x2<4,解得:-2<x<2,故x<2是x2<4的必要不充分条件,故选:B.先求出x2<4的充要条件,结合集合的包含关系判断即可.本题考察了充分必要条件,考察集合的包含关系,是一道基础题.2.【答案】C【解析】解:∵函数f(x)=,∴当a>b时,==b;当a<b时,=a.∴(a≠b)的值为a,b中较小的数.故选:C.由函数f(x)=,知当a>b时,==b;当a<b时,=a.本题考查代数式的值的求法,是基础题,解题时要认真审题,注意函数值的合理运用.3.【答案】A【解析】解:y′==,令y′>0,解得:x<,令y′<0,解得:x>,故函数在(-∞,)递增,在(,+∞)递减,而x=0时,函数值y=0,x→-∞时,y→-∞,x→+∞时,y→0,故选:A.求出函数的导数,得到函数的单调性,从而判断出函数的大致图象即可.本题考查了函数的图象,考查函数的单调性问题,是一道基础题.4.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=-1∴令x1=x,x2=-x,得f(0)=f(x)+f(-x)+1,∴f(x)+1=-f(-x)-1=-[f(-x)+1],∴f(x)+1为奇函数.故选C对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,考察四个选项,本题要研究函数的奇偶性,故对所给的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1进行赋值研究即可本题考查函数的性质和应用,解题时要认真审题,仔细解答.5.【答案】4【解析】解:由,得(x-a)(x+1≥0,故-1,4是方程(x-a)(x+1)=0的根,故a=4,故答案为:4解不等式的解集转化为方程的根,求出a的值即可.本题考查了不等式的解法以及转化思想,是一道基础题.6.【答案】(-∞,1]【解析】解:由|x-2|<1得1<x<3,则A=|{x|1<x<3},∵B={x|x>a},且A∩B=A,∴A⊆B,即a≤1,故答案为:(-∞,1].先求出不等式|x-2|<1的解集即集合A,根据A∩B=A得到A⊆B,即可确定出a的范围.本题考查了交集及其运算,集合之间的关系,熟练掌握交集的定义是解本题的关键.7.【答案】π3【解析】解:因为一条长度等于半径的弦,所对的圆心角为弧度.故答案为:.直接利用弧长公式求出圆心角即可.本题考查弧长公式的应用,基本知识的考查.8.【答案】3【解析】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.9.【答案】(1,+∞)【解析】解:若,则满足f(x)>0,即-x-2>0,变形可得:>1,函数g(x)=为增函数,且g(1)=1,解可得:x>1,即x的取值范围为(1,+∞);故答案为:(1,+∞).根据题意,将f(x)>0变形为>1,解可得x的取值范围,即可得答案.本题考查其他不等式的解法,关键是将原不等式转化为整式不等式.10.【答案】[7,7)6【解析】解:根据题意,f(x)=是(-∞,+∞)上的增函数,必有,解可得≤a<7,即a的取值范围为:故答案为:根据题意,由分段函数的单调性分析可得,解可得a的取值范围,即可得答案.本题考查分段函数的单调性,注意分段函数分段分析.11.【答案】0【解析】解:当x≥0时,f(x)=lg(x2+3x+2),函数的零点由:lg(x2+3x+2)=0,即x2+3x+1=0,解得x(舍去).因为函数是定义在R上的偶函数y=f(x),所以函数的零点个数为:0个.故答案为:0.利用函数是偶函数求出x≥0时,函数的零点个数,即可得到结果.本题考查函数的零点的个数的求法,函数的奇偶性的应用,考查计算能力.12.【答案】7【解析】解:f(x)=x4+ax3+bx2+cx+d,f(1)=1,f(2)=2,f(3)=3,可得:,∴b=-6a-25;c=11a+61;d=-6a-36,∴[f(4)+f(0)]=(256+64a+16b+4c+2d)=(128+32a+8b+2c+d)=(128+32a-48a-200+22a+122-6a-36)=×14=7.利用已知条件求出a、b、c、d的关系式,化简所求的表达式,求解即可.本题考查方程的根与函数的零点的求法,待定系数法的应用,考查计算能力.13.【答案】4【解析】【分析】本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.由f(x)=4x-2+x-1在x∈[0,2]上为增函数可得其值域,得到y=f-1(x)在[-,2]上为增函数,由函数的单调性求得y=f(x)+f-1(x)的最大值【解答】解:由f(x)=4x-2+x-1在x∈[0,2]上为增函数,得其值域为[-,2],可得y=f-1(x)在[-,2]上为增函数,因此y=f(x)+f-1(x)在[-,2]上为增函数,∴y=f(x)+f-1(x)的最大值为f(2)+f-1(2)=2+2=4.故答案为4.14.【答案】[0,4]【解析】解:若f(0)为f(x)的最小值,则当x≤0时,函数f(x)=(x-a)2为减函数,则a≥0,当x>0时,函数f(x)=的最小值4+3a≥f(0),即4+3a≥a2,解得:-1≤a≤4,综上所述实数a的取值范围是[0,4],故答案为:[0,4]若f(0)为f(x)的最小值,则当x≤0时,函数f(x)=(x-a)2为减函数,当x>0时,函数f(x)=的最小值4+3a≥f(0),进而得到实数a的取值范围.本题考查的知识点是分段函数的应用,熟练掌握并理解二次函数和对勾函数的图象和性质,是解答的关键,属于中档题.15.【答案】(0,1)【解析】解:函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒,如图画出数对(a,b)所表示的区域,目标函数z=f(1)═a+b+1∴z的最小值为z=a+b+1过点(1,-2)时,z的最大值为z=a+b+1过点(4,-4)时∴f(1)的取值范围为(0,1)故答案为:(0,1)函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒画出数对(a,b)所表示的区域,求出目标函数z=f(1)═a+b+1的范围即可.本题是函数零点的考查,涉及到规划问题的结合,属于难题.16.【答案】②③④【解析】解:函数f(x)=2x满足:对任意x1,x2∈R,x1≠x2,f(x1)+f(x2)=2+2>2=2•2=2f(),故①错误;由x>0,x=0时,x+>0成立;由x<0,x2+1>x2,可得>-x,即x+>0,由f(-x)+f(x)=log2(x2+1-x2)=0,即有f(x)为奇函数;又g(-x)+g(x)=2++=2++=0,可得g(x)为奇函数.函数均为奇函数,故②正确;若函数f(x)的图象关于点(1,0)成中心对称图形,可得f(x)+f(2-x)=0,且满足f(4-x)=f(x),则f(4-x)=-f(2-x),即f(2+x)=-f(x),可得f(x+4)=-f(x+2)=f(x),即f(x)为最小正周期为4的函数,可得f(2018)=f(4×504+2)=f(2),那么f(2)=f(2018),故③正确;设x1,x2是关于x的方程|log a x|=k(a>0,a≠1)的两根,可得log a x1+log a x2=0,即log a x1x2=0,则x1x2=1,故④正确.故答案为:②③④.由指数的运算性质和基本不等式,可判断①;运用奇偶性的定义和性质,可判断②;由题意可得f(x)+f(2-x)=0,结合条件可得f(x)为最小正周期为4的函数,可得结论,可判断③;由对数的运算性质,可判断④.本题考查函数的性质和运用,主要是函数的奇偶性和对称性、周期性的判断和运用,考查定义法和运算能力,属于中档题.17.【答案】解:关于x 的不等式:(log 2x)2+(a +1a )log 12x +1<0,即 (log 2x)2-(a +1a )log 2x +1<0,即(log 2x -a )•(log 2x -1a)<0. 当a >1a 时,即a >1或-1<a <0时,1a <log 2x <a ,21a <x <2a ,原不等式的解集为{x |21a <x <2a }.当a =1a 时,即a =±1时,不等式即(log 2x −a)2<0,显然它无解,即解集为∅. 当a <1a 时,即0<a <1或a <-1时,1a >log 2x >a ,21a >x >2a ,原不等式的解集为{x |21a >x >2a }.【解析】原不等式即(log 2x-a )•(log 2x-)<0,分类讨论a 与的大小关系,求得log 2x 的范围,可得x 的范围.本题主要考查一元二次不等式的解法,对数不等式的解法,属于中档题. 18.【答案】解:(1)根据题意,函数f(x)=3x +a 3x +1,其定义域为R ,若f (x )为奇函数,则f (0)=30+a 30+1=0,解可得a =-1; 故a =-1;(2)根据题意,f(x)<a+33,即3x +a 3x +1<a+33, 变形可得:a−13x +1<a 3,即3(a -1)<a (3x +1),(①)分3种情况讨论:当a =0时,(①)变形为-3<0,恒成立,当a >0时,(①)变形为3a−3a <3x +1, 若3a−3a <3x +1恒成立,必有3a−3a ≤1,解可得a ≤32, 此时a 的取值范围为(0,32],当a <0时,(①)变形为3a−3a >3x +1,不可能恒成立,综合可得:a 的取值范围为[0,32].【解析】(1)根据题意,由奇函数的性质可得f(0)==0,解可得a的值,即可得答案;(2)根据题意,变形可得3(a-1)<a(3x+1),分3种情况讨论,求出a的取值范围,综合可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数恒成立问题,属于综合题.19.【答案】解:(Ⅰ)设隔热层厚度为x cm,由题设,每年能源消耗费用为C(x)=k3x+5.再由C(0)=8,得k=40,因此C(x)=403x+5.而建造费用为C1(x)=6x,最后得隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+C1(x)=20×403x+5+6x=8003x+5+6x(0≤x≤10)(Ⅱ)f′(x)=6−2400(3x+5)2,令f'(x)=0,即2400(3x+5)2=6.解得x=5,x=−253(舍去).当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为f(5)=6×5+80015+5=70.当隔热层修建5cm厚时,总费用达到最小值为70万元.【解析】(I)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式.(II)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值.函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.20.【答案】解:(1)对于a=2,x∈[2,3],f(x)=e|x-3|+e|x-2|+1=e3-x+e x-1(3分)≥2√e3−x⋅e x−1=2e,当且仅当e3-x=e x-1,即x=2时等号成立,∴f(x)min=2e.(6分)(2)|f1(x)-f2(x)|=f2(x)-f1(x)对于任意的实数x恒成立,即f1(x)≤f2(x)对于任意的实数x恒成立,亦即e|x-2a+1|≤e|x-a|+1对于任意的实数x恒成立,∴|x-2a+1|≤|x-a|+1,即|x-2a+1|-|x-a|≤1对于任意的实数x恒成立.(9分)又|x-2a+1|-|x-a|≤|(x-2a+1)-(x-a)|=|-a+1|对于任意的实数x恒成立,故只需|-a+1|≤1,解得0≤a≤2,∴a的取值范围为0≤a≤2.(12分)(3)g(x)=f1(x)+f2(x)2−|f1(x)−f2(x)|2={f2(x),f1(x)>f2(x)f1(x),f1(x)≤f2(x)(13分)∵f1(x)与f2(x)的底数都同为e,外函数都单调递增∴比较f1(x)与f2(x)的大小关系,只须比较|x-2a+1|与|x-a|+1的大小关系令F1(x)=|x-2a+1|,F2(x)=|x-a|+1,G(x)={F2(x),F1(x)>F2(x)F1(x),F1(x)≤F2(x)其中4≤a≤6,x∈[1,6](14分)∵4≤a≤6∴2a-1≥a≥1,令2a-1-x=1,得x=2a-2,由题意可以如下图象:(15分)当4≤a≤6时,a≤6≤2a-2,G(x)min=F2(a)=1,g(x)min=e1=e;(18分)【解析】(1)对于a=2,x∈[2,3],去掉绝对值得f(x)=e3-x+e x-1(3分),利用基本不等式积为定值,和有最小值即可求出函数的最小值,注意等号成立的条件;(2)根据条件可知f1(x)≤f2(x)对于任意的实数x恒成立,转化成|x-2a+1|-|x-a|≤1对于任意的实数x恒成立,然后利用绝对值不等式进行求解即可求出参数a的范围;(3)f1(x)与f2(x)的底数都同为e,外函数都单调递增,比较f1(x)与f2(x)的大小关系,只须比较|x-2a+1|与|x-a|+1的大小关系,则令F 1(x )=|x-2a+1|,F 2(x )=|x-a|+1,则G (x )=其中4≤a≤6,x ∈[1,6],结合图形可知当4≤a≤6时G (x )min =F 2(a )=1,g (x )min =e 1=e .本题主要考查了基本不等式在最值问题中的应用,以及函数的最值及其几何意义和恒成立问题等有关知识,解决本题的关键是等价转化,以及数形结合,分类讨论的思想,难点是绝对值如何去.21.【答案】解:(1)f (x )-g (x )=2x 2+9x+11x+2-(2x +5)=1x+2, 可得y =f (x )-g (x )在[0,+∞)递减,且x +2≥2,0<1x+2≤12,可得存在p =12,函数y 的值域为(0,12], 则函数g (x )=2x +5是函数f (x )=2x 2+9x+11x+2,x ∈[0,+∞)的“逼进函数”; (2)证明:f (x )-g (x )=(12)x -12x ,由y =(12)x ,y =-12x 在[0,+∞)递减,则函数y =f (x )-g (x )在[0,+∞)递减,则函数y =f (x )-g (x )在[0,+∞)的最大值为1;由x =1时,y =12-12=0,x =2时,y =14-1=-34<0,则函数y =f (x )-g (x )在[0,+∞)的值域为(-∞,1],即有函数g (x )=12x 不是函数f (x )=(12)x ,x ∈[0,+∞)的“逼进函数”; (3)g (x )=ax 是函数f (x )=x +√x 2+1,x ∈[0,+∞)的“逼进函数”, 可得y =x +√x 2+1-ax 为[0,+∞)的减函数,可得导数y ′=1-a +√x 2+1≤0在[0,+∞)恒成立,可得a -1≥√x 2+1,由x >0时,√x 2+1=√1+1x 2≤1,则a -1≥1,即a ≥2;又y =x +√x 2+1-ax 在[0,+∞)的值域为(0,1],则√x 2+1>(a -1)x ,x =0时,显然成立;x >0时,a -1<√1+1x 2,可得a -1≤1,即a ≤2.则a =2.【解析】(1)由f(x)-g(x),化简整理,结合反比例函数的单调性和值域,即可判断;(2)由指数函数和一次函数的单调性,可得满足①,说明不满足②,即可得证;(3)由新定义,可得y=x+-ax为[0,+∞)的减函数,求得导数,由不等式恒成立思想,可得a的范围;再由值域为(0,1],结合不等式恒成立思想可得a 的范围,即可得到a的值.本题考查新定义的理解和运用,考查函数的单调性和值域的求法和运用,考查导数的运用,以及不等式恒成立问题的解法,属于中档题.。
上海市交大附中2017-2018学年高一上学期第一次月考数

上海交通大学附属中学2017-2018学年度第一学期高一数学月考一 试卷一、填空题(1-6题每题4分,7-12题每题5分)1. 用列举法表示方程22320,x x x R --=∈的解集是____________.2. 已知集合2{1,},{1,}A m B m =-=,且A B =,则m 的值为____________.3. 设集合{1,2,6},{2,4},{|15,}A B C x x x R ===-≤≤∈,则()A B C =____________.4. 已知关于x 的一元二次不等式20ax x b ++>的解集为(,2)(1,)-∞-+∞,则a b -=____________.5. 设集合{}3(,)|1,(,)12y U x y y x A x y x ⎧-⎫==+==⎨⎬-⎩⎭,则U A =ð____________.6. 不等式21x≥+____________. 7. 已知x R ∈,命题“若25x <<,则27100x x -+<”的否命题是____________.8. 设[]:13,:1,25x x m m αβ-≤≤∈-+,α是β的充分条件,则m ∈____________.9. 若对任意x R ∈,不等式22(1)(1)10a x a x ----<恒成立,则实数a 值范围是____________.10. 向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人. 问对A 、B 都赞成的学生有____________人11. 设[]x 表示不超过x 的最大整数(例如:[5.5]5,[ 5.5]6=-=-),则2[]5[]60x x -+≤的解集为____________.12. 已知有限集123{,,,,}(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号) 二、选择题(每题5分)13. 若集合P 不是集合Q 的子集,则下列结论中正确的是( )A. Q P ⊆B. PQ =∅ C. P Q ≠∅ D. P Q P ≠14. 集合{}*|4|21|A x x N =--∈,则A 的非空真子集的个数是( )A. 62B. 126C. 254D. 51015. 已知,,a b c R ∈,则下列三个命题正确的个数是( ) ①若22ac bc >,则a b >;②若|2||2|a b ->-,则22(2)(2)a b ->-③若0a b c >>>,则a a cb b c+>+; ④若0,0,4,4a b a b ab >>+>>,则2,2a b >>A. 1B. 2C. 3D. 416. 若实数,a b 满足0,0a b ≥≥且0ab =,则称a 与b 互补,记(,)a b a b ϕ=-,那么(,)0a b ϕ=是a 与b 互补的( ) A. 必要而不充分的条件 B. 充分而不必要的条件C. 充要条件D. 既不充分也不必要条件三、解答题17. (本题满分14分)已知关于x 的不等式250ax x a-<-的解集为M (1)4a =时,求集合M ;(2)若3M ∈且5M ∉,求实数a 的取值范围18. (本题满分14分)解关于x 的不等式2(2)(21)60a x a x -+-+>19. (本题满分16分)已知函数()|1||2|f x x x =+-- (1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m ≥-+的解集非空,求m 的取值范围20. (本题满分14分)某商场在促销期间规定:商场内所有商品标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如,购买标价为400元的商品,则消费金额为320元,获得的优惠额为:4000.230110⨯+=(元),设购买商品得到的优惠率=购买商品获得的优惠额商品的标价。
2018-2019学年上海市上海交通大学附属中学高一上学期期末数学试题(解析版)

2018-2019学年上海市上海交通大学附属中学高一上学期期末数学试题一、单选题1.设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“A B =∅”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件【答案】C【解析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果. 【详解】由题意A C ⊆,则U UC A ⊆痧,当U B C ⊆ð,可得“A B =∅”;若“AB =∅”能推出存在集合C 使得A C ⊆,U B C ⊆ð,U ∴为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“A B =∅”的充分必要的条件. 故选:C . 【点睛】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题. 2.已知实数x ,y 满足()01xya a a <<<,[]x 表示不超过x 的最大整数,则下面关系式恒成立的是( ) A.221111x y >++ B.()()22ln 1ln 1x y +>+ C.11x y x y->- D.[][]x y ≥【答案】D【解析】根据条件求出x y >,结合不等式的关系,利用特殊值法进行判断即可. 【详解】当01a <<时,由x y a a <得x y >,A .当1x =,1y =-,满足x y >但221111x y =++,故A 错误,B .当1x =,1y =-,满足x y >,22(1)(1)ln x ln y +=+,但22(1)(1)ln x ln y +>+不成立,故B 错误,C .当1x =,1y =-,满足x y >,但112x y -=+=,11112x y -=+=,则11x y x y ->-不成立,故C 错误,D .x y >,[][]x y ∴…成立,故D 正确 故选:D . 【点睛】本题主要考查不等式的关系和不等式的性质的应用,利用特值法是解决本题的关键. 3.函数422y x x =-++的图像大致为A .B .C .D .【答案】D【解析】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<,得x <或0x <<,此时函数单调递增,排除C ,故选D. 点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.4.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.2p q+ B.(1)(1)12p q ++-1【答案】D【解析】【详解】试题分析:设这两年年平均增长率为x ,因此2(1)(1)(1)p q x ++=+解得1x =. 【考点】函数模型的应用.二、填空题5.已知集合{}1,2,A m =,{2,3}B =,若{}123A B ⋃=,,,则实数m =___________. 【答案】3【解析】直接利用并集的定义得到m 的值. 【详解】因为集合{}1,2,A m =,{2,3}B =,{}123A B ⋃=,,, 所以3m =. 故答案为:3 【点睛】本题主要考查并集定义,意在考查学生对该知识的理解掌握水平. 6.“21x>成立”是“2x <成立”的 条件.(选择确切的一个填空:充分非必要、必要非充分、充要、非充分非必要) 【答案】充分非必要 【解析】先解不等式21x>,再利用充分条件必要条件的定义判断得解. 【详解】 因为21x>,所以02x <<,因为{|02}x x <<⫋{|2}x x < 所以“21x>成立”是“2x <成立”的充分非必要条件. 故答案为:充分非必要 【点睛】本题主要考查解分式不等式和充要条件的判定,意在考查学生对这些知识的理解掌握水平.7.函数()f x =___________.【答案】{}(,1]1(2,)-∞-⋃⋃+∞【解析】分类讨论解不等式2(1)(1)02x x x -+-…,即得函数的定义域. 【详解】要使函数有意义,则2(1)(1)02x x x -+-…, 当1x =时,不等式成立, 当1x ≠时,不等式等价为102x x +-…, 即2x >或1x -…,综上2x >或1x -…或1x =,所以函数的定义域为{}(,1]1(2,)-∞-⋃⋃+∞. 故答案为:{}(,1]1(2,)-∞-⋃⋃+∞ 【点睛】本题主要考查不等式的解法和函数定义域的求法,意在考查学生对这些知识的理解掌握水平.8.若函数21()x f x x a+=+的反函数是其本身,则实数a =___________. 【答案】-2【解析】求出反函数与原函数比较可知2a =-. 【详解】 由21+=+x y x a得12-=-ay x y ,所以()f x 的反函数为11()2ax f x x --=-,依题意可得2a =-. 故答案为:2-.【点睛】本题考查了反函数的求法,意在考查学生对这些知识的理解掌握水平,属基础题. 9.函数3()21x f x -=-,则不等式()1f x <的解集为___________.【答案】(24),【解析】问题转化为|3|1x -<,求出不等式的解集即可. 【详解】不等式()1f x <即|32|2x -<, 故|3|1x -<, 解得:24x <<, 故答案为:(2,4). 【点睛】本题考查了解绝对值不等式和指数不等式的解法,考查转化思想,是一道基础题. 10.函数()19310xx f x +=--的零点为___________.【答案】315x og =【解析】由题得(32)(35)0x x +-=,再解指数方程即得解. 【详解】由1()93100x x f x +=--=得2(3)33100x x -⋅-=, 即(32)(35)0x x +-=,30x >,350x ∴-=,即35x =,即3log 5x =, 即函数零点为3log 5x =, 故答案为:3log 5x = 【点睛】本题主要考查函数零点的求解,结合一元二次方程以及指数和对数的转化公式是解决本题的关键.11.已知x ,R y *∈,且满足–20xy x y -=,则x y +的最小值为___________.【答案】3+【解析】由题知2xy x y =+,同除xy ,得211x y+=,再借助基本不等式得最小值. 【详解】由题知x ,y ,满足20xy x y --=,则2xy x y =+, 同除xy ,得211x y+=, 212()()33x yx y x yx y y x +=++=+++…2x =1y =时取到等号.故答案为:3+. 【点睛】本题考查了基本不等式求最小值,意在考查学生对该知识的理解掌握水平. 12.若定义在R 上的函数21()xf x a +=(其中0a >,1a ≠)有最大值,则函数()2()log 2a g x x x =-的单调递增区间为___________.【答案】()0-∞,【解析】先根据题意判断01a <<,可得即求函数2220)t x x x x =-><(或减区间,再利用二次函数的性质得出结论. 【详解】21x +有最小值为1,定义在R 上的函数21()xf x a+=(其中0a >,1)a ≠有最大值,01a ∴<<.则函数2()log (2)a g x x x =-的单调递增区间,即函数2220)t x x x x =-><(或的减区间, 因为函数2220)t x x x x =-><(或的减区间为(,0)-∞, 故答案为:(,0)-∞. 【点睛】本题主要考查复合函数的单调性,指数函数、二次函数的性质,意在考查学生对这些知识的理解掌握水平.13.集合{}22|(21)0A x x a x a a =-+++<,集合{}2log |1000xB x x+=≤,且满足R A B ⋂=∅ð,则实数a 的取值范围是___.【答案】1,91000⎡⎤⎢⎥⎣⎦【解析】由二次不等式的解法得1)A a a =+(,,由对数不等式的解法得1[1000B =,10],即(R C B =-∞,1)(101000⋃,)+∞,由集合交集的运算得11000110a a ⎧⎪⎨⎪+⎩……,即191000a 剟,得解. 【详解】解不等式22(21)0x a x a a -+++<得1a x a <<+即1)A a a =+(,, 解不等式21000lgx x +…得:(2)30lgx lgx +-…,即1101000x 剟,即1[1000B =,10], 即(RC B =-∞,1)(101000⋃,)+∞, 又R AB =∅ð,得11000110a a ⎧⎪⎨⎪+⎩……,即191000a 剟, 即实数a 的取值范围是1[,9]1000, 故答案为:1[,9]1000 【点睛】本题考查了二次不等式的解法,对数不等式的解法及集合交集的运算,属中档题. 14.已知函数()y f x =的图像与函数(0,1)x y a a a =>≠的图像关于直线y x =对称,()()()()21g x f x f x f ⎡⎤=+-⎣⎦,若()y g x =在1,22⎡⎤⎢⎥⎣⎦上是增函数,则实数a 的取值范围是______. 【答案】10,2⎛⎤ ⎥⎝⎦【解析】先求出函数()f x 的解析式,然后代入将函数()g x 表示出来,再对底数a 进行讨论即可得 到答案. 【详解】函数()y f x =的图象与函数(0x y a a =>且1)a ≠的图象关于直线y x =对称, ()log (0)a f x x x ∴=>.()()[()g x f x f x f =+(2)1]log (log log 21)a a a x x -=+-2221(21)(log )24a a a log log x --=+-, ①当1a >时,log a y x =在区间1[2,2]上是增函数,1log [log 2a a x ∴∈,log 2]a .由于()y g x =在区间1[2,2]上是增函数,∴12122a a log log -…,化为log 21a -…, 解得12a …,舍去. ②当01a <<时,log ay x =在区间1[2,2]上是减函数,log [log 2a a x ∴∈,1log ]2a .由于()y g x =在区间1[2,2]上是增函数,∴12122a a log log -…,解得102a <…. 综上可得:102a <…. 故答案为:(0,1]2.【点睛】本题考查反函数的性质、二次函数、对数函数的单调性、复合函数的单调性,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于中档题. 15.下列四个命题中正确的是______.①已知定义在R 上的偶函数(1)y f x =+,则()()11f x f x +=-;②若函数()y f x =,x D ∈,值域为()A A D ≠,且存在反函数,则函数()y f x =,x D ∈与函数1()x f y -=,y A Î是两个不同的函数﹔③已知函数*1(),3f x x x =∈-N ,既无最大值,也无最小值; ④函数||2||()(21)5(21)6x x f x =---+的所有零点构成的集合共有4个子集. 【答案】①②【解析】由偶函数的定义可判断①;由互为反函数的定义可判断②;由()f x 的单调性可判断③;由()0f x =的解的个数和集合的子集个数,可判断④. 【详解】①已知定义在R 上是偶函数(1)y f x =+,设()(1)F x f x =+,可得()()F x F x -=, 则(1)(1)f x f x +=-,故①正确;②若函数()y f x =,x D ∈,值域为()A A D ≠,且存在反函数,则函数()y f x =,x D ∈与函数1()x f y -=,y A Î,即1()y f x -=,x A ∈,由于A D ≠是两个不同的函数,故②正确; ③已知函数1()3f x x =-,*x ∈N ,由()f x 在13x <…递减,3x >递减,可得2x =时,f (2)取得最小值1-,故③错误;④函数||2||()(21)5(21)6x x f x =---+,由()0f x =,可得||212x -=或3,解得2log 3x =±或2x =±,()f x 的所有零点构成的集合中共有四个元素,共有16个子集,故④错误.故答案为:①②. 【点睛】本题考查函数的奇偶性和互为反函数的定义,以及函数的单调性和函数零点的求法,考查运算能力和推理能力,属于基础题. 16.已知函数()()20xf x x ex =+<与函数21()ln()2g x x x a =+++,图像上存在关于y 轴对称的点,则a 的取值范围是___________.【答案】(-∞【解析】根据条件转化为当0x >时,()()f x g x -=有解,利用函数与方程之间的关系,转化为两个函数的交点问题,利用数形结合进行求解即可. 【详解】由题意,存在0x >,使()()f x g x -=,即221()2x x ln x a x e -+++=+, 即11()()2xln x a e++=, 即11()()2xln x a e+=-+,设11()()2x h x e =-+,11(0)122h =-+=,当()y ln x a =+经过点1(0,)2时, 则12lna =,得12a e = 作出()y ln x a =+和()h x 的图象,要使两个图象恒有交点,则a即实数a 的取值范围是(a ∈-∞.故答案为:(-∞.【点睛】本题主要考查函数与方程的应用,利用数形结合转化为两个函数的交点问题是解决本题的关键.三、解答题17.解关于x 的不等式:2(2)20kx k x -++<. 【答案】见解析【解析】将原不等式化为(2)(1)0kx x --<分0k =,0k >,k 0<三种情况进行讨论.0k =、k 0<易解不等式;当0k >时,按照对应方程的两根大小分三种情况讨论即可. 【详解】将原不等式化为(2)(1)0kx x --<, (1)当0k =时,有1x >;(2)当0k >时,有2()(1)0k x x k --<,2()(1)0x x k ∴--<,221k k k--=, 当2k >时21k<,21x k ∴<<;当2k =时,21k=,x φ∴∈;当02k <<时,有21k>, 21x k ∴<<;(3)当k 0<时,2()(1)0x x k -->,有21k<,所以21x x k <>或. 综上, 当0k =时,原不等式的解集为(1)+∞,; 当k 0<时,原不等式的解集为2,(1,)k ⎛⎫-∞⋃+∞ ⎪⎝⎭ 当2k =时,原不等式的解集为∅;当02k <<时,原不等式的解集为21,k ⎛⎫ ⎪⎝⎭; 当2k >时,原不等式的解集为2,1k ⎛⎫⎪⎝⎭. 【点睛】 该题考查一元二次不等式的解法,考查分类讨论思想,含参数的一元二次不等式的求解,要明确分类讨论的标准:是按照不等式的类型、两根大小还是△的符号,要不重不漏.18.动物园需要用篱笆围成两个面积均为502m 的长方形熊猫居室,如图所示,以墙为一边(墙不需要篱笆),并共用垂直于墙的一条边,为了保证活动空间,垂直于墙的边长不小于2m ,每个长方形平行于墙的边长也不小于2m .(1)设所用篱笆的总长度为l ,垂直于墙的边长为x .试用解析式将l 表示成x 的函数,并确定这个函数的定义域;(2)怎样围才能使得所用篱笆的总长度最小?篱笆的总长度最小是多少?【答案】(1)1003l x x =+,[225],.(2时,所用篱笆的总长度最小,最小为【解析】(1)由题意得每个长方形平行于墙的边长50x ,表示出l ;由2x …且502x…,可得函数的定义域;(2)对其运用基本不等式求出函数的最值即场地的篱笆的总长度最小,从而求解.【详解】(1)由题得每个长方形平行于墙的边长50x , 则1003l x x=+,2x …且502x…, 225x ∴剟,所以函数的定义域为[2,25];(2)100320l x x x x =+=…1003x x =,即x =时,所用篱笆的总长度最小,篱笆的总长度最小是. 【点睛】此题是一道实际应用题,考查函数的最值问题,解决此类问题要运用基本不等式,这也是高考常考的方法.19.已知函数()y f x =是函数21()101x y x =-∈+R 的反函数,函数3()1ax g x x +=-的图像关于直线y x =对称,记()()()F x f x g x =+.(1)求函数()f x 的解析式和定义域﹔(2)在()F x 的图像上是否存在这样两个不同点A ,B ,使直线AB 恰好与y 轴垂直?若存在,求A ,B 的坐标;若不存在,说明理由.【答案】(1)1()1x f x lgx -=+,()f x 的定义域为(1,1)-;(2)不存在A ,B 两点,使AB 与y 轴垂直.【解析】(1)先求出函数21()101x y x =-∈+R 的反函数,即求出()f x 的解析式,然后求出()f x 的定义域;(2)先求出函数()F x 的解析式,再设()F x 的图象上不同的两点1(A x ,1)y ,2(B x ,2)y ,且1211x x -<<<,推出12y y >,得()F x 为(1,1)-上的递减函数,故不存在A ,B 两点,使AB 与y 轴垂直.【详解】 (1)由21101x y =-+得1101x y y -=+,11y x lg y -=+,1()1x f x lg x-∴=+, 因为函数21101x y =-+的值域为(1,1)-,所以函数()f x 的定义域为(1,1)-. (2)3()1ax g x x +=-,13()x g x x a -+∴=-,依题意得1()()g x g x -=,1a \=,3()1x g x x +∴=-, 1(13)1x F x g x l x x -∴=+++-,定义域为(1,1)-, 设()F x 的图象上不同的两点1(A x ,1)y ,2(B x ,2)y ,且1211x x -<<<,则122121122112113()()11131x x x y y F x F x lg lg x x x x x --+-=-=+--++--+ 12212112113()3(1111x x x lg x x x x x -++=+---++-) 21211212114(()11(1)()1)x x x x lg x x x x +--=++---, 1211x x -<<<,则21111x x +>+,12111x x ->-,210x x ->,12()1(1)0x x ->-, 211211()011x x lg x x +-∴>+-,211240(1)(1)x x x x ->--)(, 12y y ∴>,故()F x 在(1,1)-上单调递减,故不存在A ,B 两点,使AB 与y 轴垂直.【点睛】本题主要考查了反函数,考查了函数单调性的判定和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数2(2)(3)2f x ax a x a -=--+-(a 为负整数)()y f x =的图像经过点(2,0)()m m -∈R .(1)求()f x 的解析式;(2)设函数()2g x bx =+,若()()g x f x ≥在[]1,3x ∈上解集非空,求实数b 的取值范围;(3)证明:方程1()0f x x-=有且仅有一个解. 【答案】(1)2()1f x x =-+.(2)10,3⎡⎫-+∞⎪⎢⎣⎭(3)见解析﹔ 【解析】(1)在2(2)(3)2f x ax a x a -=--+-中令x m =得2(2)(3)20f m am a m a -=--+-=,故2321m a m m -=--+,因为a 为负整数,所以2321m m m --+为正整数,当23221m m m --+…时,利用判别式可判断此不等式无解,所以23211m m m -=-+,解得1a =-,从而可得()f x 的解析式; (2)()()g x f x …在[1x ∈,3]上解集非空转化为1()b x x-+…在[1,3]上有解,再构造函数转化为最小值可得;(3)即证1y x=与21y x =-+的图象有且只有一个交点,证明0x >时,1y x=与21y x =-+的图象无交点,在(,0)-∞上有且只有一个零点,即得证.【详解】 (1)在2(2)(3)2f x ax a x a -=--+-中令x m =得2(2)(3)20f m am a m a -=--+-=,2321m a m m -∴=--+, 因为a 为负整数,所以2321m m m --+为正整数, 当23221m m m --+…时,22540m m -+…,因为△2(5)42470=--⨯⨯=-<,所以22540m m -+…无解, 所以23211m m m -=-+,解得1m =或3m =,所以1a =-, 22(2)43(2)1f x x x x ∴-=-+-=--+,2()1f x x ∴=-+(2)()()g x f x …在[1x ∈,3]上解集非空1()b x x⇔-+…在[1,3]上有解, 令1()()h x x x=-+,则()min b h x …, 因为函数()h x 在[1x ∈,3]上是减函数,所以3x =时,()min h x h =(3)103=-, 故103b -…. (3)证明:即证1y x =与21y x =-+的图象有且只有一个交点, 当0x >时,22221111(1)111110222x x x x x x x x x x --+=+-=++--==>, 即0x >时,1y x=与21y x =-+的图象无交点, 当0x <时,令211y x x =+-, 因为函数1y x =在(,0)-∞上为递减函数,函数21y x =+在(,0)-∞上为递减函数, 所以211y x x=+-在(,0)-∞上为递减函数(减函数+减函数=减函数),又12x =-时,1304y =-+<,1x =时,10y =>,根据零点存在性定理知:2110x x+-=在(,0)-∞上有且只有一个零点, 综上得1()0f x x-=有且只有一个解. 【点睛】本题考查了二次函数的图像和性质,考查函数的零点问题,考查基本不等式,考查函数单调性的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.. 21.若实数x ﹑y 、m ()x m y m ≠≠,满足||x m y m ->-,则称y 比x 接近m . (1)若21x -比1接近0,求x 的取值范围;(2)对正实数a ,b ,如果1a a +比1b b +接近2,求证:当0x >时,1x x a a +比1x x b b +接近2;(3)已知函数()f x等于x a -中接近0的那个值.写出函数()f x 的解析式,并指出它的单调区间(结论不要求证明).【答案】(1) (1)(1,0)(0,1)(1,2)x ∈--;(2)证明见解析;(3)见解析 【解析】(1)由新定义可得2|1|1x -<且210x -≠,由绝对值不等式的解法,即可得到解集;(2)运用新定义作差比较,结合基本不等式,即可比较;(3)依据新定义分1a -…和1a >-两种情况写出函数()f x 的解析式,然后指明单调性.【详解】(1)由题意得,221110x x ⎧-<⎪⎨-≠⎪⎩∴0,1x x x <<≠≠±, 所以(1)(1,0)(0,1)(1,2)x ∈--. (2)1a a+比1b b +接近2, 11|2||2|a b a b∴+-<+-, 0a >,0b >,12a a ∴+…,12b b+…, 1122a b a b ∴+-<+-,即11a b a b+<+, 11|2||2|x x x x a b a b ∴+-<+-,当0x >时,1x x a a+比1x x b b +接近2; (3)当1a -…时,()||f x x a =-,此时()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增;1a >-时,,2222x a x a x a a x a ⎧->++<+-⎪⎨+-++⎪⎩, 当10a -<<时,()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增;当0a …时,()f x在(,2a -∞+-上单调递减,在(2a +-上单调递增. 【点睛】本题是新定义题目,新定义问题,往往是结合相关的知识,利用已有的方法求出所求结果,注意转化思想的应用考查了推理能力与计算能力,属于中档题.。
2017-2018年上海市交大附中高一上期末

上海交通大学附属中学2017-2018学年度第一学期高一数学期终试卷2018.1一、填空题(本大题共有12题,满分54分,1-6题每题4分,7-12题每题5分)1. 若关于x 的不等式01x a x -³+的解集为()[),14,-?+?U ,则实数a =____________.2. 设集合{}{}|2|1,A x x B x x m =-<=>,若A B A =I ,则实数m 的取值范围是____________.3. 一条长度等于半径的弦所对的圆心角等于____________弧度.4. 若函数2()log (1)f x x a =++的反函数的图像经过点(4,1),则实数a =____________.5. 若123()f x x x -=-,则满足()0f x >的x 的取值范围是____________.6. 已知(7)41()1x a x a x f x ax ì--<ïï=íï³ïî是(),-??上的增函数,那么a 的取值范围是____________. 7. 定义在R 上的偶函数()y f x =,当0x ³时,()2()lg 32f x x x =++,则()f x 在R 上的零点个数为____________.8. 设432()f x x ax bx cx d =++++,(1)1,(2)2,(3)3f f f ===,则[]1(0)(4)4f f +的值为____________.9. 设1()f x -为[]2()41,0,2x f x x x -=+-?的反函数,则1()()y f x f x -=+的最大值为____________.10. 已知2()0()430x a x f x x a x x ìï-?ïï=íï++>ïïî,若(0)f 是()f x 的最小值,则a 的取值范围是____________.11. 设ab R Î,若函数()a f x x b x=++在区间(1,2)上有两个不同的零点,则(1)f 的取值范围为____________.12. 已知下列四个命题: ①函数()2x f x =满足:对任意1212,,x x R x x 喂,有[]12121()()22x x f f x f x 骣+÷ç?÷ç÷ç桫;②函数(22()log ,()121x f x x g x =+=+-均为奇函数; ③若函数()f x 的图像关于点(1,0)成中心对称图形,且满足(4)()f x f x -=,那么(2)(2018)f f =; ④设12,x x 是关于x 的方程log (0,1)a x k a a =>?的两根,则121x x =其中正确命题的序号是____________.二、选择题(本题共有4题,满分20分,每题5分13. “2x <”是“24x <”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件14. 设函数10()10x f x x ì->ïï=íï<ïî,则()()()()2a b a b f a b a b +---¹的值为( )A. aB. bC. ,a b 中较小的数D. ,a b 中较大的数 15. 下图中最有可能是函数2x x y =的图像是( ) A. B. C. D.16. 若定义在R 上的函数()f x 满足:对任意12,x x R Î有1212()()()1f x x f x f x +=++,则下列说法一定正确的是( )A. ()f x 为奇函数B. ()f x 为偶函数C. ()1f x +为奇函数D. ()1f x +为偶函数三、简答题(第17题12分,第18-19题14分,第20-21题18分)17. 解关于x 的不等式:()22121log log 10x a x a 骣÷ç+++<÷ç÷ç桫18. 设a R Î,函数3()31x x a f x +=+; (1)求a 的值,使得()f x 为奇函数;(2)若3()3a f x +<对任意的x R Î成立,求a 的取值范围19. 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。
上海市上海交通大学附属中学2018届高三上学期开学考试数学试题Word版含答案

交大附中高三开学考2017.9一. 填空题1. 若集合{||2|3}A x x =-<,集合3{|0}x B x x-=>,则A B = 2. 一个几何体的主视图、左视图、俯视图都是以a 为半径的圆,则该几何体的体积是 3. 已知i 是虚数单位,则2-的平方根是 4. 函数2()1f x x =+(0)x <的反函数是5. 设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是6. 如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,i P (1,2,,16)i = 是上、下底面上其余十六个点,则i AB AP ⋅(1,2,,16)i = 的不同值的个数为 7. 数列{}n a 满足12n n n a a a --=-(3)n ≥,15a =,其 前n 项和记为n S ,若89S =,那么100S = 8. 若n a 是(2)n x +*(,2,)n n x ∈≥∈N R 展开式中2x项的系数,则2323222lim()nn n a a a →∞++⋅⋅⋅+=9. 设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕπ<,若5()28f π=, ()08f π11=,且()f x 的最小正周期大于2π,则ϕ=10. 已知函数||2,1()2,1x x f x x x x +<⎧⎪=⎨+≥⎪⎩,设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上 恒成立,则a 的取值范围是 11. 函数1()f x x=(0)x >绕原点逆时针旋转,每旋转15°得到一个新的曲线,旋转一周共 得到24条曲线(不包括未旋转时的曲线),请问从中任选其二,均不是函数图像的概率是 12. 已知两正实数a 、b ,满足4a b +=,则2211a ba b +++的最大值为二. 选择题13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩,其中行列式x D 为( )A.0543- B. 1024C. 0543D. 0543-14. “要使函数()0f x ≥成立,只要x 不在区间[,]a b 内就可以了”等价于( ) A. 如果()0f x ≥,则[,]x a b ∉ B. 如果[,]x a b ∈,则()0f x < C. 如果()0f x <,则[,]x a b ∈ D. 如果[,]x a b ∉,则()0f x ≥ 15. 参数方程(sin )(1cos )x a t t y a t =-⎧⎨=-⎩(0a >,t 为参数)所表示的函数()y f x =是( )A. 图像关于原点对称B. 图像关于直线x π=对称C. 周期为2a π的周期函数D. 周期为2aπ的周期函数 16. 已知椭圆22:143x y C +=,直线:1l y x =-,点(1, 0)P ,直线l 交椭圆C 于A 、B 两 点,则22||+||PA PB 的值为( ) A. 32149 B.32449 C. 32749 D. 33049三. 解答题17. 如图,在长方体1111ABCD A BC D -中,2AB =,1AD =,11A A =. (1)证明直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.18. ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ⋅;(2)若6cos cos 1B C ⋅=,3a =,求ABC ∆的周长.19. (1)请根据对数函数()log a f x x =(1)a >来指出函数()log x g x a =(1)a >的基本性 质(结论不要求证明),并画出图像;(2)拉普拉斯称赞对数是一项“使天文学家寿命倍增”的发明. 对数可以将大数之间的乘 除运算简化为加减运算, 请证明:log ()log log a a a x y x y ⋅=+(0,1,,0)a a x y >≠>; (3) 2017年5月23日至27日,围棋世界冠军柯洁与DeepMind 公司开发的程序“AlphaGo ” 进行三局人机对弈,以复杂的围棋来测试人工智能. 围棋复杂度的上限约为3613M =,而根据有关资料,可观测宇宙中普通物质的原子总数约为8010N =. 甲、乙两个同学都估算 了M N的近似值,甲认为是7310,乙认为是9310. 现有两种定义: ① 若实数x 、y 满足||||x m y m ->-,则称y 比x 接近m ;② 若实数x 、y 、m ,且10sx =,10t y =,10um =,满足||||s u t u ->-,则称y 比x 接近m ;请你任选取其中一种.......定义来判断哪个同学的近似值更接近MN,并说明理由20. 已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(n ∈*N ),将集合**{|,}{|,}n n x x a n x x b n =∈=∈N N 中的元素从小到大依次排列,构成数列123,,,,,n c c c c ;将集合**{|,}{|,}n n x x a n x x b n =∈=∈N N 中的元素从小到大依次排列,构成数列123,,,,,n d d d d . (1)求数列{}n d 的通项公式()h n ; (2)求数列{}n c 的通项公式()f n ;(3)设数列{}n c 的前n 项和为n S ,求数列{}n S 的通项公式()g n .21. 如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与1C 、2C 都有公共点,则称P 为“12C C -型点”. (1)证明:1C 的左焦点是“12C C -型点”;(2)设直线y kx =与2C 有公共点,求证:||1k >,进而证明原点不是“12C C -型点”; (3)求证:{(,)|||||1}x y x y +<内的点都不是“12C C -型点”.2018届交大附中高三第一学期数学摸底测试 时间:120分钟 满分:150分 姓名:__________命题:季风、陈云鹤 审题:王敏杰一、填空题(前6题,每题4分;后6题,每题5分,共54分) 1、若集合{}23A x x =-<,集合⎭⎬⎫⎩⎨⎧>-=03x x xB ,则A B ⋃=____R_______. 2、一个几何体的主视图、左视图、俯视图都是以a 为半径的圆,则该几何体的体积是_____343a π_____.3、已知i 是虚数单位,则-24、函数2()1(0)fx x x =+<的反函数是__1)y x =>____________.5、设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+ 的最小值是_____-15__________.6、如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,16)i P i = 是上、下底面上其余十六个点,则(1,2,,16)i AB AP i ⋅=的不同值的个数为______2______ .8167、数列{}n a 满足12=(3)n n n a a a n ---≥,15a =,其前n 项和记为n S ,若89S =,那么100S =__3____.8、若n a 是()()*2,2,nx n N n x R +∈≥∈展开式中2x 项的系数,则2323222lim()nn n a a a →∞++⋅⋅⋅+=____8_____. 9、设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则ϕ=___12π____. 10、已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是_____[2,2]-_______. 11、函数1()(0)f x x x=>绕原点逆时针旋转,每旋转15度得到一个新的曲线,旋转一周共得到24条曲线(不包括未旋转时的曲线),请问从中任选其二,均不是函数图像的概率是____1592______. 12、已知两正实数a 、b ,满足4a b +=,则2211a ba b +++的最大值为__________. 二、选择题(每题5分,共20分) 13、关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩,其中行列式x D 为( C )(A )0543- (B ) 1024 (C )0543 (D ) 0543-14、“要使函数()0f x ≥成立,只要x 不在区间[,]a b 内就可以了”等价于( D )(A )如果()0f x ≥,则[,]x a b ∉ (B )如果[,]x a b ∈,则()0f x < (C )如果()0f x <,则[,]x a b ∈ (D )如果[,]x a b ∉,则()0f x ≥15、参数方程(sin )(1cos )x a t t y a t =-⎧⎨=-⎩(0a >, t 为参数)所表示的函数()y f x =是( C )(A )图像关于原点对称(B )图像关于直线x π=对称 (C )周期为2a π的周期函数(D )周期为2aπ的周期函数 16、已知椭圆22:143x y C +=,直线:1l y x =-,点(1, 0)P ,直线l 交椭圆C 于A B 、两点,则22||+||PA PB 的值为( B )(A )32149 (B )32449 (C )32749 (D ) 33049三、解答题(14+14+14+16+18,共76分)17(6+8)、如图,在长方体1111ABCD A BC D -中,1211AB AD A A ===,,, (1)证明直线1BC 平行于平面1D AC ;(2)求直线1BC 到平面1D AC 的距离.解:因为1111ABCD A BC D -为长方体,故1111//,AB C D AB C D =,故11ABC D 为平行四边形,故11//BC AD , ----------4分显然B 不在平面1D AC 上,于是直线1BC 平行于平面1D AC , --------2分(2)直线1BC 到平面1D AC 的距离即为点B 到平面1D AC 的距离设为h 考虑三棱锥ABCD 1的体积,以面ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=---------3分而1AD C ∆中,11AC DC AD ===132AD C S ∆=-----------------2分C 11所以,13123233V h h =⨯⨯=⇒=,即直线1BC 到平面1D AC 的距离为23.---------3分18(6+8)、ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A(1)求sin sin B C ⋅;(2)若6cos cos 1,3B C a ⋅==,求ABC ∆的周长.解:(1)由题意可得21sin 23sin ABCa S bc A A∆==,化简可得2223sin a bc A =,---3分 根据正弦定理化简可得:2222sin 3sin sinCsin sin sinC 3A B A B =⇒=.--------3分 (2)由2sin sin 13cos cos()sin sin cos cos 123cos cos 6B C A B C B C B C A B C π⎧=⎪⎪⇒=-+=-=⇒=⎨⎪=⎪⎩--3分 由余弦定理22221cos ()9322b c a A b c bc bc +-==⇒+-=------------------2分 又22=4R sin sin ()sin sin 8sin a bc B c B c A==所以b c +=分故而三角形的周长为分 19(4+4+6)、(1)请根据对数函数()log (1)a f x x a =>来指出函数()log (1)x g x a a =>的基本性质(结论不要求证明),并画出图像.(2)拉普拉斯称赞对数是一项“使天文学家寿命倍增”的发明.对数可以将大数之间的乘除运算简化为加减运算, 请证明:log ()log log (0,1,,0)a a a x y x y a a x y ⋅=+>≠> (3) 2017年5月23日至27日,围棋世界冠军柯洁与DeepMind 公司开发的程序“AlphaGo ”进行三局人机对弈,以复杂的围棋来测试人工智能.围棋复杂度的上限约为M=3361,而根据有关资料,可观测宇宙中普通物质的原子总数约为N=1080. 甲、乙两个同学都估算了M N的近似值,甲认为是1073,乙认为是1093.现有两种定义:(I): 若实数,x y 满足m y m x ->-,则称y 比x 接近m .(II): 若实数,,x y m 且10,10,10s t u x y m ===,满足s u t u ->-,则称y 比x 接近m .请你任选取...其中一种....定义来判断哪个同学的近似值更接近MN ,并说明理由. (1) 解:1()log log x a g x a x==,基本性质为: 定义域:(0,1)(1,)+∞ ;值域:(-,0)(0,)∞+∞ ;单调减区间(0,1)(1,)+∞和(判断奇偶性、周期性不予给分)-------------2分( 渐近线画出和原点挖去,需要都画好才能给满分)-------------------2分(2)证明: 设log ,log ,log ()N M N M N M a a a N x M y x a y a x y a a a N M x y +==⇒==⇒⋅==⇒+=⋅即log ()log log a a a x y x y ⋅=+----------------------------------------------4分证明完毕 (3)采用定义(I ):3617393803=lg 361lg38092.24101010MM MN N N ⇒=⋅-≈⇒<<-----------------------2分而361173361173361173153lg(23)lg2361lg3172.54173lg1023102310+10⋅=+⋅≈<=⇒⋅<⇒⋅<-------2分36136136193737393808080333210+101010101010⇒⋅<⇒-<- --------------------------1分所以甲同学的近似值更接近M N----------------------------1分采用定义(II ):361803=lg 361lg38092.2410MMN N ⇒=⋅-≈-------------------------------------2分甲的估值107373lg1073⇒=,乙的估值109393lg1093⇒=----------------------------2分因为7393lg10-lglg10-lgM M NN>,------------------------------------------1分所以乙同学的近似值更接近MN -------------------------------------------------1分20(4+6+6)、已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n N ∈),将集合**{|,}{|,}n n x x a n N x x b n N =∈=∈ 中的元素从小到大依次排列,构成数列123,,,,,n c c c c .将集合**{|,}{|,}n n x x a n N x x b n N =∈=∈ 中的元素从小到大依次排列,构成数列123,,,,,n d d d d .(1)求数列{}n d 的通项公式()h n ; (2)求数列{c }n 的通项公式()f n ;(3)设数列{c }n 的前n 项和为n S ,求数列{}n S 的通项公式()g n .解:(1)设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即213n n a b --=-------------------2分假设26627n k a n b k =+==+,等式左侧为偶数,右侧为奇数,矛盾, 2{}n n a b ∉1分所以,21()=63n h n a n -=+ -----------------------------------------------1分 (2)21323123n n n n n a b b a b ---=<<<∴4321423141243,,,n n n n n n n nc a c b c a c b -----====--------------------------------2分∴ 数列{}n c 的通项公式*63(43)65(42)(),66(41)67(4)k n k k n k f n k N k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩.-------------------4分等价形式:*36(21)()65(42),67(4)k n k f n k n k k N k n k +=-⎧⎪=+=-∈⎨⎪+=⎩,*315(21)2316()(42),2314(4)2n n k n f n n k k N n n k +⎧=-⎪⎪+⎪==-∈⎨⎪+⎪=⎪⎩(3)令4-34-24-14+++n n n n n e c c c c =,由(2)得知:{}n e 是等差数列---------------1分 ∴①当*4()n k k N =∈时,22412333=12334n kk n nS S e e e k k +=++⋅⋅⋅+=+=②当*4-1()n k k N =∈时,2113332=4n n n n n S S c ++++-=③当*4-2()n k k N =∈时,22213332=4n n n n n n S S c c +++++--=④当*4-3()n k k N =∈时,23321333=4n n n n n n nS S c c c +++++---=----------4分∴2*2*33344-3()4()=33324-14-2()4n nn k k k N g n n n n k k k N ⎧+=∈⎪⎪⎨++⎪=∈⎪⎩,,,,--------------------1分等价形式:22*2212334122774-1()=,1221134-21215184-3k k n k k k n k g n k N k k n k k k n k ⎧+=⎪+-=⎪∈⎨+-=⎪⎪+-=⎩,,,,21(4+6+8)、如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”. (1) 证明:1C 的左焦点是“C 1—C 2型点”;(2)设直线y kx =与2C 有公共点,求证:||1k >,进而证明原点不是“C 1—C 2型点”;(3)求证:(){},1x y x y +<内的点都不是“C 1—C 2型点”. 解:(1)C 1的左焦点为(F ,-----------------1分过F的直线x =C 1交于(,与C 2交于(1))±,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x =-------------------------3分(2) 直线y kx =与C 2有交点,则(||1)||1||||1y kx k x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >;-------------------------3分直线y kx =与C 1有交点,则2222(12)222y kxk x x y =⎧⇒-=⎨-=⎩, 若方程组有解,则必须212k <------------------------3分故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”. (3)以1x y +=为边界的正方形区域记为Ω.1)若点P 在Ω的边界上,则该边所在直线与1C 相切,与2C 有公共部分,即Ω边界上的点都是“12C C -型点”;-------------------------1分2)设()00,P x y 是区域Ω内的点,即001x y +<,假设()00,P x y 是“12C C -型点”,则存在过点P 的直线l :()00y y k x x -=-与1C 、2C 都有公共点.i )若直线l 与2C 有公共点,直线l 的方程化为00y kx y kx =+-,假设1k ≤,则0000001kx y kx kx y kx x y x x +-≤++≤++<+,可知直线l 在2:1C y x =+之间,与2C 无公共点,这与“直线l 与2C 有公共点”矛盾,所以得到:与2C 有公共点的直线l 的斜率k 满足1k >.-------------------------2分ii )假设l 与1C 也有公共点,则方程组002212y kx y kx x y =+-⎧⎪⎨-=⎪⎩有实数解. 从方程组得()()()2220000124210k x k y kx x y kx ⎡⎤-----+=⎣⎦,()222222200000082128()1y kx y k x k y kx k k ⎡⎤∆=-++-=-+--⎣⎦.由1k >,001x y +< 因为()22000000000(1)(1)y kx y k x y k y k y k k y kx k -≤+⋅<+⋅-=+-<⇒-<所以,222008()+10y kx k k ⎡⎤∆=---<⎣⎦,即直线l 与1C 没有公共点,与“直线l 与1C 有公共点”矛盾,于是可知P 不是“12C C -型点”.------------------------5分证明完毕另解:()222200008212y kx y k x k ∆=-++-令()()222000012f k x k kx y y =--+,因为001x y +<,所以01x <,即2010x -<.于是可知()f k 的图像是开口向下的抛物线,且对称轴方程为00201x y k x =-,因为()()()0000200011111x x x y x x x ⋅-<<--⋅+,所以()f k 在区间(),1-∞-上为增函数,在()1,+∞上为减函数. 因为()()2200001110f x y x y =--≤+-<,()()2200001110f x y x y -=+-≤+-<,所以对任意1k >,都有()0f k <,()2810f k k ⎡⎤∆=+-<⎣⎦,即直线l 与1C 没有公共点,与“直线l 与1C 有公共点”矛盾,于是可知P 不是“12C C -型点”.---------------------5分证明完毕。
2018-2019学年上海市上海交通大学附属中学高一上学期期末数学试题(解析版)

2018-2019学年上海市上海交通大学附属中学高一上学期期末数学试题一、单选题1.设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“A B =∅”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件【答案】C【解析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果. 【详解】由题意A C ⊆,则U UC A ⊆痧,当U B C ⊆ð,可得“A B =∅”;若“AB =∅”能推出存在集合C 使得A C ⊆,U B C ⊆ð,U ∴为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“A B =∅”的充分必要的条件. 故选:C . 【点睛】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题. 2.已知实数x ,y 满足()01xya a a <<<,[]x 表示不超过x 的最大整数,则下面关系式恒成立的是( )A.221111x y >++ B.()()22ln 1ln 1x y +>+ C.11x y x y->- D.[][]x y ≥【答案】D【解析】根据条件求出x y >,结合不等式的关系,利用特殊值法进行判断即可. 【详解】当01a <<时,由x y a a <得x y >,A .当1x =,1y =-,满足x y >但221111x y =++,故A 错误,B .当1x =,1y =-,满足x y >,22(1)(1)ln x ln y +=+,但22(1)(1)ln x ln y +>+不成立,故B 错误,C .当1x =,1y =-,满足x y >,但112x y -=+=,11112x y -=+=,则11x y x y->-不成立,故C 错误,D .x y >,[][]x y ∴…成立,故D 正确 故选:D . 【点睛】本题主要考查不等式的关系和不等式的性质的应用,利用特值法是解决本题的关键. 3.函数422y x x =-++的图像大致为A .B .C .D .【答案】D【解析】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<,得x <或02x <<,此时函数单调递增,排除C ,故选D. 点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.4.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.2p q+ B.(1)(1)12p q ++-1【答案】D【解析】【详解】试题分析:设这两年年平均增长率为x ,因此2(1)(1)(1)p q x ++=+解得1x =. 【考点】函数模型的应用.二、填空题5.已知集合{}1,2,A m =,{2,3}B =,若{}123A B ⋃=,,,则实数m =___________. 【答案】3【解析】直接利用并集的定义得到m 的值. 【详解】因为集合{}1,2,A m =,{2,3}B =,{}123A B ⋃=,,, 所以3m =. 故答案为:3 【点睛】本题主要考查并集定义,意在考查学生对该知识的理解掌握水平. 6.“21x>成立”是“2x <成立”的 条件.(选择确切的一个填空:充分非必要、必要非充分、充要、非充分非必要) 【答案】充分非必要 【解析】先解不等式21x>,再利用充分条件必要条件的定义判断得解. 【详解】因为21x>,所以02x <<, 因为{|02}x x <<⫋{|2}x x < 所以“21x>成立”是“2x <成立”的充分非必要条件. 故答案为:充分非必要 【点睛】本题主要考查解分式不等式和充要条件的判定,意在考查学生对这些知识的理解掌握水平.7.函数()f x =___________.【答案】{}(,1]1(2,)-∞-⋃⋃+∞【解析】分类讨论解不等式2(1)(1)02x x x -+-…,即得函数的定义域. 【详解】要使函数有意义,则2(1)(1)02x x x -+-…, 当1x =时,不等式成立, 当1x ≠时,不等式等价为102x x +-…, 即2x >或1x -…,综上2x >或1x -…或1x =,所以函数的定义域为{}(,1]1(2,)-∞-⋃⋃+∞. 故答案为:{}(,1]1(2,)-∞-⋃⋃+∞ 【点睛】本题主要考查不等式的解法和函数定义域的求法,意在考查学生对这些知识的理解掌握水平.8.若函数21()x f x x a+=+的反函数是其本身,则实数a =___________. 【答案】-2【解析】求出反函数与原函数比较可知2a =-. 【详解】 由21+=+x y x a得12-=-ay x y ,所以()f x 的反函数为11()2ax f x x --=-,依题意可得2a =-. 故答案为:2-. 【点睛】本题考查了反函数的求法,意在考查学生对这些知识的理解掌握水平,属基础题. 9.函数3()21x f x -=-,则不等式()1f x <的解集为___________.【答案】(24),【解析】问题转化为|3|1x -<,求出不等式的解集即可. 【详解】不等式()1f x <即|32|2x -<, 故|3|1x -<, 解得:24x <<, 故答案为:(2,4). 【点睛】本题考查了解绝对值不等式和指数不等式的解法,考查转化思想,是一道基础题. 10.函数()19310xx f x +=--的零点为___________.【答案】315x og =【解析】由题得(32)(35)0x x +-=,再解指数方程即得解. 【详解】由1()93100x x f x +=--=得2(3)33100x x -⋅-=, 即(32)(35)0x x +-=,30x >,350x ∴-=,即35x =,即3log 5x =, 即函数零点为3log 5x =, 故答案为:3log 5x = 【点睛】本题主要考查函数零点的求解,结合一元二次方程以及指数和对数的转化公式是解决本题的关键.11.已知x ,R y *∈,且满足–20xy x y -=,则x y +的最小值为___________.【答案】3+【解析】由题知2xy x y =+,同除xy ,得211x y+=,再借助基本不等式得最小值. 【详解】由题知x ,y ,满足20xy x y --=,则2xy x y =+, 同除xy ,得211x y+=, 212()()33x yx y x yx y y x +=++=+++…2x =1y =时取到等号.故答案为:3+. 【点睛】本题考查了基本不等式求最小值,意在考查学生对该知识的理解掌握水平. 12.若定义在R 上的函数21()xf x a +=(其中0a >,1a ≠)有最大值,则函数()2()log 2a g x x x =-的单调递增区间为___________.【答案】()0-∞,【解析】先根据题意判断01a <<,可得即求函数2220)t x x x x =-><(或减区间,再利用二次函数的性质得出结论. 【详解】21x +有最小值为1,定义在R 上的函数21()xf x a+=(其中0a >,1)a ≠有最大值,01a ∴<<.则函数2()log (2)a g x x x =-的单调递增区间,即函数2220)t x x x x =-><(或的减区间, 因为函数2220)t x x x x =-><(或的减区间为(,0)-∞, 故答案为:(,0)-∞. 【点睛】本题主要考查复合函数的单调性,指数函数、二次函数的性质,意在考查学生对这些知识的理解掌握水平.13.集合{}22|(21)0A x x a x a a =-+++<,集合{}2log |1000xB x x+=≤,且满足R A B ⋂=∅ð,则实数a 的取值范围是___.【答案】1,91000⎡⎤⎢⎥⎣⎦【解析】由二次不等式的解法得1)A a a =+(,,由对数不等式的解法得1[1000B =,10],即(R C B =-∞,1)(101000⋃,)+∞,由集合交集的运算得11000110a a ⎧⎪⎨⎪+⎩……,即191000a 剟,得解. 【详解】解不等式22(21)0x a x a a -+++<得1a x a <<+即1)A a a =+(,, 解不等式21000lgx x +…得:(2)30lgx lgx +-…,即1101000x 剟,即1[1000B =,10], 即(RC B =-∞,1)(101000⋃,)+∞, 又R AB =∅ð,得11000110a a ⎧⎪⎨⎪+⎩……,即191000a 剟, 即实数a 的取值范围是1[,9]1000, 故答案为:1[,9]1000 【点睛】本题考查了二次不等式的解法,对数不等式的解法及集合交集的运算,属中档题. 14.已知函数()y f x =的图像与函数(0,1)x y a a a =>≠的图像关于直线y x =对称,()()()()21g x f x f x f ⎡⎤=+-⎣⎦,若()y g x =在1,22⎡⎤⎢⎥⎣⎦上是增函数,则实数a 的取值范围是______. 【答案】10,2⎛⎤ ⎥⎝⎦【解析】先求出函数()f x 的解析式,然后代入将函数()g x 表示出来,再对底数a 进行讨论即可得 到答案.【详解】函数()y f x =的图象与函数(0x y a a =>且1)a ≠的图象关于直线y x =对称, ()log (0)a f x x x ∴=>.()()[()g x f x f x f =+(2)1]log (log log 21)a a a x x -=+-2221(21)(log )24a a a log log x --=+-, ①当1a >时,log a y x =在区间1[2,2]上是增函数,1log [log 2a a x ∴∈,log 2]a .由于()y g x =在区间1[2,2]上是增函数,∴12122a a log log -…,化为log 21a -…, 解得12a …,舍去. ②当01a <<时,log ay x =在区间1[2,2]上是减函数,log [log 2a a x ∴∈,1log ]2a .由于()y g x =在区间1[2,2]上是增函数,∴12122a a log log -…,解得102a <…. 综上可得:102a <…. 故答案为:(0,1]2.【点睛】本题考查反函数的性质、二次函数、对数函数的单调性、复合函数的单调性,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于中档题. 15.下列四个命题中正确的是______.①已知定义在R 上的偶函数(1)y f x =+,则()()11f x f x +=-;②若函数()y f x =,x D ∈,值域为()A A D ≠,且存在反函数,则函数()y f x =,x D ∈与函数1()x f y -=,y A Î是两个不同的函数﹔③已知函数*1(),3f x x x =∈-N ,既无最大值,也无最小值; ④函数||2||()(21)5(21)6x x f x =---+的所有零点构成的集合共有4个子集. 【答案】①②【解析】由偶函数的定义可判断①;由互为反函数的定义可判断②;由()f x 的单调性可判断③;由()0f x =的解的个数和集合的子集个数,可判断④. 【详解】①已知定义在R 上是偶函数(1)y f x =+,设()(1)F x f x =+,可得()()F x F x -=,则(1)(1)f x f x +=-,故①正确;②若函数()y f x =,x D ∈,值域为()A A D ≠,且存在反函数,则函数()y f x =,x D ∈与函数1()x f y -=,y A Î,即1()y f x -=,x A ∈,由于A D ≠是两个不同的函数,故②正确; ③已知函数1()3f x x =-,*x ∈N ,由()f x 在13x <…递减,3x >递减,可得2x =时,f (2)取得最小值1-,故③错误;④函数||2||()(21)5(21)6x x f x =---+,由()0f x =,可得||212x -=或3,解得2log 3x =±或2x =±,()f x 的所有零点构成的集合中共有四个元素,共有16个子集,故④错误.故答案为:①②. 【点睛】本题考查函数的奇偶性和互为反函数的定义,以及函数的单调性和函数零点的求法,考查运算能力和推理能力,属于基础题. 16.已知函数()()20xf x x ex =+<与函数21()ln()2g x x x a =+++,图像上存在关于y 轴对称的点,则a 的取值范围是___________.【答案】(-∞【解析】根据条件转化为当0x >时,()()f x g x -=有解,利用函数与方程之间的关系,转化为两个函数的交点问题,利用数形结合进行求解即可. 【详解】由题意,存在0x >,使()()f x g x -=,即221()2x x ln x a x e -+++=+, 即11()()2xln x a e++=, 即11()()2xln x a e+=-+,设11()()2x h x e =-+,11(0)122h =-+=,当()y ln x a =+经过点1(0,)2时, 则12lna =,得12a e =作出()y ln x a =+和()h x 的图象, 要使两个图象恒有交点, 则a即实数a 的取值范围是(a ∈-∞.故答案为:(-∞.【点睛】本题主要考查函数与方程的应用,利用数形结合转化为两个函数的交点问题是解决本题的关键.三、解答题17.解关于x 的不等式:2(2)20kx k x -++<. 【答案】见解析【解析】将原不等式化为(2)(1)0kx x --<分0k =,0k >,k 0<三种情况进行讨论.0k =、k 0<易解不等式;当0k >时,按照对应方程的两根大小分三种情况讨论即可. 【详解】将原不等式化为(2)(1)0kx x --<, (1)当0k =时,有1x >;(2)当0k >时,有2()(1)0k x x k --<,2()(1)0x x k ∴--<,221k k k--=, 当2k >时21k<,21x k ∴<<;当2k =时,21k=,x φ∴∈;当02k <<时,有21k>, 21x k ∴<<;(3)当k 0<时,2()(1)0x x k -->,有21k<,所以21x x k <>或.综上, 当0k =时,原不等式的解集为(1)+∞,; 当k 0<时,原不等式的解集为2,(1,)k ⎛⎫-∞⋃+∞ ⎪⎝⎭当2k =时,原不等式的解集为∅; 当02k <<时,原不等式的解集为21,k ⎛⎫⎪⎝⎭; 当2k >时,原不等式的解集为2,1k ⎛⎫⎪⎝⎭.【点睛】该题考查一元二次不等式的解法,考查分类讨论思想,含参数的一元二次不等式的求解,要明确分类讨论的标准:是按照不等式的类型、两根大小还是△的符号,要不重不漏. 18.动物园需要用篱笆围成两个面积均为502m 的长方形熊猫居室,如图所示,以墙为一边(墙不需要篱笆),并共用垂直于墙的一条边,为了保证活动空间,垂直于墙的边长不小于2m ,每个长方形平行于墙的边长也不小于2m .(1)设所用篱笆的总长度为l ,垂直于墙的边长为x .试用解析式将l 表示成x 的函数,并确定这个函数的定义域;(2)怎样围才能使得所用篱笆的总长度最小?篱笆的总长度最小是多少?【答案】(1)1003l x x =+,[225],.(2时,所用篱笆的总长度最小,最小为【解析】(1)由题意得每个长方形平行于墙的边长50x ,表示出l ;由2x …且502x…,可得函数的定义域;(2)对其运用基本不等式求出函数的最值即场地的篱笆的总长度最小,从而求解. 【详解】(1)由题得每个长方形平行于墙的边长50x,则1003l x x=+, 2x …且502x…, 225x ∴剟,所以函数的定义域为[2,25];(2)100320l x x x x =+=…1003x x =,即x =时,所用篱笆的总长度最小,篱笆的总长度最小是.【点睛】此题是一道实际应用题,考查函数的最值问题,解决此类问题要运用基本不等式,这也是高考常考的方法.19.已知函数()y f x =是函数21()101x y x =-∈+R 的反函数,函数3()1ax g x x +=-的图像关于直线y x =对称,记()()()F x f x g x =+. (1)求函数()f x 的解析式和定义域﹔(2)在()F x 的图像上是否存在这样两个不同点A ,B ,使直线AB 恰好与y 轴垂直?若存在,求A ,B 的坐标;若不存在,说明理由. 【答案】(1)1()1xf x lg x-=+,()f x 的定义域为(1,1)-;(2)不存在A ,B 两点,使AB 与y 轴垂直.【解析】(1)先求出函数21()101x y x =-∈+R 的反函数,即求出()f x 的解析式,然后求出()f x 的定义域;(2)先求出函数()F x 的解析式,再设()F x 的图象上不同的两点1(A x ,1)y ,2(B x ,2)y ,且1211x x -<<<,推出12y y >,得()F x 为(1,1)-上的递减函数,故不存在A ,B 两点,使AB 与y 轴垂直. 【详解】 (1)由21101x y =-+得1101xy y -=+,11y x lg y -=+,1()1x f x lg x-∴=+,因为函数21101x y =-+的值域为(1,1)-,所以函数()f x 的定义域为(1,1)-. (2)3()1ax g x x +=-,13()x g x x a -+∴=-,依题意得1()()g x g x -=,1a \=,3()1x g x x +∴=-, 1(13)1x F x gx l x x -∴=+++-,定义域为(1,1)-,设()F x 的图象上不同的两点1(A x ,1)y ,2(B x ,2)y ,且1211x x -<<<, 则122121122112113()()11131x x x y y F x F x lglg x x x x x --+-=-=+--++--+ 12212112113()3(1111x x x lg x x x x x -++=+---++-)21211212114(()11(1)()1)x x x x lg x x x x +--=++---,1211x x -<<<,则21111x x +>+,12111x x ->-,210x x ->,12()1(1)0x x ->-, 211211()011x x lg x x +-∴>+-,211240(1)(1)x x x x ->--)(,12y y ∴>,故()F x 在(1,1)-上单调递减,故不存在A ,B 两点,使AB 与y 轴垂直. 【点睛】本题主要考查了反函数,考查了函数单调性的判定和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数2(2)(3)2f x ax a x a -=--+-(a 为负整数)()y f x =的图像经过点(2,0)()m m -∈R .(1)求()f x 的解析式;(2)设函数()2g x bx =+,若()()g x f x ≥在[]1,3x ∈上解集非空,求实数b 的取值范围; (3)证明:方程1()0f x x-=有且仅有一个解. 【答案】(1)2()1f x x =-+.(2)10,3⎡⎫-+∞⎪⎢⎣⎭(3)见解析﹔ 【解析】(1)在2(2)(3)2f x ax a x a -=--+-中令x m =得2(2)(3)20f m am a m a -=--+-=,故2321m a m m -=--+,因为a 为负整数,所以2321m m m --+为正整数,当23221m m m --+…时,利用判别式可判断此不等式无解,所以23211m m m -=-+,解得1a =-,从而可得()f x 的解析式;(2)()()g x f x …在[1x ∈,3]上解集非空转化为1()b x x-+…在[1,3]上有解,再构造函数转化为最小值可得;(3)即证1y x=与21y x =-+的图象有且只有一个交点,证明0x >时,1y x=与21y x =-+的图象无交点,在(,0)-∞上有且只有一个零点,即得证. 【详解】(1)在2(2)(3)2f x ax a x a -=--+-中令x m =得2(2)(3)20f m am a m a -=--+-=,2321m a m m -∴=--+,因为a 为负整数,所以2321m m m --+为正整数,当23221m m m --+…时,22540m m -+…,因为△2(5)42470=--⨯⨯=-<,所以22540m m -+…无解, 所以23211m m m -=-+,解得1m =或3m =,所以1a =-,22(2)43(2)1f x x x x ∴-=-+-=--+, 2()1f x x ∴=-+(2)()()g x f x …在[1x ∈,3]上解集非空1()b x x ⇔-+…在[1,3]上有解, 令1()()h x x x =-+,则()min b h x …, 因为函数()h x 在[1x ∈,3]上是减函数, 所以3x =时,()min h x h =(3)103=-, 故103b -…. (3)证明:即证1y x=与21y x =-+的图象有且只有一个交点, 当0x >时,2221111(1)111110222x x x x x x x x x x --+=+-=++--==>, 即0x >时,1y x=与21y x =-+的图象无交点, 当0x <时,令211y x x=+-, 因为函数1y x=在(,0)-∞上为递减函数,函数21y x =+在(,0)-∞上为递减函数,所以211y x x=+-在(,0)-∞上为递减函数(减函数+减函数=减函数), 又12x =-时,1304y =-+<,1x =时,10y =>,根据零点存在性定理知:2110x x +-=在(,0)-∞上有且只有一个零点, 综上得1()0f x x-=有且只有一个解. 【点睛】本题考查了二次函数的图像和性质,考查函数的零点问题,考查基本不等式,考查函数单调性的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.. 21.若实数x ﹑y 、m ()x m y m ≠≠,满足||x m y m ->-,则称y 比x 接近m . (1)若21x -比1接近0,求x 的取值范围; (2)对正实数a ,b ,如果1a a+比1b b +接近2,求证:当0x >时,1xx a a +比1x xb b +接近2;(3)已知函数()f x等于x a -中接近0的那个值.写出函数()f x 的解析式,并指出它的单调区间(结论不要求证明). 【答案】(1) (1)(1,0)(0,1)(1,2)x ∈--;(2)证明见解析;(3)见解析 【解析】(1)由新定义可得2|1|1x -<且210x -≠,由绝对值不等式的解法,即可得到解集;(2)运用新定义作差比较,结合基本不等式,即可比较;(3)依据新定义分1a -…和1a >-两种情况写出函数()f x 的解析式,然后指明单调性. 【详解】(1)由题意得,221110x x ⎧-<⎪⎨-≠⎪⎩∴0,1x x x <<≠≠±, 所以(1)(1,0)(0,1)(1,2)x ∈--.(2)1a a+比1b b +接近2,11|2||2|a b a b∴+-<+-, 0a >,0b >,12a a ∴+…,12b b +…,1122a b a b ∴+-<+-,即11a b a b+<+,11|2||2|x xx x a b a b∴+-<+-, 当0x >时,1xx a a+比1x x b b +接近2; (3)当1a -…时,()||f x x a =-,此时()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增;1a >-时,,2222x a x a x a a x a ⎧->++<+-⎪⎨+-++⎪⎩, 当10a -<<时,()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增;当0a …时,()f x在(,2a -∞+-上单调递减,在(2a +-上单调递增. 【点睛】本题是新定义题目,新定义问题,往往是结合相关的知识,利用已有的方法求出所求结果,注意转化思想的应用考查了推理能力与计算能力,属于中档题.。
交大附中2017-2018高一上期末数学卷(含答案)

往年模考题目,一模还是二模忘了 很多学校考过
20.(1)证明略;(2)是“逼近数列”;;(3) a = 2 .
可参考 2018 届(今年)青浦区高三一模最后一题
年的隔热层, 厘米厚的隔热层建造成本为 6 万元。该建筑物 年的能源消耗费用 C (单位:万元)与隔热层厚度
x (单位:cm )满足关系: C(x) =
k 3x +
5
(0
≤
x
≤ 10), 若不建隔热层,
年能源消耗费用为 8 万元.设 f (x) 为隔热
层建造费用与 20 年的能源消耗费用之和.
(1)求 k 的值及 f (x) 的表达式.
(1)求证:函数 g(x) = 1 x 不是函数 f (x) = (1 )x , x ∈[0,+∞) 的“逼近函数”;
2
2
(2)判断函数
g(x)
=
2x
+
5 是不是函数
f
(x)
=
2x2
+ 9x +11 x+2
,
x ∈[0,+∞)
的“线性替代函数”;
(3)若 g(x) = ax 是函数 f (x) = x + x2 +1 , x ∈[0,+∞) 的“线性替代函数”,求 a 的值.
(x) =
2x
满足:对任意
x1, x2
∈ R, x1
≠
x2
,有
f
x1
+ x2 2
<
1[f
2
(x1 ) +
f
(x2 )];
( ) ②函数 f (x) = log2 x +
x2
精品解析:【全国百强校】上海市交通大学附属中学2017-2018学年高一上学期期末数学试题(原卷版)

上海市交大附中2017-2018学年高一上学期期末数学试卷一、选择题(本大题共4小题,共20.0分)1.“”是“ ”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件2.设函数,则的值为()A. B.C. 中较小的数D. 中较大的数3.如图中,哪个最有可能是函数的图象( )A. B.C. D.4.若定义在上的函数满足:对任意有则下列说法一定正确的是A. 为奇函数B. 为偶函数C. 为奇函数D. 为偶函数二、填空题(本大题共12小题,共54.0分)5.若关于x的不等式的解集为,则实数a=______.6.设集合,若,则实数的取值范围是_______.7.一条长度等于半径的弦所对的圆心角等于______弧度.8.若函数的反函数的图象经过点,则实数______.9.若,则满足的的取值范围是______.10.已知是上的增函数,那么的取值范围是______.11.定义在上的偶函数,当时,,则在R上的零点个数为______.12.设,,则的值为______.13.设为的反函数,则的最大值为______.14.已知函数,且为的最小值,则实数a的取值范围是______.15.设,若函数在区间上有两个不同的零点,则的取值范围为______.16.已知下列四个命题:①函数满足:对任意,有;②函数均为奇函数;③若函数的图象关于点(1,0)成中心对称图形,且满足,那么;④设是关于的方程的两根,则其中正确命题的序号是______.三、解答题(本大题共5小题,共76.0分)17.解关于的不等式:18.设,函数;(1)求的值,使得为奇函数;(2)若对任意的成立,求的取值范围19.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。
某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。
该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海交通大学附属中学2019-2019学年度第一学期
高一数学月考二试卷
一、填空题
1. 已知集合{}1,1,2,4A =-,{}1,0,2B =-,则A B ⋂=____________
2.
函数y =
____________
3. 已知(
)f x =(
)g x =,则()()f x g x ⋅=____________ 4. 函数11,,22y x x x ⎛⎤
=+
∈ ⎥⎝⎦
的值域为____________ 5. 若抛物线2
3y x ax =--恒在直线4y x =-上方,则实数a 的取值范围为____________ 6. 不等式21x x a +-<的解集为∅,则实数a 的取值范围是____________ 7. 若()213
3
f x x x
-=-,则满足()0f x >的x 的取值范围____________
8. 已知函数()3f x x x a =-+-,()3
1g x x =+,若()y f g x =⎡⎤⎣⎦的图象关于y 轴对称,则a =
____________ 9. 若函数2
x b
y x -=
+在()(),62a a b +<-上的值域为()2,+∞,则a b +=____________ 10. 密码学是一种密写技术,即把信息写成代码的技术。
将信息转换成保密语言的过程叫编码;有保密形式语言道出原始信息的过程称作译码。
凯撒(Julius Caesar 公元前100~前44年)曾使用过一种密码系统,现称为凯撒暗码。
按照这种系统的规划,原始信息的字母都用另一字母代替,后者在标准字母表中的位置比前者靠后三位(即暗码~原码后移3个位置)。
如:标准字母表:ABCDEFGHIJKLMNOPQRSTUVWXYZ 凯撒暗码表:DEFGHIJKLMNOPQRSTUVWXYZABC 这样就将信息“Julius Caesar”编码为“Mxolxv Fdhvdu” 当你知道所得到的信息使用凯撒暗码写成的密码时,译码工作很容易,只需要把上述过程倒过来进行。
当然现在的密写技术要复杂许多,这里我构造一种编码技术,请同学根据编码过程自己破译一下:信息字母与编码后暗语字母的对应法则是:暗码=原码后移2626x x ⎡⎤
-⨯⎢
⎥⎣⎦
后得到的字母(x 为原码字母在语句中的位置即第几个字母,若移出字母表则在后面续一张字母表,其中□为取整符号,空格不计数。
)
那么若一句话的暗码为“Jnrzj PKNl”其原码是____________ 11. 已知x 为无理数,其代数式
21
33
x x x +-+的值为整数,则x =____________
12. 已知()()()()22222
1,0683,0
k x k a x f x x a a x a x ⎧+->⎪
=⎨+-++-<⎪⎩,其中a R ∈,若对任意的非零实数1x 总存在唯一
的非零实数()212x x x ≠,使得()()12f x f x =成立,则实数k 的取值范围是____________
二、选择题
13. 小明在期中考后,对混合验血问题非常感兴趣,于是他来到数学组办公室,寻找出卷的鲍老师。
此时
办公室正好有四位老师,他们发现小明不认识他们中的任何一位,于是他们每人说了一句话: 甲说:“我这学期还没出过考试卷呢!” 乙说:“丁出的这次考卷!” 丙说:“是乙出的试卷!” 丁说:“出卷的不是我!”
他们告诉小明,只有一位老师说了假话,而且鲍老师就在其中,那么请问到底是谁出的期 中试卷( ) A. 甲 B. 乙 C. 丙 D. 丁 14. 已知函数()f x 的图像恒过点()1,1,则函数()4f x -的图像恒过点( ) A. ()5,1
B. ()1,5
C. ()3,1-
D. ()1,3-
15. 已知函数()224,04,0
x x x f x x x x ⎧+≥=⎨-+<⎩,且0,0a b b c +>+>,则()()()f a f b f c ++的值( )
A. 恒为正
B. 恒为负
C. 恒为0
D. 无法确定
16. 已知()()2
0f x ax bx c a =++≠,且方程()f x x =无实根。
现有四个命题①若0a >,则不等式
()f f x x >⎡⎤⎣⎦对一切x R ∈成立;②若0a <,则必存在实数0x 使不等式()00f f x x >⎡⎤⎣⎦成立;③方
程()f f x x =⎡⎤⎣⎦一定没有实数根;④若0a b c ++=,则不等式()f f x x <⎡⎤⎣⎦对一切x R ∈成立。
其中真命题的个数是( ) A. 1个 B. 2个
C. 3个
D. 4个
三、解答题
17. 已知集合2|
01x A x x -⎧
⎫
=>⎨⎬+⎩⎭
,()(){}2|2110B x x a x a a =-+++<. (1)写出集合A ,集合B ;
(2)若A B A ⋃=,求实数a 的取值范围;
(3)若A B ⋂=∅,求实数a 的取值范围. 18. 已知函数()2(0,a
f x x x x
=+
≠常数)a R ∈. (1)当2a =时,不等式()()121f x f x x -->-的解集; (2)根据a 的不同取值,判断函数()f x 的奇偶性,并说明理由; (3)若函数()f x 在[]
1,2上的单调递减,求实数a 的取值范围.
19. 这是今年双十一的两道题目,第一题是双十一之间网上流传甚广的小明买卫衣问题;第二题是有关某
老师的双十一战果。
(1)小明想在双十一买价值399的卫衣,已知付定金20元有订金三倍膨胀活动,但仅限当天0至2点。
2点以后订金可抵用50元,但又付尾款前500名免定金活动。
同时该店铺有399减20和299减10的优惠券(其使用门槛是订金+尾款-订金膨胀优惠金额大于等于优惠券),还有一种379减20和279减10的折扣券(其使用门槛是尾款-膨胀优惠金额大于等于折扣券面额),优惠和折扣只能选一种。
求小明最低多少钱能买到这件卫衣?如果你是小明,你会选择怎样购买?
(2)某老师在双十一前花1元,抢到了某商家满200-100的一张优惠券,该商家没有订金膨胀活动,但该
商家有多买多优惠活动:满3件9折;5件8折;10件及以上7折,同时可用淘宝200-20的购物津贴(可跨店满减,店铺优惠后参加该活动,但运费不在其中)。
现已知该老师本单花了1+119.78元(1是买券钱,119.78是双十一付款,其中含运费6元)。
请问:该老师本次购买的商品价值最低多少?最高多少?(按商家标示的淘宝价格计算,精确到元即
可,已知该老师用了200-100券) 20. 已知下表为函数()3
f x ax cx d =++部分自变量取值及其对应函数值,为了便于研究,相关函数值取
数据表中数据,研究该函数的一些性质:
(1)判断()f x 的奇偶性,并证明;
(2)判断()f x 在[]
0.55,0.6上是否存在零点,并说明理由; (3)判断a 的符号,并证明()f x 在(]
,0.35-∞-是单调递减函数.
21. 对定义在区间D 上的函数()f x ,若存在闭区间[],a b D ⊆和常数C ,使得对任意的[]
,x a b ∈都有
()f x C =,且对任意的[],x a b ≠都有()f x C >恒成立,则称函数()f x 为区间D 上的“U 型”函数.
(1)求证:函数()13f x x x =-+-是R 上的“U 型”函数;
(2)设()f x 是(1)中的“U 型”函数,若不等式()12t t f x -+-≤对一切的x R ∈恒成立,求实数t 的取值范围;
(3)若函数()g x mx =[)2,-+∞上的“U 型”函数,求实数m 和n 的值.
参考答案
一、填空题
1. {}1,2-
2. [
)2,+∞ 3. ()2
1x x
x -≤ 4. 52,2⎡⎤
⎢⎥⎣⎦ 5. ()3,1- 6. 1,2⎛
⎤-∞ ⎥⎝
⎦
7. ()(),01,-∞⋃+∞ 8. 1a =- 9. 10- 10. I love JDFZ 11. 2
12. ()[
),08,-∞⋃+∞
二、选择题
13. B
14. A
15. A
16. C
三、解答题
17.(1){}|12A x x =-<<,{}|1B x a x a =<<+ (2)实数a 的取值范围是11a -≤≤ (3)实数a 的取值范围是22a -<< 18.(1)不等式的解为()0,1
(2)当0a =时,此函数为偶函数,证明略;当0a ≠时,此函数是非奇非偶函数,证明略 (3)当16a ≥时函数在[]
1,2上单调递减
19.(1)理论上小明最低339元能买到这件卫衣
(2)该老师本次购买的商品价值最低224元,最高323.46元,答324元或者323元都正确 20.(1)()f x 为奇函数,证明略
(2)()f x 在[]
0.55,0.6上存在零点,理由略 (3)0a <,证明略 21.(1)证明略 (2)
1522
t ≤≥ (3)m 值为1,n 值为1。