2018-2019学年上海市上海交通大学附属中学高一上学期期末数学试题(解析版)

合集下载

2019年上海交通大学附属中学高一数学文期末试题含解析

2019年上海交通大学附属中学高一数学文期末试题含解析

2019年上海交通大学附属中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为、,则塔高为()A. B. C. D.参考答案:A2. 若P(A)+P(B)=1,则事件A与B的关系是()D3. 函数的图象大致为参考答案:A4. (5分)在空间内,可以确定一个平面的条件是()A.三条直线,它们两两相交,但不交于同一点B.三条直线,其中的一条与另外两条直线分别相交C.三个点D.两两相交的三条直线参考答案:A考点:平面的基本性质及推论.专题:空间位置关系与距离.分析:利用确定平面的条件度四个选项分别分析,得到正确答案.解答:对于选项A,三条直线,它们两两相交,但不交于同一点,满足不共线的三点确定一个平面;对于选项B,如果三条直线过同一个点,可以确定一个或者三个平面;对于选项C,如果三个点在一条直线上,可以有无数个平面;对于选项D,如果三条直线两两相交于一点,确定一个或者三个平面;故选A.点评:本题考查了确定平面的条件,关键是正确利用平面的基本性质解答.5. 如图,在△ABC中,,,若,则()A. B. C. D.参考答案:D∴λ=,μ=..故答案为:D。

6. 函数满足,则的值为()A. B. C. D.参考答案:A7. 若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是()A.若,不存在实数使得;B.若,存在且只存在一个实数使得;C.若,有可能存在实数使得;D.若,有可能不存在实数使得;参考答案:C解析:对于A选项:可能存在;对于B选项:必存在但不一定唯一8. 某程序框图如图所示,该程序运行后输出S的结果是()A. B. C. D.参考答案:C考点:程序框图.专题:计算题;概率与统计.分析:根据题意,该程序框图的意图是求S=1+++的值,由此不难得到本题的答案.解答:解:由题意,k、S初始值分别为1,0.当k为小于5的正整数时,用S+的值代替S,k+1代替k,进入下一步运算.由此列出如下表格因此,最后输出的s=1+++=故选:C点评:本题给出程序框图,求最后输出的s值,着重考查了分数的加法和程序框图的理解等知识,属于基础题.9. 从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()A. 0.38B. 0.62C. 0.7D. 0.68参考答案:A略10. 下列四个关系中,正确的是()A. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 函数f(x)=的定义域为。

上海市交大附中2018-2019学年上学期高一数学期末试卷(附解析)

上海市交大附中2018-2019学年上学期高一数学期末试卷(附解析)

2021-2021学年上海市交大附中高一(上)期末数学试卷一、填空题(本大题共12题,1-6题每题4分,7-12题每题5分,总分值54分)1. (4 分)集合A={1 , 2, m}, B={2, 3},假设AUB={1 , 2, 3},那么实数m =。

2. (4分)成立〞是“ xv 2成立〞的条件。

(选择确切的一个填空:充分非必要、必要非充分、充要、非充分非必要)3. (4分)函数6 卜1)")。

的定义域为______________________ 。

Y 1-24. (4分)假设函数F(及)二里士的反函数是其本身,那么实数a=。

5. (4分)函数f (x) = 2x 3|- 1,那么不等式f (x) <1的解集为。

6. (4 分)函数f (x) = 9x-3x+1 - 10 的零点为。

7. (5分)x, y贝+,且满足xy- x- 2y=0,那么x+y的最小值为。

8. (5分)假设定义在R上的函数二不“+1 (其中a>0, a*)有最大值,那么函数式元)二的单调递增区间为 - 43。

9. (5分)集合A = {x|x2- (2a+1) x+a2+a<0},集合B = {x|x2+lgxw 1000},且满足AA?R B=?,那么实数a的取值范围是。

10. (5分)函数y=f (x)的图象与函数y=a x (a>0且a^1)的图象关于直线y=x对称,记g (x) =f (x) [f (x) +f (2) - 1],假设y=g (x)在区间2]上是增函数,2|那么实数a的取值范围是。

11. (5分)以下四个命题中正确的选项是。

①定义在R上是偶函数y=f (1+x),那么f (1+x) =f (1 - x);②假设函数y=f (x), xCD,值域为A (AwD),且存在反函数,那么函数y=f (x), x①与函数x=f 1 (y), yCA是两个不同的函数;③函数f(x)二」「,xCN ,既无最大值,也无最小值;K-3④函数f (x) = (2|x|T) 2-5 (2|x|-1) +6的所有零点构成的集合共有4个子集。

上海市交大附中高一数学学科期末考试试卷(含答案)(2019.06)

上海市交大附中高一数学学科期末考试试卷(含答案)(2019.06)

交大附中高一期末数学试卷2019.06一. 填空题1. 已知a 、b 为常数,若24lim 123n an bn n →∞++=+,则a b += 2. 已知数列4293n a n=-,若对任意正整数n 都有n k a a ≤,则正整数k = 3. 已知4cos()5πα-=,且α为第三象限角,则tan α的值等于 4. 将无限循环小数0.145化为分数,则所得最简分数为5. 已知△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,222a b c bc =+-,4bc =, 则△ABC 的面积为6. 已知数列{}n a 满足:3122123n n a a a a n+++⋅⋅⋅+=(n *∈N ),设{}n a 的前n 项和为n S , 则5S =7. 三角方程sin2cos x x =在[0,]π内的解集合为8. 将正整数按下图方式排列,2019出现在第i 行第j 列,则i j += 12 3 45 6 7 8 910 11 12 13 14 15 16 ⋅⋅⋅⋅⋅⋅9. 已知()sin(2)3f x x π=+,若对任意x ∈R ,均有()()()f a f x f b ≤≤,则||a b -的最小值为10. 已知数列{}n a 满足11(3)(2)0n n n n a a a a ++--⋅-=,若13a =,则4a 的所有可能值的和为11. 如图△ABC 中,90ACB ∠=︒,30CAB ∠=︒,1BC =,M 为 AB 边上的动点,MD AC ⊥,D 为垂足,则MD MC +的最小值为12. 设01a <<,数列{}n a 满足1a a =,1n a n a a +=,将{}n a 的前100项从大到小排列的得到数列{}n b ,若k k a b =,则k 的值为二. 选择题13. 设无穷数列{}n a 的前n 项和为n S ,则“lim 0n n a →∞=”是“lim 0n n S →∞=”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件14. 若数列{}n a 是等比数列,且0n a >,则数列n b n *∈N )也是等比数 列,若数列{}n a 是等差数列,可类比得到关于等差数列的一个性质为( ) A. 12n n a a a b n ⋅⋅⋅⋅⋅=是等差数列 B. 12n n a a a b n++⋅⋅⋅+=是等差数列C. n b =D. n b = 15. 下列四个函数中,与函数()tan f x x =完全相同的是( ) A. 22tan21tan 2xy x =- B. 1cot y x = C. sin 21cos2x y x =+ D. 1cos2sin 2x y x -= 16. 设1cos 10n n a n π=,12n n S a a a =++⋅⋅⋅+,在1220,,,S S S ⋅⋅⋅中,正数的个数是( ) A. 15 B. 16 C. 18 D. 20三. 解答题17. 已知{}n a 为等差数列,且138a a +=,2412a a +=.(1)求数列{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.18. 已知数列{}n a 满足:14n n a a n ++=.(1)若{}n a 为等差数列,求{}n a 的通项公式;(2)若{}n a 单调递增,求1a 的取值范围.19.函数2()6cos )32xf x x ωω=-(0ω>)在一个周期内的图像如图所示,A 为图像的最高点,B 、C 为图像与x 轴的交点,且为△ABC 正三角形.(1)求ω的值及函数()f x 的值域;(2)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.20. 如图是某神奇“黄金数学草”的生长图,第1阶段生长为竖直向上为1米的枝干,第2,且与旧枝成120°,第3阶段又在每个枝头各长出两根新的枝干,,且与旧枝成120°,⋅⋅⋅⋅⋅⋅,依次生长,直到永远.(1)求第3阶段“黄金数学草”的高度;(精确到0.01米)(2)求第13阶段“黄金数学草”的所有枝干的长度之和;(精确到0.01米)(3)求“黄金数学草”最终能长多高?(精确到0.01米)21. 设数列{}n a 的前n 项和为n S ,{}n a 满足11a =,1n n n a a d +-=,n *∈N .(1)若3n n d =,求数列{}n a 的通项公式;(2)若4cos()n d n π=+,求数列{}n S 的通项公式;(3)若{|,}{1,2}n D x x d n *==∈=N ,是否存在数列{}n d 使得1720a =,17195S =?若存在,写出{}n d 前16项的值,若不存在,说明理由.参考答案一. 填空题1. 22. 93.34 4. 8555.6. 1307. 5{}626πππ,,8. 1289.2π 10. 69 11. 32 12. 50二. 选择题13. B 14. B 15. C 16. D三. 解答题17.(1)2n a n =;(2)6k =.18.(1)21n a n =-;(2)1(0,2)a ∈.19.(1)4πω=;(2)()[f x ∈-.20.(1)(3)1f = (2)761[1][1](13)f ⨯-+-= (3)lim ()n f n →∞=. 21.(1)312n -;(2)2232225322122n n n n k S n n n k ⎧-=⎪⎪=⎨⎪-+=-⎪⎩,*k ∈N ; (3)116~d d :2,1,2,1,2,1211,,1⋅⋅⋅个。

上海市上海交通大学附属中学2019-2020学年高一上学期期末数学试题(解析版)

上海市上海交通大学附属中学2019-2020学年高一上学期期末数学试题(解析版)

2.幂函数 f x
1
【答案】
3
【解析】 【分析】
x a 的图像经过点
1 2, ,则 f 3
______.
2
根据幂函数所过的点 ,代入可求得幂函数解析式 ,即可求得 f 3 的值 .
【详解】幂函数 f x
xa 的图像经过点
1 2,
2
1
代入可得
2a
2
解得 a 1
所以幂函数解析式为 f x x 1
则 f 3 31 1 3
一、填空题
2019 学年交大附中高一年级第一学期期末试卷
1.弧度数为 2 的角的终边落在第 ______象限 .
【答案】 二 【解析】 【分析】 将弧度化为角度 ,即可判断出所在象限 .
【详解】根据弧度与角度关系可知 1rad 57.3o
所以 2rad 114.6o
则弧度数为 2 的角的终边落在第二象限 故答案为 :二 【点睛】本题考查了弧度与角度的关系 ,属于基础题 .
1
故答案为 :
3
【点睛】本题考查了幂函数解析式的求法
,函数求值 ,属于基础题 .
sin cos
3. 已知
sin 2cos
2 ,则 tan 的值为 _______.
【答案】 5 【解析】 【分析】
由齐次式化简方法 ,即可得关于 tan 的方程 ,解方程即可求得 tan 的值 . 【详解】根据齐次式化减法方法 ,将式子上下同时除以 cos 可得 tan 1
2 tan 2 变形可得 tan 1 2 tan 2
解得 tan 5
故答案为 : 5
【点睛】本题考查了齐次式的化简求值
4. cos2 3 8
sin 2 3 8

2017-2018学年上海市交通大学附属中学高一上学期期末考数学试卷含详解

2017-2018学年上海市交通大学附属中学高一上学期期末考数学试卷含详解

上海市交大附中2017-2018学年高一上学期期末数学试卷一、选择题(本大题共4小题,共20.0分)1.“2x <”是“24x <”的()A.充分非必要条件B.必要非充分条件C .充要条件D.既非充分也非必要条件2.设函数1,0(){1,0x f x x ->=<,则()()()()2a b a b f a b a b ++--≠的值为()A.aB.bC.,a b 中较小的数D.,a b 中较大的数3.如图中,哪个最有可能是函数2xxy =的图象()A. B.C. D.4.若定义在R 上的函数()f x 满足:对任意1,x 2x R ∈有1212()()()1f x x f x f x +=++则下列说法一定正确的是A.()f x 为奇函数B.()f x 为偶函数C.()1f x +为奇函数D.()1f x +为偶函数二、填空题(本大题共12小题,共54.0分)5.若关于x 的不等式01x ax ->+的解集为()(),14,-∞-+∞ ,则实数=a ________6.设集合{}{}2|,|2A x x a B x x =<=<,若A B A = ,则实数a 的取值范围是_______.7.一条长度等于半径的弦所对的圆心角等于______弧度.8.若函数()2log 1f x x a =++()的反函数的图象经过点41(,),则实数=a ______.9.若()123f x x x -=-,则满足0f x ()>的x 的取值范围是______.10.已知()()74,1,1xa x a x f x a x ⎧--<=⎨≥⎩是-∞+∞(,)上的增函数,那么a 的取值范围是______.11.定义在R 上的偶函数y f x =(),当0x ≥时,2lg 32f x x x =++()(),则()f x 在R 上的零点个数为______.12.设432f x x ax bx cx d ()=++++,11,22,33f f f ===()()(),则()()1044f f ⎡⎤+⎣⎦的值为______.13.设1f x -()为241,[02]x f x x x -=+-∈(),的反函数,则1y f x f x -=+()()的最大值为______.14.已知函数()2()0430x a x f x x a x x ⎧-≤⎪=⎨++⎪⎩,,>,且0f ()为()f x 的最小值,则实数a 的取值范围是______.15.设a b R ∈、,若函数()af x x b x=++在区间12(,)上有两个不同的零点,则1f ()的取值范围为______.16.已知下列四个命题:①函数2x f x =()满足:对任意1212,x x R x x ∈≠,,有()()1212122x xf f x f x +⎛⎫≤+⎡⎤ ⎪⎣⎦⎝⎭;②函数()(()22log 121xf x xg x =+=+-,均为奇函数;③若函数()f x 的图象关于点(1,0)成中心对称图形,且满足4f x f x -=()(),那么22018f f =()();④设12x x ,是关于x 的方程log 01a x k a a =≠(>,)的两根,则121=x x 其中正确命题的序号是______.三、解答题(本大题共5小题,共76.0分)17.解关于x 的不等式:22121(log )log 10x a x a ⎛⎫+++ ⎪⎝⎭<18.设a R ∈,函数()331x x af x +=+;(1)求a 的值,使得()f x 为奇函数;(2)若()33a f x +<对任意的x R ∈成立,求a 的取值范围19.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C (x )=(010),35kx x ≤≤+若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.20.已知函数|211x a f x e -+=()|,12,x a f xe x R -+=∈().(1)若2a =,求12f x f x f x =+()()()在[23]x ∈,上的最小值;(2)若1221f x f x f xf x -=-()()()()对于任意的实数x R ∈恒成立,求a 的取值范围;(3)当46a ≤≤时,求函数()()()()()121222f x f x f x f xg x -+=-在[16]x ∈,上的最小值.21.对于定义在[0+∞,)上的函数()f x ,若函数y f x ax b =-+()()满足:①在区间[0+∞,)上单调递减,②存在常数p,使其值域为0]p (,,则称函数g x ax b =+()是函数()f x 的“逼进函数”.(1)判断函数25g x x =+()是不是函数()22911,[02x x f x x x ++=∈+∞+,)的“逼进函数”;(2)求证:函数()12g x x =不是函数()1,[02xf x x ⎛⎫=∈+∞ ⎪⎝⎭,),的“逼进函数”(3)若g x ax ()=是函数()[0f x x x =+∈+∞,)的“逼进函数”,求a 的值.上海市交大附中2017-2018学年高一上学期期末数学试卷一、选择题(本大题共4小题,共20.0分)1.“2x <”是“24x <”的()A.充分非必要条件B.必要非充分条件C .充要条件D.既非充分也非必要条件【答案】B【分析】先求出x 2<4的充要条件,结合集合的包含关系判断即可.【详解】由x 2<4,解得:﹣2<x <2,故x <2是x 2<4的必要不充分条件,故选B .【点睛】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.2.设函数1,0(){1,0x f x x ->=<,则()()()()2a b a b f a b a b ++--≠的值为()A.aB.bC.,a b 中较小的数D.,a b 中较大的数【答案】C【详解】∵函数()1,(0),1,(0)x f x x ->⎧=⎨<⎩∴当a b >时,()()()()()b 22a b a b f a b a b a b ++-⋅-+--==;当a b <时,()()()()()a 22a b a b f a b a b a b ++-⋅-++-==;∴()()()()2a b a b f a b a b ++-⋅-≠的值为a ,b 中较小的数故选C3.如图中,哪个最有可能是函数2x xy =的图象()A. B.C. D.【答案】A【分析】求出函数的导数,得到函数的单调性,从而判断出函数的大致图象即可.【详解】y ′22221222x x x xx ln xln --==,令y ′>0,解得:x 12ln <,令y ′<0,解得:x 12ln >,故函数在(﹣∞,12ln )递增,在(12ln ,+∞)递减,而x =0时,函数值y =0,x →﹣∞时,y →﹣∞,x →+∞时,y →0,故选A .【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4.若定义在R 上的函数()f x 满足:对任意1,x 2x R ∈有1212()()()1f x x f x f x +=++则下列说法一定正确的是A.()f x 为奇函数 B.()f x 为偶函数C.()1f x +为奇函数D.()1f x +为偶函数【答案】C【详解】x 1=x 2=0,则()()()0001f f f =++,()01f ∴=-,令x 1=x ,x 2=-x ,则()()()01f f x f x =+-+,所以()()110f x f x ++-+=,即()()11f x f x ⎡⎤+=--+⎣⎦,()1f x +为奇函数,故选C.二、填空题(本大题共12小题,共54.0分)5.若关于x 的不等式01x ax ->+的解集为()(),14,-∞-+∞ ,则实数=a ________【答案】4【分析】根据题意得()()10x a x -+=的两根为1-和4,从而可求出结果.【详解】因为关于x 的不等式01x ax ->+的解集为()(),14,-∞-+∞ ,所以不等式()()10x a x -+>的解集为()(),14,-∞-+∞ 即方程()()10x a x -+=的两根为1-和4,所以4a =,故答案为:4.6.设集合{}{}2|,|2A x x a B x x =<=<,若A B A = ,则实数a 的取值范围是_______.【答案】4a ≤【详解】试卷分析:由A B A ⋂=⇔A B ⊂,所以当A φ=时,满足A B ⊂,此时不等式2x a <无解,所以0a ≤,当A φ≠即0a >时,{}|0A x a =<,由A B ⊂可知204a ≤⇒<≤,综上可知实数a 的取值范围是4a ≤.考点:1.集合的运算;2.分类讨论的思想.7.一条长度等于半径的弦所对的圆心角等于______弧度.【答案】3π【分析】直接利用平面性质求出圆心角即可.【详解】由题意可知:△ABC 为等边三角形,所以圆心角等于3π.故答案为3π.【点睛】本题考查圆心角的求法,基本知识的考查.8.若函数()2log 1f x x a =++()的反函数的图象经过点41(,),则实数=a ______.【答案】3【分析】由题意可得函数f (x )=log 2(x +1)+a 过(1,4),代入求得a 的值.【详解】函数f (x )=log 2(x +1)+a 的反函数的图象经过点(4,1),即函数f (x )=log 2(x +1)+a 的图象经过点(1,4),∴4=log 2(1+1)+a ∴4=1+a ,a =3.故答案为3.【点睛】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.9.若()123f x x x -=-,则满足0f x ()>的x 的取值范围是______.【答案】(1,+∞)【分析】根据题意,将f (x )>0变形为73x >1,解可得x 的取值范围,即可得答案.【详解】若()123f x x x -=-,则满足f (x )>0,即1321x x>,变形可得:73x >1,函数g (x )73x =为增函数,且g (1)=1,解可得:x >1,即x 的取值范围为(1,+∞);故答案为(1,+∞).【点睛】本题考查幂函数的图象与性质,属于基础题.10.已知()()74,1,1xa x a x f x a x ⎧--<=⎨≥⎩是-∞+∞(,)上的增函数,那么a 的取值范围是______.【答案】776⎡⎫⎪⎢⎣⎭【分析】根据题意,由分段函数的单调性分析可得()70174a a a a a ⎧-⎪⎨⎪--≤⎩>>,解可得a 的取值范围,即可得答案.【详解】根据题意,f (x )()7411x a x a x a x ⎧--=⎨≥⎩,<,是(﹣∞,+∞)上的增函数,必有()70174a a a a a⎧-⎪⎨⎪--≤⎩>>,解可得76≤a <7,即a 的取值范围为:776⎡⎫⎪⎢⎣⎭故答案为776⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数的图象与性质,注意三点:第一段单调性,第二段单调性,断点处的函数值的比较,属于中档题.11.定义在R 上的偶函数y f x =(),当0x ≥时,2lg 32f x x x =++()(),则()f x 在R 上的零点个数为______.【答案】0【分析】求出x ≥0时函数的零点个数,结合奇偶性即可得到结果.【详解】当x ≥0时,f (x )=lg (x 2+3x +2),令lg (x 2+3x +2)=0,即x 2+3x +1=0,解得x32-±(舍去).因为函数是定义在R 上的偶函数y =f (x ),所以函数的零点个数为:0个.故答案为0.【点睛】本题考查函数的零点的个数的求法,函数的奇偶性的应用,考查计算能力.12.设432f x x ax bx cx d ()=++++,11,22,33f f f ===()()(),则()()1044f f ⎡⎤+⎣⎦的值为______.【答案】7【分析】利用已知条件求出a 、b 、c 、d 的关系式,化简所求的表达式,求解即可.【详解】f (x )=x 4+ax 3+bx 2+cx +d ,f (1)=1,f (2)=2,f (3)=3,可得:111684228127933a b c d a b c d a b c d ++++=⎧⎪++++=⎨⎪++++=⎩,∴b =﹣6a ﹣25;c =11a +61;d =﹣6a ﹣36,∴14[f (4)+f (0)]14=(256+64a +16b +4c +2d )12=(128+32a +8b +2c +d )12=(128+32a ﹣48a ﹣200+22a +122﹣6a ﹣36)12=⨯14=7.【点睛】本题考查求函数的值,待定系数法的应用,考查计算能力.13.设1f x -()为241,[02]x f x x x -=+-∈(),的反函数,则1y f x f x -=+()()的最大值为______.【答案】4【分析】由f (x )=4x ﹣2+x ﹣1在x ∈[0,2]上为增函数可得其值域,得到y =f ﹣1(x )在[1516-,2]上为增函数,由函数的单调性求得y =f (x )+f ﹣1(x )的最大值【详解】由f (x )=4x ﹣2+x ﹣1在x ∈[0,2]上为增函数,得其值域为[1516-,2],可得y =1f x -()在[1516-,2]上为增函数,因此y =f (x )+1f x -()在[0,2]上为增函数,∴y =f (x )+1f x -()的最大值为f (2)+1f -(2)=2+2=4.故答案为4.【点睛】本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.14.已知函数()2()0430x a x f x x a x x ⎧-≤⎪=⎨++⎪⎩,,>,且0f ()为()f x 的最小值,则实数a 的取值范围是______.【答案】[0,4]【分析】若f (0)为f (x )的最小值,则当x ≤0时,函数f (x )=(x ﹣a )2为减函数,当x >0时,函数f (x )43x a x=++的最小值4+3a ≥f (0),进而得到实数a 的取值范围.【详解】若f (0)为f (x )的最小值,则当x ≤0时,函数f (x )=(x ﹣a )2为减函数,则a ≥0,当x >0时,函数f (x )43x a x=++的最小值4+3a ≥f (0),即4+3a ≥a 2,解得:﹣1≤a ≤4,综上所述实数a 的取值范围是[0,4],故答案为[0,4]【点睛】本题考查的知识点是分段函数的应用,熟练掌握并理解二次函数和对勾函数的图象和性质,是解答的关键,属于中档题.15.设a b R ∈、,若函数()af x x b x=++在区间12(,)上有两个不同的零点,则1f ()的取值范围为______.【答案】(0,1)【分析】函数()af x x b x=++在区间(1,2)上有两个不同的零点,即方程x 2+bx +a =0在区间(1,2)上两个不相等的实根,利用线性规划知识即可得到结果.【详解】函数()af x x b x=++在区间(1,2)上有两个不同的零点,即方程x 2+bx +a =0在区间(1,2)上两个不相等的实根,⇒21224010420b b a a b b a ⎧-⎪⎪⎪-⎨⎪++⎪++⎪⎩<<>>>⇒242410420b b a a b b a --⎧⎪⎪⎨++⎪⎪++⎩<<>>>,如图画出数对(a ,b )所表示的区域,目标函数z =f (1)=a +b +1∴z 的最小值为z =a +b +1过点(1,﹣2)时,z 的最大值为z =a +b +1过点(4,﹣4)时∴f (1)的取值范围为(0,1)故答案为(0,1)【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.16.已知下列四个命题:①函数2x f x =()满足:对任意1212,x x R x x ∈≠,,有()()1212122x xf f x f x +⎛⎫≤+⎡⎤ ⎪⎣⎦⎝⎭;②函数()(()22log 121x f x x g x =+=+-,均为奇函数;③若函数()f x 的图象关于点(1,0)成中心对称图形,且满足4f x f x -=()(),那么22018f f =()();④设12x x ,是关于x 的方程log 01a x k a a =≠(>,)的两根,则121=x x 其中正确命题的序号是______.【答案】①②③④【分析】由指数的运算性质和基本不等式,可判断①;运用奇偶性的定义和性质,可判断②;由题意可得f (x )+f (2﹣x )=0,结合条件可得f (x )为最小正周期为4的函数,可得结论,可判断③;由对数的运算性质,可判断④.【详解】函数f (x )=2x 满足:对任意x 1,x 2∈R ,x 1≠x 2,f (x 1)+f (x 2)1222x x =+>=2•1222x x +=2f (122x x +),故①正确;由x >0,x =0时,x 0成立;由x <0,x 2+1>x 2-x ,即x 0,由f (﹣x )+f (x )=log 2(x 2+1﹣x 2)=0,即有f (x )为奇函数;又g (﹣x )+g (x )=2222121x x -++=--22221221x x x ⋅++=--0,可得g (x )为奇函数.函数()(()22121x f x log x g x =+=+-,均为奇函数,故②正确;若函数f (x )的图象关于点(1,0)成中心对称图形,可得f (x )+f (2﹣x )=0,且满足f (4﹣x )=f (x ),则f (4﹣x )=﹣f (2﹣x ),即f (2+x )=﹣f (x ),可得f (x +4)=﹣f (x +2)=f (x ),即f (x )为最小正周期为4的函数,可得f (2018)=f (4×504+2)=f (2),那么f (2)=f (2018),故③正确;设x 1,x 2是关于x 的方程|log a x |=k (a >0,a ≠1)的两根,可得log a x 1+log a x 2=0,即log a x 1x 2=0,则x 1x 2=1,故④正确.故答案为①②③④.【点睛】本题考查函数的性质和运用,主要是函数的奇偶性和对称性、周期性的判断和运用,考查定义法和运算能力,属于中档题.三、解答题(本大题共5小题,共76.0分)17.解关于x 的不等式:22121(log )log 10x a x a ⎛⎫+++ ⎪⎝⎭<【答案】当a >1或-1<a <0时,不等式的解集为122a a x x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.当1a =±时,解集为∅.当0<a <1或a <-1时,不等式的解集为122a a x x x ⎧⎫⎧⎫⎪⎪<<⎨⎨⎬⎬⎪⎪⎩⎭⎩⎭.【分析】原不等式即(log 2x ﹣a )•(log 2x 1a -)<0,分类讨论a 与1a 的大小关系,求得log 2x 的范围,可得x 的范围.【详解】关于x 的不等式:()2212110log x a log x a ⎛⎫+++ ⎪⎝⎭<,即()222110log x a log x a-++()<,即221•0log x a log x a--()()<.当1a a >时,即a >1或-1<a <0时,21log x a a <<,122a a x <<,原不等式的解集为122a a x x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.当1a a=时,即1a =±时,不等式即()22log 0x a -<,显然它无解,即解集为∅.当1a a <时,即0<a <1或a <-1时,21log x a a >>,122a a x >>,原不等式的解集为122a a x x ⎧⎫<<⎨⎬⎩⎭.【点睛】(1)解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.(2)解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即判别式的符号进行分类,最后当根存在时,再根据根的大小进行分类.18.设a R ∈,函数()331x x a f x +=+;(1)求a 的值,使得()f x 为奇函数;(2)若()33a f x +<对任意的x R ∈成立,求a 的取值范围【答案】(1)1a =-;(2)302⎡⎤⎢⎥⎣⎦,.【分析】(1)根据题意,由奇函数的性质可得f (0)00331a +==+0,解可得a 的值,即可得答案;(2)根据题意,()33a f x <+变形可得3(a ﹣1)<a (3x +1),分3种情况讨论,求出a 的取值范围,综合可得答案.【详解】(1)根据题意,函数()331x x a f x +=+,其定义域为R ,若f x ()为奇函数,则()0030031a f +==+,解可得1a (经检验适合)=-;故1a =-;(2)根据题意,()33a f x +<,即33313x x a a ++<+,变形可得:1313x a a <-+,即3131x a a -+()<(),(①)分3种情况讨论:当a =0时,(①)变形为-3<0,恒成立,当a >0时,(①)变形为3331x a a -+<,若3331x a a -+<恒成立,必有331a a -≤,解可得32a ≤,此时a 的取值范围为(0,32],当a <0时,(①)变形为3331x a a ->+,不可能恒成立,综合可得:a 的取值范围为302⎡⎤⎢⎥⎣⎦,.【点睛】本题考查函数的奇偶性的性质以及应用,涉及函数恒成立问题,属于综合题.19.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C (x )=(010),35k x x ≤≤+若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【答案】40k =,因此40()35C x x =+.,当隔热层修建5cm 厚时,总费用达到最小值为70万元.【详解】解:(Ⅰ)设隔热层厚度为cm x ,由题设,每年能源消耗费用为()35k C x x =+.再由(0)8C =,得40k =,因此40()35C x x =+.而建造费用为1()6C x x=最后得隔热层建造费用与20年的能源消耗费用之和为140800()20()()2066(010)3535f x C x C x x x x x x =+=⨯+=+≤≤++(Ⅱ)22400'()6(35)f x x =-+,令'()0f x =,即224006(35)x =+.解得5x =,253x =-(舍去).当05x 时,'()0f x ,当510x 时,'()0f x ,故5x =是()f x 的最小值点,对应的最小值为800(5)6570155f =⨯+=+.当隔热层修建5cm 厚时,总费用达到最小值为70万元.20.已知函数|211x a f x e -+=()|,12,x a f x e x R -+=∈().(1)若2a =,求12f x f x f x =+()()()在[23]x ∈,上的最小值;(2)若1221f x f x f xf x -=-()()()()对于任意的实数x R ∈恒成立,求a 的取值范围;(3)当46a ≤≤时,求函数()()()()()121222f x f x f x f xg x -+=-在[16]x ∈,上的最小值.【答案】(1)32(2)12a ≤≤(3)27min 71,(1),27(){,(4),2,(46).a a g x e a e a -≤<=≤<≤≤【详解】(1)32;(2)即12()()f x f x ≤恒成立,得211x a x a -+≤-+,即211x a x a -+--≤对x R ∈恒成立,因211x a x a a -+--≤-,故只需11a -≤,解得02a ≤≤,又16a ≤≤,故a 的取值范围为12a ≤≤.(3)112212(),()(),(){(),()().f x f x f xg x f x f x f x ≤=>①当12a ≤≤时,由(2)知211()()x a g x f x e -+==,当21[1,3]x a =-∈时,min ()1g x =.②当2<6a ≤时,(21)10a a a --=->,故21a a ->.x a ≤时,(21)112()()x a x a f x e e f x -+--++=>=,12()()x a g x f x e -+==;21x a ≥-时,(21)112()()x a x a f x e e f x ---+=<=,211()()x a g x f x e-+==;21a x a <<-时,由(21)112()()x a x a f x e e f x -+--+=≤=,得322a x -≥,其中32212a a a -<<-,故当32212a x a -≤<-时,|21|1()()x a g x f x e -+==;当322a a x -<<时,12()()x a g x f x e -+==.因此,当2<6a ≤时,1232(),,2(){32(),.2a f x x g x a f x x -≥=-<令211()x a f x e e -+==,得1222,2x a x a =-=,且32222a a -<-,如图,(ⅰ)当622a a ≤≤-,即46a ≤≤时,min 2()()g x f a e ==;(ⅱ)当22621a a -<≤-,即742a ≤<时,27min 1()(6)a g x f e -==;(ⅲ)当216a -<,即722a <<时,min 1()(21)1g x f a =-=.综上所述,27min 71,(1),27(){,(4),2,(46).a a g x e a e a -≤<=≤<≤≤21.对于定义在[0+∞,)上的函数()f x ,若函数y f x axb =-+()()满足:①在区间[0+∞,)上单调递减,②存在常数p,使其值域为0]p (,,则称函数g x ax b =+()是函数()f x 的“逼进函数”.(1)判断函数25g x x =+()是不是函数()22911,[02x x f x x x ++=∈+∞+,)的“逼进函数”;(2)求证:函数()12g x x =不是函数()1,[02xf x x ⎛⎫=∈+∞ ⎪⎝⎭,),的“逼进函数”(3)若g x ax ()=是函数()[0f x x x =+∈+∞,)的“逼进函数”,求a 的值.【答案】(1)见解析;(2)见解析;(3)2.【分析】(1)由f (x )﹣g (x ),化简整理,结合反比例函数的单调性和值域,即可判断;(2)由指数函数和一次函数的单调性,可得满足①,说明不满足②,即可得证;(3)由新定义,可得y =x -ax 为[0,+∞)的减函数,求得导数,由不等式恒成立思想,可得a 的范围;再由值域为(0,1],结合不等式恒成立思想可得a 的范围,即可得到a 的值.【详解】(1)229112x x f x g x x ++-=+()()1252x x ()-+=+,可得y f x g x =-()()在[0,+∞)递减,且22x +≥,11022x ≤+<,可得存在12p =,函数y 的值域为10,2⎛⎤ ⎥⎝⎦,则函数25g x x ()=+是函数()229112x x f x x ++=+,[0x ,)∈+∞的“逼进函数”;(2)证明:1122x f x g x x -=-()()(,由12x y =(,12y x =-在[0,+∞)递减,则函数y f x g x =-()()在[0,+∞)递减,则函数y f x g x =-()()在[0,+∞)的最大值为1;由1x =时,11022y =-=,2x =时,131044y <=-=-,则函数y f x g x =-()()在[0,+∞)的值域为(-∞,1],即有函数12g x x =()不是函数12x f x =()(),x ∈[0,+∞)的“逼进函数”;(3)g x ax =()是函数()f x x =+,[0x ,)∈+∞的“逼进函数”,可得y x ax =+为[0,+∞)的减函数,可得导数'10y a =-≤在[0,+∞)恒成立,可得1a -≥,由x >01=≤,则11a -≥,即2a ≥;又y x ax =+在[0,+∞)的值域为(0,1],()1a x >-,x =0时,显然成立;x >0时,1a -,可得11a -≤,即2a ≤.则a =2.【点睛】本题考查新定义的理解和运用,考查函数的单调性和值域的求法和运用,考查导数的运用,以及不等式恒成立问题的解法,属于中档题.。

上海交通大学附属中学2018-2019学年度第一学期高一数学期终试卷 含答案

上海交通大学附属中学2018-2019学年度第一学期高一数学期终试卷 含答案

上海交通大学附属中学2018-2019学年度第一学期高一数学期终试卷2019.1一、填空题(本大题共有12题,满分54分,1-6题每题4分,7-12题每题5分)1. 若关于x 的不等式01x a x -³+的解集为()[),14,-?+?U ,则实数a =____________. 2. 设集合{}{}|2|1,A x x B x x m =-<=>,若A B A =I ,则实数m 的取值范围是____________.3. 一条长度等于半径的弦所对的圆心角等于____________弧度.4. 若函数2()log (1)f x x a =++的反函数的图像经过点(4,1),则实数a =____________.5. 若123()f x x x -=-,则满足()0f x >的x 的取值范围是____________.6. 已知(7)41()1x a x a x f x a x ì--<ïï=íï³ïî是(),-??上的增函数,那么a 的取值范围是____________.7. 定义在R 上的偶函数()y f x =,当0x ³时,()2()lg 32f x x x =++,则()f x 在R 上的零点个数为____________.8. 设432()f x x ax bx cx d =++++,(1)1,(2)2,(3)3f f f ===,则[]1(0)(4)4f f +的值为____________.9. 设1()f x -为[]2()41,0,2x f x x x -=+-?的反函数,则1()()y f x f x -=+的最大值为____________.10. 已知2()0()430x a x f x x a x x ìï-?ïï=íï++>ïïî,若(0)f 是()f x 的最小值,则a 的取值范围是____________.11. 设ab R Î,若函数()a f x x b x=++在区间(1,2)上有两个不同的零点,则(1)f 的取值范围为____________.12. 已知下列四个命题: ①函数()2x f x =满足:对任意1212,,x x R x x 喂,有[]12121()()22x x f f x f x 骣+÷ç?÷ç÷ç桫;②函数(22()log ,()121x f x x g x =+=+-均为奇函数; ③若函数()f x 的图像关于点(1,0)成中心对称图形,且满足(4)()f x f x -=,那么(2)(2018)f f =; ④设12,x x 是关于x 的方程log (0,1)a x k a a =>?的两根,则121x x =其中正确命题的序号是____________.二、选择题(本题共有4题,满分20分,每题5分。

精品解析:上海市上海中学2018-2019学年高一上学期期末数学试题(解析版)

精品解析:上海市上海中学2018-2019学年高一上学期期末数学试题(解析版)

2018学年上海中学高一年级第一学期期末试卷2019.1一、填空题1.函数的定义域为______.()()ln 1f x x =+-【答案】(]1,2【解析】【分析】求已知函数解析式的函数定义域即使式子有意义,偶次根式的被开方数非负,对数的真数大于零,即可解答。

【详解】()()ln 1f x x =+- 解得2010x x -≥⎧∴⎨->⎩12x <≤故函数的定义域为(]1,2x ∈故答案为:(]1,2【点睛】本题考查函数的定义域,求函数的定义域即使式子有意义,常见的有(1)分式中分母不为零;(2)偶次根式中被开方数大于或等于零;(3)零次幂的底数不为零;(4)对数函数的真数大于零;属于基础题。

2.设函数为奇函数,则实数a 的值为______.()()()1x x a f x x+-=【答案】1a =【解析】【分析】一般由奇函数的定义应得出,但对于本题来说,用此方程求参数的值运算较繁,因为()()0f x f x +-=是一个恒成立的关系故可以代入特值得到关于参数的方程求的值.()()0f x f x +-=a 【详解】解:函数为奇函数, (1)()()x x a f x x+-=,()()0f x f x ∴+-=,(1)(1)0f f ∴+-=即,2(1)00a -+=.1a \=故答案为:.1【点睛】本题考查函数奇偶性的运用,其特征是利用函数的奇偶性建立方程求参数,在本题中为了减少运算量,没有用通用的等式来求而是取了其一个特值,这在恒成立的等式中,是一个常用的技巧.a 3.已知(且)的图像过定点P ,点P 在指数函数的图像上,则log 2a y x =+0a >1a ≠()y f x =______.()f x =【答案】()2xf x =【解析】【分析】由题意求出点的坐标,代入求函数解析式.P ()f x 【详解】解:由题意,令,则,log 2a y x =+1x =2y =即点,(1,2)P 由在指数函数的图象上可得,令P ()f x ()xf x a =()01a a >≠且,12a ∴=即,2a =故()2xf x =故答案为:()2xf x =【点睛】本题考查了对数函数与指数函数的性质应用,属于基础题.4.方程的解为______.21193xx +⎛⎫= ⎪⎝⎭【答案】25-【解析】【分析】将方程转化为同底指数式,利用指数相等得到方程,解得即可。

上海市2018-2019学年交大附中高三上期末数学期末试卷(详细答案)

上海市2018-2019学年交大附中高三上期末数学期末试卷(详细答案)

交大附中2018-2019学年度第一学期高三年级期末数学试卷2019.1一、填空题1.已知集合{}02A x =<≤,集合{}12B x x =-<<,则A B =U ______.答案:{}20<<x x2. 若复数43z i =+,其中i 是虚数单位,则2z =_____. 答案:25解析:25;24722=+=z i z3. 函数()()4,43,4x x f x f x x -≥⎧⎪=⎨+<⎪⎩,则()1f f -=⎡⎤⎣⎦______. 答案:1;解析:1)5()2()1(===-f f f4. 已知1sin 43πα⎛⎫-= ⎪⎝⎭,则cos 4πα⎛⎫+ ⎪⎝⎭的值为______.答案:31-; 解析:31)4(sin ))4(2sin()4cos(-=-=+-=+αππαππα 5. 已知数列{}n a 的前n 项和()2*2n S n n n N =+∈,数列{}n a 的通项公式为n a =______. 答案:12+n解析:12)1(2)1(2221+=----+=-=-n n n n n S S a n n n6、已知实数x 、y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =+的取值范围为______.答案:]6,1[ 解析:最大值在()2,0A 上取,最小值在()0,1B )1,0(上取得6. 已知函数()()sin 2cos2,,0f x a x b x a b R ab =+∈≠,若其图像关于直线6x π=对称,则直线20ax by ++=的倾斜角α=______. 答案:π32 解析:)2sin()(22ϕ++=x b a x f , ππϕπk +=+⨯262, ππϕk +=6,,33tan ==a b ϕ则20ax by ++=的倾斜角32,3tan παα=-=-=b a . 7. 鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的椎卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经90︒样卯起来,如图,若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为(容器壁的厚度忽略不计)______.答案:41π414414Sππ=⨯=.9、已知()()()()()2320121111n nnx x x x a a x a x a x n N*++++++++=++++∈L L且012126na a a a++++=L,那么n展开式中的常数项为_____答案:20-;解析:126)12(221)21(2222232=-=--=++++nnnΛ6=n,则常数为20)1()(3336-=-xxC10、已知正实数x y、满足2342xy x y++=,那么54xy x y++的最小值为____答案:55解析一:yxyxyxxyyxxy++=++++=++34233245)14(3342)2(yyyx-=-=+,2)14(3+-=yyx139221442)162(92)14(93≥-+++=+++--=++-=+yyyyyyyyyx5545≥++∴yxxy解析二:()()23423248xy x y x y++=⇒++=,()()245452x yx y+++⎛⎫++≤ ⎪⎝⎭11、已知等边ABC ∆的边长为2,点P 在线段AC 上,若满足等式PA PB λ⋅=u u u r u u u r的点P 有两个,则实数λ的取值范围是_____答案:]0,41(-解析:设)3,0(),0,1(),0,1(B C A -,)11)(0,(≤≤-x x Pλ=+=⋅x x PB PA )1(02=-+λx x 在]1,1[-上有两个根,则]0,41(-∈λ12、过直线:2l x y +=上任意点P 向圆22:1C x y +=作两条切线,切点分别为A B 、,线段AB 的中点为Q ,则点Q 到直线l 的距离的取值范围为_________答案:]2,22(解析:第一种方法:作l OC ⊥,θ=∠POC ,)2,0[πθ∈.θcos 2=PO ,θθθθcos 2cos 2cos 21cos 212222-=-=-==PO PO PO PA PQ点Q 到直线l 的距离为)2,22[2cos 22∈-θ 第二种方法:设),(00y x P ,则AB 方程为100=+y y x x ,OP 方程为x x y y 0=, ⎪⎩⎪⎨⎧==+x x y y y y x x 00001,则Q 坐标为),(02000200y x y y x x ++, A→ →PQABCOQ 到l的距离为22212224422222202002020202000-+-=-+-+=-++x x x x x y x y x 取值范围即为)2,22[二、选择题13.已知定义域为R 的函数()()(]23121,22,2,21,055x k x k k k N f x x x *⎧---∈-∈⎡⎤⎣⎦⎪=⎨⎪-≤⎩,则此函数图像上关于原点对称的点有( )A 、7对B 、8对C 、9对D 、以上都不对 答案:B解析:作出)(x f 的图像,右边是一个周期函数,为了找对称点,就是求5152+=x y 与)(x f 的右边的 图像的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年上海市上海交通大学附属中学高一上学期期末数学试题一、单选题1.设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“A B =∅”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件【答案】C【解析】通过集合的包含关系,以及充分条件和必要条件的判断,推出结果. 【详解】由题意A C ⊆,则U UC A ⊆痧,当U B C ⊆ð,可得“A B =∅”;若“AB =∅”能推出存在集合C 使得A C ⊆,U B C ⊆ð,U ∴为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“A B =∅”的充分必要的条件. 故选:C . 【点睛】本题考查集合与集合的关系,充分条件与必要条件的判断,是基础题. 2.已知实数x ,y 满足()01xya a a <<<,[]x 表示不超过x 的最大整数,则下面关系式恒成立的是( ) A.221111x y >++ B.()()22ln 1ln 1x y +>+ C.11x y x y->- D.[][]x y ≥【答案】D【解析】根据条件求出x y >,结合不等式的关系,利用特殊值法进行判断即可. 【详解】当01a <<时,由x y a a <得x y >,A .当1x =,1y =-,满足x y >但221111x y =++,故A 错误,B .当1x =,1y =-,满足x y >,22(1)(1)ln x ln y +=+,但22(1)(1)ln x ln y +>+不成立,故B 错误,C .当1x =,1y =-,满足x y >,但112x y -=+=,11112x y -=+=,则11x y x y ->-不成立,故C 错误,D .x y >,[][]x y ∴…成立,故D 正确 故选:D . 【点睛】本题主要考查不等式的关系和不等式的性质的应用,利用特值法是解决本题的关键. 3.函数422y x x =-++的图像大致为A .B .C .D .【答案】D【解析】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<,得x <或0x <<,此时函数单调递增,排除C ,故选D. 点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.4.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.2p q+ B.(1)(1)12p q ++-1【答案】D【解析】【详解】试题分析:设这两年年平均增长率为x ,因此2(1)(1)(1)p q x ++=+解得1x =. 【考点】函数模型的应用.二、填空题5.已知集合{}1,2,A m =,{2,3}B =,若{}123A B ⋃=,,,则实数m =___________. 【答案】3【解析】直接利用并集的定义得到m 的值. 【详解】因为集合{}1,2,A m =,{2,3}B =,{}123A B ⋃=,,, 所以3m =. 故答案为:3 【点睛】本题主要考查并集定义,意在考查学生对该知识的理解掌握水平. 6.“21x>成立”是“2x <成立”的 条件.(选择确切的一个填空:充分非必要、必要非充分、充要、非充分非必要) 【答案】充分非必要 【解析】先解不等式21x>,再利用充分条件必要条件的定义判断得解. 【详解】 因为21x>,所以02x <<,因为{|02}x x <<⫋{|2}x x < 所以“21x>成立”是“2x <成立”的充分非必要条件. 故答案为:充分非必要 【点睛】本题主要考查解分式不等式和充要条件的判定,意在考查学生对这些知识的理解掌握水平.7.函数()f x =___________.【答案】{}(,1]1(2,)-∞-⋃⋃+∞【解析】分类讨论解不等式2(1)(1)02x x x -+-…,即得函数的定义域. 【详解】要使函数有意义,则2(1)(1)02x x x -+-…, 当1x =时,不等式成立, 当1x ≠时,不等式等价为102x x +-…, 即2x >或1x -…,综上2x >或1x -…或1x =,所以函数的定义域为{}(,1]1(2,)-∞-⋃⋃+∞. 故答案为:{}(,1]1(2,)-∞-⋃⋃+∞ 【点睛】本题主要考查不等式的解法和函数定义域的求法,意在考查学生对这些知识的理解掌握水平.8.若函数21()x f x x a+=+的反函数是其本身,则实数a =___________. 【答案】-2【解析】求出反函数与原函数比较可知2a =-. 【详解】 由21+=+x y x a得12-=-ay x y ,所以()f x 的反函数为11()2ax f x x --=-,依题意可得2a =-. 故答案为:2-.【点睛】本题考查了反函数的求法,意在考查学生对这些知识的理解掌握水平,属基础题. 9.函数3()21x f x -=-,则不等式()1f x <的解集为___________.【答案】(24),【解析】问题转化为|3|1x -<,求出不等式的解集即可. 【详解】不等式()1f x <即|32|2x -<, 故|3|1x -<, 解得:24x <<, 故答案为:(2,4). 【点睛】本题考查了解绝对值不等式和指数不等式的解法,考查转化思想,是一道基础题. 10.函数()19310xx f x +=--的零点为___________.【答案】315x og =【解析】由题得(32)(35)0x x +-=,再解指数方程即得解. 【详解】由1()93100x x f x +=--=得2(3)33100x x -⋅-=, 即(32)(35)0x x +-=,30x >,350x ∴-=,即35x =,即3log 5x =, 即函数零点为3log 5x =, 故答案为:3log 5x = 【点睛】本题主要考查函数零点的求解,结合一元二次方程以及指数和对数的转化公式是解决本题的关键.11.已知x ,R y *∈,且满足–20xy x y -=,则x y +的最小值为___________.【答案】3+【解析】由题知2xy x y =+,同除xy ,得211x y+=,再借助基本不等式得最小值. 【详解】由题知x ,y ,满足20xy x y --=,则2xy x y =+, 同除xy ,得211x y+=, 212()()33x yx y x yx y y x +=++=+++…2x =1y =时取到等号.故答案为:3+. 【点睛】本题考查了基本不等式求最小值,意在考查学生对该知识的理解掌握水平. 12.若定义在R 上的函数21()xf x a +=(其中0a >,1a ≠)有最大值,则函数()2()log 2a g x x x =-的单调递增区间为___________.【答案】()0-∞,【解析】先根据题意判断01a <<,可得即求函数2220)t x x x x =-><(或减区间,再利用二次函数的性质得出结论. 【详解】21x +有最小值为1,定义在R 上的函数21()xf x a+=(其中0a >,1)a ≠有最大值,01a ∴<<.则函数2()log (2)a g x x x =-的单调递增区间,即函数2220)t x x x x =-><(或的减区间, 因为函数2220)t x x x x =-><(或的减区间为(,0)-∞, 故答案为:(,0)-∞. 【点睛】本题主要考查复合函数的单调性,指数函数、二次函数的性质,意在考查学生对这些知识的理解掌握水平.13.集合{}22|(21)0A x x a x a a =-+++<,集合{}2log |1000xB x x+=≤,且满足R A B ⋂=∅ð,则实数a 的取值范围是___.【答案】1,91000⎡⎤⎢⎥⎣⎦【解析】由二次不等式的解法得1)A a a =+(,,由对数不等式的解法得1[1000B =,10],即(R C B =-∞,1)(101000⋃,)+∞,由集合交集的运算得11000110a a ⎧⎪⎨⎪+⎩……,即191000a 剟,得解. 【详解】解不等式22(21)0x a x a a -+++<得1a x a <<+即1)A a a =+(,, 解不等式21000lgx x +…得:(2)30lgx lgx +-…,即1101000x 剟,即1[1000B =,10], 即(RC B =-∞,1)(101000⋃,)+∞, 又R AB =∅ð,得11000110a a ⎧⎪⎨⎪+⎩……,即191000a 剟, 即实数a 的取值范围是1[,9]1000, 故答案为:1[,9]1000 【点睛】本题考查了二次不等式的解法,对数不等式的解法及集合交集的运算,属中档题. 14.已知函数()y f x =的图像与函数(0,1)x y a a a =>≠的图像关于直线y x =对称,()()()()21g x f x f x f ⎡⎤=+-⎣⎦,若()y g x =在1,22⎡⎤⎢⎥⎣⎦上是增函数,则实数a 的取值范围是______. 【答案】10,2⎛⎤ ⎥⎝⎦【解析】先求出函数()f x 的解析式,然后代入将函数()g x 表示出来,再对底数a 进行讨论即可得 到答案. 【详解】函数()y f x =的图象与函数(0x y a a =>且1)a ≠的图象关于直线y x =对称, ()log (0)a f x x x ∴=>.()()[()g x f x f x f =+(2)1]log (log log 21)a a a x x -=+-2221(21)(log )24a a a log log x --=+-, ①当1a >时,log a y x =在区间1[2,2]上是增函数,1log [log 2a a x ∴∈,log 2]a .由于()y g x =在区间1[2,2]上是增函数,∴12122a a log log -…,化为log 21a -…, 解得12a …,舍去. ②当01a <<时,log ay x =在区间1[2,2]上是减函数,log [log 2a a x ∴∈,1log ]2a .由于()y g x =在区间1[2,2]上是增函数,∴12122a a log log -…,解得102a <…. 综上可得:102a <…. 故答案为:(0,1]2.【点睛】本题考查反函数的性质、二次函数、对数函数的单调性、复合函数的单调性,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于中档题. 15.下列四个命题中正确的是______.①已知定义在R 上的偶函数(1)y f x =+,则()()11f x f x +=-;②若函数()y f x =,x D ∈,值域为()A A D ≠,且存在反函数,则函数()y f x =,x D ∈与函数1()x f y -=,y A Î是两个不同的函数﹔③已知函数*1(),3f x x x =∈-N ,既无最大值,也无最小值; ④函数||2||()(21)5(21)6x x f x =---+的所有零点构成的集合共有4个子集. 【答案】①②【解析】由偶函数的定义可判断①;由互为反函数的定义可判断②;由()f x 的单调性可判断③;由()0f x =的解的个数和集合的子集个数,可判断④. 【详解】①已知定义在R 上是偶函数(1)y f x =+,设()(1)F x f x =+,可得()()F x F x -=, 则(1)(1)f x f x +=-,故①正确;②若函数()y f x =,x D ∈,值域为()A A D ≠,且存在反函数,则函数()y f x =,x D ∈与函数1()x f y -=,y A Î,即1()y f x -=,x A ∈,由于A D ≠是两个不同的函数,故②正确; ③已知函数1()3f x x =-,*x ∈N ,由()f x 在13x <…递减,3x >递减,可得2x =时,f (2)取得最小值1-,故③错误;④函数||2||()(21)5(21)6x x f x =---+,由()0f x =,可得||212x -=或3,解得2log 3x =±或2x =±,()f x 的所有零点构成的集合中共有四个元素,共有16个子集,故④错误.故答案为:①②. 【点睛】本题考查函数的奇偶性和互为反函数的定义,以及函数的单调性和函数零点的求法,考查运算能力和推理能力,属于基础题. 16.已知函数()()20xf x x ex =+<与函数21()ln()2g x x x a =+++,图像上存在关于y 轴对称的点,则a 的取值范围是___________.【答案】(-∞【解析】根据条件转化为当0x >时,()()f x g x -=有解,利用函数与方程之间的关系,转化为两个函数的交点问题,利用数形结合进行求解即可. 【详解】由题意,存在0x >,使()()f x g x -=,即221()2x x ln x a x e -+++=+, 即11()()2xln x a e++=, 即11()()2xln x a e+=-+,设11()()2x h x e =-+,11(0)122h =-+=,当()y ln x a =+经过点1(0,)2时, 则12lna =,得12a e = 作出()y ln x a =+和()h x 的图象,要使两个图象恒有交点,则a即实数a 的取值范围是(a ∈-∞.故答案为:(-∞.【点睛】本题主要考查函数与方程的应用,利用数形结合转化为两个函数的交点问题是解决本题的关键.三、解答题17.解关于x 的不等式:2(2)20kx k x -++<. 【答案】见解析【解析】将原不等式化为(2)(1)0kx x --<分0k =,0k >,k 0<三种情况进行讨论.0k =、k 0<易解不等式;当0k >时,按照对应方程的两根大小分三种情况讨论即可. 【详解】将原不等式化为(2)(1)0kx x --<, (1)当0k =时,有1x >;(2)当0k >时,有2()(1)0k x x k --<,2()(1)0x x k ∴--<,221k k k--=, 当2k >时21k<,21x k ∴<<;当2k =时,21k=,x φ∴∈;当02k <<时,有21k>, 21x k ∴<<;(3)当k 0<时,2()(1)0x x k -->,有21k<,所以21x x k <>或. 综上, 当0k =时,原不等式的解集为(1)+∞,; 当k 0<时,原不等式的解集为2,(1,)k ⎛⎫-∞⋃+∞ ⎪⎝⎭ 当2k =时,原不等式的解集为∅;当02k <<时,原不等式的解集为21,k ⎛⎫ ⎪⎝⎭; 当2k >时,原不等式的解集为2,1k ⎛⎫⎪⎝⎭. 【点睛】 该题考查一元二次不等式的解法,考查分类讨论思想,含参数的一元二次不等式的求解,要明确分类讨论的标准:是按照不等式的类型、两根大小还是△的符号,要不重不漏.18.动物园需要用篱笆围成两个面积均为502m 的长方形熊猫居室,如图所示,以墙为一边(墙不需要篱笆),并共用垂直于墙的一条边,为了保证活动空间,垂直于墙的边长不小于2m ,每个长方形平行于墙的边长也不小于2m .(1)设所用篱笆的总长度为l ,垂直于墙的边长为x .试用解析式将l 表示成x 的函数,并确定这个函数的定义域;(2)怎样围才能使得所用篱笆的总长度最小?篱笆的总长度最小是多少?【答案】(1)1003l x x =+,[225],.(2时,所用篱笆的总长度最小,最小为【解析】(1)由题意得每个长方形平行于墙的边长50x ,表示出l ;由2x …且502x…,可得函数的定义域;(2)对其运用基本不等式求出函数的最值即场地的篱笆的总长度最小,从而求解.【详解】(1)由题得每个长方形平行于墙的边长50x , 则1003l x x=+,2x …且502x…, 225x ∴剟,所以函数的定义域为[2,25];(2)100320l x x x x =+=…1003x x =,即x =时,所用篱笆的总长度最小,篱笆的总长度最小是. 【点睛】此题是一道实际应用题,考查函数的最值问题,解决此类问题要运用基本不等式,这也是高考常考的方法.19.已知函数()y f x =是函数21()101x y x =-∈+R 的反函数,函数3()1ax g x x +=-的图像关于直线y x =对称,记()()()F x f x g x =+.(1)求函数()f x 的解析式和定义域﹔(2)在()F x 的图像上是否存在这样两个不同点A ,B ,使直线AB 恰好与y 轴垂直?若存在,求A ,B 的坐标;若不存在,说明理由.【答案】(1)1()1x f x lgx -=+,()f x 的定义域为(1,1)-;(2)不存在A ,B 两点,使AB 与y 轴垂直.【解析】(1)先求出函数21()101x y x =-∈+R 的反函数,即求出()f x 的解析式,然后求出()f x 的定义域;(2)先求出函数()F x 的解析式,再设()F x 的图象上不同的两点1(A x ,1)y ,2(B x ,2)y ,且1211x x -<<<,推出12y y >,得()F x 为(1,1)-上的递减函数,故不存在A ,B 两点,使AB 与y 轴垂直.【详解】 (1)由21101x y =-+得1101x y y -=+,11y x lg y -=+,1()1x f x lg x-∴=+, 因为函数21101x y =-+的值域为(1,1)-,所以函数()f x 的定义域为(1,1)-. (2)3()1ax g x x +=-,13()x g x x a -+∴=-,依题意得1()()g x g x -=,1a \=,3()1x g x x +∴=-, 1(13)1x F x g x l x x -∴=+++-,定义域为(1,1)-, 设()F x 的图象上不同的两点1(A x ,1)y ,2(B x ,2)y ,且1211x x -<<<,则122121122112113()()11131x x x y y F x F x lg lg x x x x x --+-=-=+--++--+ 12212112113()3(1111x x x lg x x x x x -++=+---++-) 21211212114(()11(1)()1)x x x x lg x x x x +--=++---, 1211x x -<<<,则21111x x +>+,12111x x ->-,210x x ->,12()1(1)0x x ->-, 211211()011x x lg x x +-∴>+-,211240(1)(1)x x x x ->--)(, 12y y ∴>,故()F x 在(1,1)-上单调递减,故不存在A ,B 两点,使AB 与y 轴垂直.【点睛】本题主要考查了反函数,考查了函数单调性的判定和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知函数2(2)(3)2f x ax a x a -=--+-(a 为负整数)()y f x =的图像经过点(2,0)()m m -∈R .(1)求()f x 的解析式;(2)设函数()2g x bx =+,若()()g x f x ≥在[]1,3x ∈上解集非空,求实数b 的取值范围;(3)证明:方程1()0f x x-=有且仅有一个解. 【答案】(1)2()1f x x =-+.(2)10,3⎡⎫-+∞⎪⎢⎣⎭(3)见解析﹔ 【解析】(1)在2(2)(3)2f x ax a x a -=--+-中令x m =得2(2)(3)20f m am a m a -=--+-=,故2321m a m m -=--+,因为a 为负整数,所以2321m m m --+为正整数,当23221m m m --+…时,利用判别式可判断此不等式无解,所以23211m m m -=-+,解得1a =-,从而可得()f x 的解析式; (2)()()g x f x …在[1x ∈,3]上解集非空转化为1()b x x-+…在[1,3]上有解,再构造函数转化为最小值可得;(3)即证1y x=与21y x =-+的图象有且只有一个交点,证明0x >时,1y x=与21y x =-+的图象无交点,在(,0)-∞上有且只有一个零点,即得证.【详解】 (1)在2(2)(3)2f x ax a x a -=--+-中令x m =得2(2)(3)20f m am a m a -=--+-=,2321m a m m -∴=--+, 因为a 为负整数,所以2321m m m --+为正整数, 当23221m m m --+…时,22540m m -+…,因为△2(5)42470=--⨯⨯=-<,所以22540m m -+…无解, 所以23211m m m -=-+,解得1m =或3m =,所以1a =-, 22(2)43(2)1f x x x x ∴-=-+-=--+,2()1f x x ∴=-+(2)()()g x f x …在[1x ∈,3]上解集非空1()b x x⇔-+…在[1,3]上有解, 令1()()h x x x=-+,则()min b h x …, 因为函数()h x 在[1x ∈,3]上是减函数,所以3x =时,()min h x h =(3)103=-, 故103b -…. (3)证明:即证1y x =与21y x =-+的图象有且只有一个交点, 当0x >时,22221111(1)111110222x x x x x x x x x x --+=+-=++--==>, 即0x >时,1y x=与21y x =-+的图象无交点, 当0x <时,令211y x x =+-, 因为函数1y x =在(,0)-∞上为递减函数,函数21y x =+在(,0)-∞上为递减函数, 所以211y x x=+-在(,0)-∞上为递减函数(减函数+减函数=减函数),又12x =-时,1304y =-+<,1x =时,10y =>,根据零点存在性定理知:2110x x+-=在(,0)-∞上有且只有一个零点, 综上得1()0f x x-=有且只有一个解. 【点睛】本题考查了二次函数的图像和性质,考查函数的零点问题,考查基本不等式,考查函数单调性的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.. 21.若实数x ﹑y 、m ()x m y m ≠≠,满足||x m y m ->-,则称y 比x 接近m . (1)若21x -比1接近0,求x 的取值范围;(2)对正实数a ,b ,如果1a a +比1b b +接近2,求证:当0x >时,1x x a a +比1x x b b +接近2;(3)已知函数()f x等于x a -中接近0的那个值.写出函数()f x 的解析式,并指出它的单调区间(结论不要求证明).【答案】(1) (1)(1,0)(0,1)(1,2)x ∈--;(2)证明见解析;(3)见解析 【解析】(1)由新定义可得2|1|1x -<且210x -≠,由绝对值不等式的解法,即可得到解集;(2)运用新定义作差比较,结合基本不等式,即可比较;(3)依据新定义分1a -…和1a >-两种情况写出函数()f x 的解析式,然后指明单调性.【详解】(1)由题意得,221110x x ⎧-<⎪⎨-≠⎪⎩∴0,1x x x <<≠≠±, 所以(1)(1,0)(0,1)(1,2)x ∈--. (2)1a a+比1b b +接近2, 11|2||2|a b a b∴+-<+-, 0a >,0b >,12a a ∴+…,12b b+…, 1122a b a b ∴+-<+-,即11a b a b+<+, 11|2||2|x x x x a b a b ∴+-<+-,当0x >时,1x x a a+比1x x b b +接近2; (3)当1a -…时,()||f x x a =-,此时()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增;1a >-时,,2222x a x a x a a x a ⎧->++<+-⎪⎨+-++⎪⎩, 当10a -<<时,()f x 在(,)a -∞上单调递减,在(,)a +∞上单调递增;当0a …时,()f x在(,2a -∞+-上单调递减,在(2a +-上单调递增. 【点睛】本题是新定义题目,新定义问题,往往是结合相关的知识,利用已有的方法求出所求结果,注意转化思想的应用考查了推理能力与计算能力,属于中档题.。

相关文档
最新文档