上海市高一数学上学期期末试卷及答案(共3套)

合集下载

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。

2023-2024学年上海中学高一上学期数学期末试卷及答案(2024.01)

2023-2024学年上海中学高一上学期数学期末试卷及答案(2024.01)

1上海中学2023学年第一学期高一年级数学期末2024.01一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.函数224y x x =−+的图像关于直线________成轴对称. 2.已知函数()21,2,lg ,2,x x f x x x +<= ≥ 则()()()05f f f +=________.3.已知扇形的弧长和半径都是4,则扇形的面积为________.4.已知点()sin ,cos P αα在第二象限,则角α的终边在第________象限.5.化简:4224441sin cos sin cos sin cos θ⋅θ+θ⋅θ=−θ−θ________.6.若函数()1f x x a =−+在区间[)1,+∞上是严格增函数,则实数a 的取值范围为______. 7.函数()21yf x =−的定义域为()0,1,则函数()1yf x =−的定义域为________.8.函数3132xx y −=−的值域是________.9.已知函数()y f x =是定义域为R 的偶函数,且当0x >时,其表达式为()22x f x x =+,则当0x <时,其表达式为()f x =________.10.已知函数()3log ,034,3x x f x x x <<= −≥,若存在0a b c <<<满足()()f a f b ==()f c ,则()()f a f c abc的取值范围为________.11.已知函数()f x ,()g x ,()h x 的定义域均为R .给出以下3个命题: (1)()f x 一定可以写成一个奇函数和一个偶函数之差;(2)若()f x 是奇函数,且在().0−∞是严格减函数,则()f x 在R 上是严格减函数; (3)若()()f x g x +,()()g x h x +,()()h x f x +在R 上均是严格增函数;则()f x ,()g x ,2()h x 中至少有一介在R 上是严格增函数.其中,假命题的序号为________.12.已知函数()f x 满足:()()()()22114f x f x f x f x +−++−=则下列三个结论: (1)()()()()2220242024186518654f f f f −+−=;(2)()()20232024f f =; (3)()()202418654f f +≤.其中正确的结论是________. 二、选择题(本大题共有4题,满分20分,每题5分) 13.若幂函数()()22235mm f x mm x −−=+−的图像不经过原点,则m 的值为( )A .2B .3−C .3D .3−或214.存在函数()f x 满足:x R ∀∈都有( ) A .()31fx x +=B .211f x x=−C .()211f x x +=+D .()221f x x x +=+15.已知函数()()1,0,2,0,x x f x x x x +< =−≥ 若(1)f x −在区间I 上恒负,且是严格减函数,则区间I 可以是( ).A .()2,1−−B .()1,0−C .()0,1D .()1,216.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ). (1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .43三、解答题(共5道大题,其中17题14分,18题14分,19题14分,20题16分,21题18分,共计76分)17.(本题满分14分.本题共2小题,第(1)小题7分,第(2)小题7分.)已知函数()f x 是R 上的严格增函数,()g x 是R 上的严格减函数,判断函数()()f x g x −的单调性,并利用定义证明.18.(本题满分14分.本题共2小题,第(1)小题8分,第(2)小题6分.) 在下面的坐标系中画出下列函数的图像: (1)2y x −=(2)22x y =−.419.(本题满分14分.本题共2小题,第(1)小题6分,第(2)小题8分.) 解下列关于x 的方程:(1)162log log 163x x +=; (2)()()2416290x x x a a a −+⋅−−⋅=.20.(本题满分16分.本题共有3小题,第(1)小题满分4分,第(2)小题满分6分.第 (3)小题满分6分)某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k ≤ += ≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数).521.(本题满分18分.本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,在第(3)小题满分8分)若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.6参考答案一、填空题1.1x =;2.1;3.8;4.四;5.12; 6.(],2−∞; 7.()0,2; 8.()1,1,2−∞∪+∞;9.212x x +; 10.10,3; 11.(3); 12.(1)(3); 二、选择题13.A ; 14.D ; 15.B ; 16.B16.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ).(1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .4B(1)方程()0f g x = 有且仅有三个解;()g x 有三个不同值,由于()y g x =是减函数,所以有三个解,正确;(2)方程()0g f x = 有且仅有三个解;从图中可知,()()0f x ,a ∈可能有1,2,3个解,不正确; (3)方程()0f f x = 有且仅有九个解;类似(2)不正确;(4)方程()0g g x = 有且仅有一个解.结合图象,()y g x =是减函数,故正确.7故选B . 三、解答题 17.严格增,证明略 18. 画图略 19. (1)416x or =(2)①当0a ≤时,()23log 1x a =−;②当01a <<时,()()122233log 1,log 2x a x a =−=;③当1a ≥时,()23log 2x a =20.某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k≤ +=≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数). (1)1000k = (2)522(1)由17时测得的平均行车速度为3/km h ,得100n =, 代入*2600,9,1033000,10,……n n vn N n n k +∈ +,可得2330003100k =+,解得1000k =. (2)①当9…n 时,60060010101nq nv n n===++为增函数,所以6009300109…q ×<+; ②当10…n 时,330001000q nv n n==+在(0,上单调递增,在,)+∞上单调递减,8且由()31.631.7,知,当31,32n n ==时,较大的q 值为最大值, 分别代入31n =和32n =计算,结果均约为522,故522max q ≈. 综上可知,一天内车流量q 的最大值为522.21.若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.(1)()f n <()1f n + (2)不是 (3)证明见解析(3)①首先证明对于任意*n N ∈,()()1.f n f n <+当()1x n,n ∈+时,由()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 可知()f x 介于()f n 和()1f n +之间.若()()1,…f n f n +则()f x 在区间(]1n,n +上存在最小值()1f n +,矛盾. 利用归纳法和上面结论可得:对于任意*,k n N ∈,()(),.n k f n f k <<当时 ②其次证明当1…n 且x n >时,()()f x f n >;当2…n 且x n <时,()()…f x f n . 任取x n >,设正整数k 满足1剟n k x k <+,则()()()()1剟剟f n f k f x f k …+. 若存在01厖k x k n +>使得()()0…f x f n ,则()()()()00剟?f x f n f k f x , 即()()0f k f x =.由于当()1x k ,k ∈+时,()()…f k f x , 所以()f x 在区间(0k ,x 有最小值()0f x ,矛盾.9类似可证,当2…n 且x n <时,()()…f x f n .③最后证明:当1…x 时,()()2f x f x >.当1x =时,()()21f f >成立.当1x >时,由21x x x −=>可知,存在*n N ∈使得2x n x <<,所以()()()2…f x f n f x <.当()1x n,n ∈+时,有:()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 若()()1f n f n =+,则()()()1,f x f n f n ==+所以()f x 在(]1n,n +上存在最小值,故不具有性质p ,故不成立.若()()1f n f n ≠+,则()(){}()()(){},11min f n f n f x max f n ,f n +<<+假设()()1f n f n +<,则()f x 在(]1n,n +上存在最小值,故不具有性质p ,故假设不成立. 所以当()1x n,n ∈+时,()()()1f n f x f n <<+对于任意*n N ∈都成立. 又()()1f n f n <+,故当()*m n m n N <∈、所以()()()()11,f m f m f n f n <+<…<−<即()()f m f n <.所以当x n <时,则存在正整数m 使得1剟m x m n −<,则()()()()1剟f m f x f m f n −< 所以当x n <时,()()f x f n <,同理可证得当x n >时,()()f x f n >.所以当1x >时,必然存在正整数n ,使得2x n x <<,所以()()()2f x f n f x <<; 当1x =时,()()21f f >显然成立; 所以综上所述:当1…x 时,()()2f x f x >.。

上海市高一上学期期末考试数学试卷含答案

上海市高一上学期期末考试数学试卷含答案

上海市高一年级第一学期数学学科期末考试卷(考试时间:90分钟 满分:150分 )一、填空题(每题4分,共56分)1.若全集R U =,{}{}5|,2|>=>=x x B x x A ,则=B C A U _____________. 2.已知1>a ,则12-+a a 的最小值为__________. 3.幂函数y =f (x )的图像经过点⎪⎭⎫ ⎝⎛2,81,则=)(x f ____________. 4. 函数()xx x f 4-=的零点个数为_________. 5.已知532sin =⎪⎭⎫⎝⎛-απ,则()απ-cos =______________. 6.函数()log (3)1a f x x =+-(0 1)a a >≠且,的图像恒过定点A ,则A 点坐标是 . 7.已知31cos =α,且παπ32<<,则2sin α= _____.8.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f的x 的取值范围是__________. 9.若关于x 的不等式0342≤++ax ax 的解集为空集,则实数a 的取值范围是______.10.已知(21)41()log 1a a x a x f x xx -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那 么a 的取值范围 . 11. 若不等式012>-+-k kx x 对()2,1∈x 恒成立,则实数k 的取值范围是_______.12.设非空集合{|}S x m x l =≤≤满足:当x S ∈时,有2x S ∈. 给出如下三个命题:①若1m =,则{1}S =;②若12m =-,则114l ≤≤;③若12l =,则0m ≤;④若1l =题的是__________.13.如图所示,已知函数()2log 4y x =图像上的两点 ,A B 和函数2log y x =上的点C ,线段AC 平行于y 轴,三角形ABC 为正三角形时点B 的坐标为(),p q ,则22qp +的值为14.若点A 、B 同时满足以下两个条件:(1)点A 、B 都在函数()y f x =上;(2)点A 、B 关于原点对称; 则称点对(),A B 是函数()f x 的一个“姐妹点对”.已知函数()()()24020x x f x x xx -≥⎧⎪=⎨-<⎪⎩,则函数()f x 的“姐妹点对”是 . 二、选择题(每题5分,共20分)15.“3log 2<x ”是“1218>⎪⎭⎫⎝⎛-x ”的……………………………………( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既非充分也非必要条件16.若2{|21},{|}M x y x N y y x ==+==-,则集合N M ,两的关系是( ) A .{(1,1)}MN =-B .M N =∅C .M N ⊆D .N M ⊆17.已知()f x 是R 上的偶函数, 当0x >时()f x 为增函数, 若120,0x x <> 且12||||x x <, 则下列不等式成立的是…………………………………( ) A .12()()f x f x ->- B .12()()f x f x -<- C .12()()f x f x ->- D .12()()f x f x -<-18.函数()2()0f x ax bx c a =++≠的图像关于直线2bx a=-对称.据此可以推测,对 任意的非零实数,,,,,a b c m n p ,关于x 的方程[]2()()0m f x nf x p ++=的解集都不可能是………………………………………………………………( ) A .{}1,2 B .{}1,4 C .{}1,2,3,4 D .{}1,4,16,64三、解答题(本大题满分74分,共有5题,解答下列各题必须在答题卷的相应编号规定区域 内写出必要的步骤)19.(本题满分12分,第1小题6分,第2小题6分 ) 记关于x 的不等式01x ax -≤+的解集为P ,不等式11x -≤的解集为Q .(1)若3a =,求出集合P ; (2)若Q P ,求实数a 的取值范围.20.(本题满分14分,共有2个小题,第1小题7分,第2小题7分 )某种产品,当年产量在150吨至250吨之间时,其生产的总成本y (万元)与年产量x (吨)之间的函数关系可以近似地表示为230400010x y x =-+. (1)当该产品的年产量为多少时,每吨的平均成本P 最低,并求每吨最低成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时可获得最大利润,并求出最大年利润Q .21.(本题满分14分,第1小题5分,第2小题9分 )关于x 的方程)lg()3lg()1lg(x a x x -=-+-,其中a 是实数. (1)当2a =时,解上述方程;(2)根据a 的不同取值,讨论上述方程的实数解的个数.22.(本题满分16分,第1小题4分,第2小题5分,第3小题7分) 设函数)10()1()(≠>--=-a a a k a x f xx且是定义域为R 的奇函数.(1)求k 值;(2)若()10f <,试判断函数单调性并求使不等式0)4()(2<-++x f tx x f 恒成立的t 的取值范围; (3)若()312f =,且()x mf aa x g xx 2)(22-+=-在[)1,+∞上的最小值为2-,求m 的值.23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知集合M 是满足下列性质的函数()x f 的全体:在定义域内存在0x ,使得()()()1100f x f x f +=+成立.(1)函数()xx f 1=是否属于集合M ?说明理由; (2)设函数()M x ax f ∈+=1lg 2,求a 的取值范围;(3)设函数xy 2=图像与函数x y -=的图像有交点,证明:函数()M x x f x∈+=22.高一年级数学试卷答案一、填空题(每题4分,共56分)1.若全集R U =,{}{}5|,2|>=>=x x B x x A ,则=B C A U _____________.]5,2( 2.已知1>a ,则12-+a a 的最小值为__________.3.幂函数y =f (x )的图像经过点⎪⎭⎫⎝⎛2,81,则=)(x f ____________.31-x4. 函数()xx x f 4-=的零点个数为_________.2 5.已知532sin =⎪⎭⎫⎝⎛-απ,则()απ-cos =______________.35-6.函数()log (3)1a f x x =+-(0 1)a a >≠且,的图像恒过定点A ,则A 点坐标是_(2 1)--,_.7.已知31cos =α,且παπ32<<,则2sin α= _____.33-8.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f的x 的取值范围是__________.)2,2(-9.若关于x 的不等式0342≤++ax ax 的解集为空集,则实数a 的取值范围是______. ⎪⎭⎫⎢⎣⎡43,010.已知(21)41()log 1a a x a x f x xx -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那 么a 的取值范围__11[,)62__. 11. 若不等式012>-+-k kx x 对()2,1∈x 恒成立,则实数k 的取值范围是_______.(2]-∞,12.设非空集合{|}S x m x l =≤≤满足:当x S ∈时,有2x S ∈. 给出如下三个命题:①若1m =,则{1}S =;②若12m =-,则114l ≤≤;③若12l =,则02m ≤≤;④若1l =,则10m -≤≤或1m =.其中正确命题的是__________. ①②③④13..()()()1,3,1,3-- 二、选择题(每题5分,共20分)15.A 16.D 17.B 18.D三、解答题:(本大题满分74分,共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤)19.(本题满分12分,第1小题6分,第2小题6分 ) 解(1)若3a =,由不等式301x x -≤+,即(3)(1)0x x -+≤且1x ≠-,……… 4分 解得集合{|13,}.P x x x R =-<≤∈ ……………………………… 6分 (2)由不等式|1|1x -≤,解得{|02,}.Q x x x R =≤≤∈ …………………8分由不等式01x ax -≤+,得()(1)0x a x -+≤且1x ≠-,…………………9分 当1a >-时,{|1,}P x x a x R =-<≤∈, 又因为Q P ⊆,所以2a ≥;当1a <-时,{|1,}P x a x x R =≤<-∈,Q P 不成立;当1a =-时,P =∅,QP 也不成立.因此,求实数a 的取值范围是[)2,.+∞(可以不讨论直接判断得出)… 12分20.(本题满分14分,共有2个小题,第1小题7分,第2小题7分 ) 解(1)()400030,150,25010x P x x=+-∈………………………………3分3010≥=……………………………………………5分()4000200150,25010x x x=⇒=∈ ……………………………6分 当年产量为200吨时,每吨的平均成本最低为10万元.………7分(2)()216304000,150,25010x Q x x x =-+-∈………………………10分 ()212301290129010x =--+≤ ……………………………12分 ()230150,250x =∈……………………………………………13分 生产230吨时,最大年利润1290Q =万元.…………………14分 21.(本题满分14分,第1小题5分,第2小题9分 )解(1)1030(1)(3)2x x x x x ->⎧⎪->⎨⎪--=-⎩…………………………………………3分x ⇒=2分 (2)原方程可化为1030(1)(3)x x x x a x ->⎧⎪->⎨⎪--=-⎩,……………………………6分即21353x x x a<<⎧⎨-+-=⎩,………………………………………………8分 作出253(13)y x x x =-+-<<及y a =的图像. 当1x =时1y =,当3x =时3y =,当52x =时134y =.由图像知: ① 413>a 或1≤a 时,两曲线无公共点,故原方程无解;………………10分 ② 当131≤<a 或413=a 时,两曲线有一个公共点,故原方程有一个实数解;…12分③ 当4133<<a 时,两曲线有两个公共点,故原方程有两个实数解.…………14分22.(本题满分16分,第1小题4分,第2小题5分,第3小题7分) 解(1)∵()f x 是定义域为R 的奇函数,∴()()001102f k k =⇒--=⇒= ……………………………… 4分 (2)),10()(≠>-=-a a a a x f xx且1(1)0,0,0,1,01f a a a a a<∴-<>≠∴<<又且……………………………5分x y a =在R 上递减,x y a -=在R 上递增,故()f x 在R 上单调递减. …6分不等式化为)4()(2-<+x f tx x f 04)1(,422>+-+->+∴x t x x tx x即恒成立,………………………… 8分016)1(2<--=∆∴t ,解得53<<-t .………………………………… 9分(3)∵()312f =,231=-∴a a ,即,02322=--a a122a a ∴==-或(舍去)………………………………………………………10分 ∴()()22222)(2222+--+=-+=---x x x x x xm a a x mf a ax g .令xxaa x f t --==)(由(1)可知xxaa x f --=)(为增函数∵1x ≥,∴()312t f ≥=……………12分 令h (t )=t 2-2mt +2=(t -m )2+2-m 2 (32t ≥)……………………………13分 若32m ≥,当t =m 时,h (t )min =2-m 2=-2,∴m =2……………… 14分 若32m <,当t =32时,h (t )min =174-3m =-2,解得m =2512>32,舍去…15分 综上可知m =2. ……………………………………………16分23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分) 解(1)若()xx f 1=M ∈,则在定义域内存在0x , 使得01111102000=++⇒+=+x x x x , ∵方程01020=++x x 无解,∴()xx f 1=M ∉.……………………… 4分 ()()()()2222(2)lglg lg lg 2221011211a a a a f x M a x ax a x x x =∈⇒=+⇒-++-=++++………………………………………………………………………………6分 当2=a 时,21-=x ;……………………………………………………7分 当2≠a 时,由0≥∆,得[)(]53,22,530462+⋃-∈⇒≤+-a a a ,……9分∴[]53,53+-∈a . ………………………………………………10分()()()()()00002112000000311212322(1)221x x x x f x f x f x x x x +-⎡⎤+--=++---=+-=+-⎣⎦(),……………………………………………………………………………………13分又∵函数xy 2=图像与函数x y -=的图像有交点,设交点的横坐标为a ,则()01202010=-+⇒=+-x a x a,其中10+=a x ,…………………16分∴()()()1100f x f x f +=+,即()M x x f x∈+=22 .…………………18分。

2021-2022年上海市松江区高一数学上学期期末试卷及答案

2021-2022年上海市松江区高一数学上学期期末试卷及答案

2021-2022年上海市松江区高一数学上学期期末试卷及答案一、填空题(本大题满分36分,本大题共有12题)1. 已知集合,,则___________ {1,0,1,2}A =-{|03}B x x =<<A B = 【答案】 {1,2}2. 函数的定义域为______.()()lg 1f x x =-【答案】 ()1,+∞3. 若,则=__________. 41log 2x =x 【答案】24. 已知、是方程的两个根,则______. 1x 2x 2330x x +-=1211x x +=【答案】15. 设、为实数,比较两式的值的大小:_______ (用符号a b 22a b +222a b --,,,>≥<≤或=填入划线部分). 【答案】≥6. 已知是奇函数,当时,,则的值为________.()y f x =0x >()2f x x =-1(2f -【答案】##1.5 327. 函数的严格减区间是_________. 2()lg(4)f x x x =-【答案】 [)2,48. 已知函数,则不等式的解集为____ ()1||xf x x =+(3)(2)0f x f x -+>【答案】(1,+∞)9. 若存在实数使成立,则实数的取值范围是___________. x 13x a x -+-≤a 【答案】2 4.a -≤≤10. 对任意的正实数、恒成立,则实数的取值范围是x y+≤m ________. 【答案】)+∞11. 设平行于轴的直线分别与函数和的图像相交于点、,y l 2log y x =2log 1y x =-A B 若在函数的图像上存在点,使得是以为斜边的等腰直角三角形,2log y x =C ABC AB 则点的横坐标为_______.C12. 已知,若存在实数,使函数有两个零点,则的()32,,x x af x x x a⎧≤=⎨>⎩b ()()g x f x b =-a 取值范围是________. 【答案】()(),01,-∞⋃+∞二、选择题(本大题满分12分,本大题共有4题)13. 下列四组函数中,同组的两个函数是相同函数的是( )A. 与B. 与2y =y x =y x =l n e x y =C. 与 D. 与22x y =4x y =y x =11y x -⎛⎫= ⎪⎝⎭【答案】C14. 已知函数可表示为()y f x =x02x <<24x ≤<46x ≤<68x ≤≤y 1234则下列结论正确的是( ) A. B. 的值域是 ()()43ff =()f x {}1,2,3,4C. 的值域是 D. 在区间上单调递增()f x []1,4()f x []4,8【答案】B15. 设、是实数,则“”是“且”的( ) x y 0x >x y >11x y>A. 充分非必要条件 B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件 【答案】B16. 已知函数,若,且,则13,0()3,0x x x f x x +⎧-≥=⎨<⎩123x x x <<123()()()f x f x f x ==的取值范围是( )2123()x f x x x ⋅+A. B. 10,8⎛⎫ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭C .D.3(0,230,8⎛⎤⎥⎝⎦【答案】D三、解答题(本大题满分52分,本大题共有5题)17. 已知全集,集合,. U =R {}2230A x x x =--<{}1216xB x =<<(1)求 ;A B ⋃(2)设集合,若,求实数的取值范围. {3,}D x a x a a =<<+∈R D A ⊆a 【答案】(1) ()1,4A B =- (2). (,4][3,)∞∞--⋃+18. 已知函数. 2||1()1x f x x +=-(1)证明:函数为偶函数;()y f x =(2)证明:函数在区间上是严格减函数. ()y f x =(1,)+∞【答案】 (1)因为, 2||1()1x f x x +=-所以的定义域为,且. ()f x {|D x x R =∈1}x ≠±对于任意,因为,x D ∈2211()()()11x x f x f x x x -++-===---所以为偶函数.()f x (2)当时,. (1,)x ∈+∞211()11x f x x x +==--任取,且,12,(1,)x x ∈+∞12x x <那么 2112121211()()11(1)(1)x x f x f x x x x x --=-=----因为,所以,, 121x x <<210x x ->12()1(1)0x x ->-所以,即. 12())0(f x f x ->12()()f x f x >所以是上的严格减函数.()f x (1,)+∞19. 环保生活,低碳出行,新能源电动汽车正成为人们购车的热门选择.某型号国产电动汽车,在一段平坦的国道进行测试,国道限速80km/h (不含80km/h ).经多次测试得到,该汽车每小时耗电量(单位:Wh )与速度(单位:km/h )的下列数据:M vv204060M300056009000为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,,. 321()40M v v bv cv =++2()800(3v M v a =+()500log (1)a M v v b =++(1)当时,请选出符合表格所列实际数据的函数模型,并求出相应的函数解析式; 080v ≤<(2)现有一辆同型号汽车在200km 的国道上行驶,如何行使才能使得总耗电量最少,最少为多少?【答案】(1)符合,且 321()40M v v bv cv =++321()218040M v v v v =-+(2)此汽车以40km/h 的速度行驶时,总耗电量最少,最少为28000Wh 20. 已知函数. 2()1xf x x -=+(1)求不等式的解集;(4)1(2)f x f x -+<+(2)若关于的方程在上有解,求实数的最大值; x ()0f x m -=[1,)x ∈+∞m (3)证明:函数关于点中心对称. ()y f x =(1,1)--【答案】(1) ()3,3-(2)最大值为12(3)在函数的图象上任意取一点, ()y f x =(,)P a b 关于点的对称点, ()1,1--(2,2)Q a b ----由得,即 , ()f a b =21a b a -=+2(1)1ba b b -=≠-+把代入得2x a =--224(2)211a af a a a+++--==--+--, 24+3611221311bb b b b b b b -+++==⋅=---+---+所以对称点在函数的图象上. (2,2)Q a b ----()y f x =即函数的图象关于中心对称.()y f x =()1,1--21. 函数的定义域为,若存在正实数,对任意的,总有()y f x =D k x D ∈,则称函数具有性质.|()()|f x f x k --≤()f x ()P k (1)分别判断函数与是否具有性质,并说明理由;()2021f x =()g x x =(1)P (2)已知为二次函数,若存在正实数,使得函数具有性质.求证:()y f x =k ()y f x =()P k 是偶函数;()y f x =(3)已知为给定的正实数,若函数具有性质,求0a k >,()2()log 4xf x a x =+-()P k a 的取值范围. 【答案】 (1)对任意,得, x ∈R |()()||20212021|01f x f x --=-=<所以具有性质;()f x (1)P 对任意,得. x ∈R |()()||()||2|g x g x x x x --=--=易得只需取,则, 1x =|(1)(1)|21g g --=>所以不具有性质 ()g x (1)P .(2)设二次函数满足性质. 2()(0)f x ax bx c a =++≠()P k 则对任意,x ∈R 满足. 22|()()||()||2|f x f x ax bx c ax bx c bx k --=++--+=≤若,取,,矛盾. 0b ≠00||kx b =>000|()()||2|2f x f x bx k k --==>所以,此时, 0b =2()(0)f x ax c a =+≠满足,即为偶函数 ()()f x f x -=()y f x =(3)由于,函数的定义域为R .0a >2()log (4)xf x a x =+-易得. 22()log (4)log (22)x x xf x a x a -=+-=+⋅若函数具有性质,则对于任意实数, ()f x ()P k x 有22|()()||log (22)log (22)|xxxx f x f x a a ----=+⋅-+⋅,即. 222|log |22x x x x a k a --+⋅=≤+⋅222log 22x xx xa k k a --+⋅-≤+⋅即. 24log 14x xak k a +-≤≤+⋅由于函数在上严格递增,得. 2log y x =(0,)+∞42214x kkxa a -+≤+⋅即. 112214k k xa a a a --≤++⋅当时,得,对任意实数恒成立. 1a =212k k -≤≤x 当时,易得,由,得, 1a >10a a->141x a +⋅>10114x a <<+⋅得,得. 11014x a a a a a -<<-+⋅11114xa a a a a a -<+<+⋅由题意得对任意实数恒成立, 112214k k xa a a a --≤++⋅x 所以,即122k k a a -⎧≥⎪⎨⎪≤⎩12.k a <≤当时,易得,由,得, 1a <10a a-<141x a +⋅>10114xa <<+⋅得,得. 11014x a a a a a ->>-+⋅11114xa a a a a a ->+>+⋅由题意得对任意实数恒成立, 112214k k xa a a a --≤++⋅x 所以,即 212k ka a-⎧≥⎪⎨≤⎪⎩12.ka ->≥综上所述,的取值范围为.a [2,2]k k -。

上海市2021学年高一数学上学期期末考试试题(含解析)

上海市2021学年高一数学上学期期末考试试题(含解析)

2021-2021学年高一数学上学期期末考试试题(含解析)一、填空题1.已知集合{}2|20A x x x =--=,用列举法可表示为A =_________. 【答案】{}1,2- 【解析】 【分析】解方程220x x --=得1x =-或2x =,用列举法表示,即可. 【详解】方程220x x --=的解为:1x =-或2x =∴{}{}2|201,2A x x x =--==-故答案为:{}1,2-【点睛】本题考查集合的表示方法,属于容易题. 2.函数()lg(2)f x x =-的定义域是____________. 【答案】(2,+∞) 【解析】详解】∵20x ->,∴2x >.3.命题“若1x >,则0x >”的逆否命题是________. 【答案】若0x ≤,则1x ≤ 【解析】 【分析】根据命题“若p ,则q ”的逆否命题为“若q ⌝,则p ⌝”,写出即可. 【详解】命题“若1x >,则0x >”的逆否命题是“若0x ≤,则1x ≤”故答案为:若0x ≤,则1x ≤【点睛】本题考查命题的四种形式,属于容易题.4.若函数()()11()31x f x x x >=-+≤⎪⎩,则()1f f -=⎡⎤⎣⎦________.【答案】3【解析】 【分析】先求解()14f -=,再求()4f ,即可.【详解】当1x ≤时()3f x x =-+,则()()1134f -=--+=. 当1x >时()1f x =,则()()1413f f f -==⎡⎤⎣⎦.故答案为:3【点睛】本题考查分段函数求值,属于较易题.5.已知集合{}{}2,1,2,1,A B a =-=,且B A ⊆,则实数a 的值为_________.【答案】2± 【解析】 【分析】根据题意可知,a A ∈,根据元素的互异性可知1a ≠,求解即可.【详解】若使得B A ⊆成立,则需1a Aa ∈⎧⎨≠⎩,即2a =-或2a =故答案为:2±【点睛】本题考查集合之间的关系,属于容易题.6.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________.【答案】2x = 【解析】 分析】由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可. 【详解】3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =.又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =【点睛】本题考查元素与集合的关系以及实数指数幂的运算,属于较易题. 7.函数()2log f x x x =+零点个数为_________. 【答案】1 【解析】 【分析】函数()2log f x x x =+的零点个数,等价于方程()0f x =根的个数,等价于函数2log y x =与y x =-交点的个数,在同一坐标系下,画出函数图象,确定交点个数即可.【详解】由题意可知,在同一坐标系下,画出2log y x =与y x =-的函数图象,如图所示由图可知,函数2log y x =与y x =-有一个交点,则函数()2log f x x x =+有一个零点. 故答案为:1【点睛】本题考查函数的零点个数,属于较易题. 8.设函数()11f x x =-的反函数为()1f x -,则()11f -=_________. 【答案】2 【解析】 【分析】根据原函数与反函数的关系,解方程111x =-,即可. 【详解】令()111f x x ==-解得2x = 函数()11f x x =-的反函数为()1f x -. ∴()112f -=故答案为:2【点睛】本题考查反函数,属于较易题.9.若函数()2f x ax bx c =++是定义域为()23,1a -的偶函数,则a b +=_________.【答案】1 【解析】 【分析】根据函数()f x 为偶函数,则定义域关于原点的对称,且0b =,列方程组得23100a b -+=⎧⎨=⎩,解方程组即可. 【详解】函数()2f x ax bx c =++是定义域为()23,1a -的偶函数∴23100a b -+=⎧⎨=⎩,解得1a =,0b =即1a b += 故答案为:1【点睛】本题考查函数的奇偶性,定义域关于原点对称是解决本题的关键,属于较易题. 10.方程2lg 3lg 20x x -+=的解为_________. 【答案】10或100 【解析】 【分析】令lg t x =,则方程2lg 3lg 20x x -+=变形为2320t t -+=,解得1t =或2t =,即lg 1x =或lg 2x =,解方程即可.【详解】令lg t x =,则方程2lg 3lg 20x x -+=变形为2320t t -+=.解得1t =或2t =,即lg 1x =或lg 2x =, 解得10x =或100x = 故答案为:10或100【点睛】本题考查解对数方程,属于较易题.11.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.【答案】1-或2. 【解析】 【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解. 【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+,对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即2110,2a a a --==(舍去),或152a (舍去); 当1a ≥时,max ()(1)2f x f a ===, 综上1a =-或2a =. 故答案为:1-或2.【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题. 12.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.【答案】0a ≤ 【解析】 【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭.故答案为:0a ≤【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题. 二、选择题13.下列四组函数中,表示同一函数的是( )A. ()()21,11x f x g x x x -==+-B. ()()0,1f x x g x ==C. ()(),f x x g x ==D. ()()0,0x x f x x g x x x >⎧==⎨-<⎩【答案】C 【解析】 【分析】根据函数的两要素,定义域与对应法则,判断两个函数是否为同一函数,即可. 【详解】选项A ,()f x 的定义为{}1x x ≠,()g x 的定义为R 不相同,不是同一函数. 选项B ,()f x 的定义为{}0x x ≠,()g x 的定义为R 不相同,不是同一函数. 选项C ,()f x 的定义为R ,()g x 的定义为R 相同,()()f x g x x ==,是同一函数. 选项D ,()f x 的定义为R ,()g x 的定义为{}0x x ≠不相同,不是同一函数. 故选:C【点睛】本题考查函数的两要素,属于较易题. 14.已知集合{}2,1,0,1,2A =--,102x B x x ⎧⎫+=<⎨⎬-⎩⎭,则A B =( )A. {}1,0-B. {}0,1C. {}1,0,1-D. {}0,1,2【答案】B 【解析】 【分析】 解不等式102x x +<-,得12x -<<,即{}12B x x =-<<,与集合A ,求交集,即可. 【详解】{}10122x B x x x x ⎧⎫+=<=-<<⎨⎬-⎩⎭,{}2,1,0,1,2A =--{}0,1A B ∴⋂=故选:B【点睛】本题考查集合的运算,属于容易题.15.设命题甲为“0<x <3”,命题乙为“|x -1|<2“,那么甲是乙的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件【答案】A 【解析】 【分析】化简命题乙,再利用充分必要条件判断出命题甲和乙的关系. 【详解】命题乙为“|x -1|<2, 解得-1<x <3.又命题甲为“0<x <3”, 因为{|03}x x <<{|13}x x -<<那么甲是乙的充分不必要条件. 故选A .【点睛】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.16.下列函数中,值域是()0,∞+的是( )A. 13y x = B. y =C. ||31x y =- D. 2yx【答案】D 【解析】 【分析】先求解四个选项对应函数的定义域,再根据定义域求解值域,即可. 【详解】因为函数13y x =的定义域为R ,值域为R ,不是()0,∞+ 所以选项A 不符合题意.因为函数y =={1x x ≤-或}3x ≥所以值域为[)0,+∞,不是()0,∞+,选项B 不符合题意. 因为函数31x y =-的定义域为R 关于原点对称,3131xxy --==-所以函数31xy =-为偶函数.当0x ≥时3131xx y =-=-,单调递增 当0x <时3131xx y -=-=-,单调递减所以0min 310y =-=即函数31xy =-值域为[)0,+∞,不是()0,∞+,所以选项C 不符合题意.因为函数2y x 的定义域为{}0x x ≠关于原点对称, ()22x x ---=所以函数2yx 为偶函数.当0x >时2210y xx -==>,单调递减 当0x <时2210y x x-==>,单调递减即函数2y x 值域为()0,∞+,所以选项D 符合题意.故选:D【点睛】本题考查求函数的值域,属于中档题. 三、解答题17.已知函数()(),1xf x a a =>在区间[]1,2上的最大值比最小值大2,求实数a 的值.【答案】2 【解析】 【分析】由题意可知,函数()f x 在[]1,2单调递增,则()()212f f -=,解方程,即可. 【详解】函数()(),1xf x a a =>∴函数()f x 在[]1,2单调递增即()()2max 2f x f a ==,()()min 1f x f a ==又函数()(),1xf x a a =>在区间[]1,2上的最大值比最小值大2.∴()()2212f f a a -=-=,解得2a =或1a =-(舍去)综上所述:2a =【点睛】本题考查指数函数的单调性,属于较易题.18.已知函数()f x =.求:(1)函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并加以证明. 【答案】(1)[)(]1,00,1-;(2)偶函数,证明见解析.【解析】 【分析】(1)根据分式分母不为0,开偶次方的根式,被开方式大于或者等于0,列不等式组,求解即可.(2)根据函数奇偶性的定义,证明即可.【详解】(1)若使得函数()f x =有意义则需2010x x ≠⎧⎨-≥⎩解得10x -≤<或01x <≤. 所以函数()f x 的定义域为[)(]1,00,1-.(2)由(1)可知,函数()f x 的定义域为[)(]1,00,1-关于原点对称()()f x f x x-===∴函数()f x 为偶函数.【点睛】本题考查函数的奇偶性,属于较易题.19.甲乙两地的高速公路全长166千米,汽车从甲地进入该高速公路后匀速行驶到乙地,车速[]70,120v ∈(千米/时).已知汽车每小时...的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为20.02v ,固定部分为220元.(1)把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域; (2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?(结果保留整数)【答案】(1)()[]20.0270,120166220,y v vv =+∈;(2)当105v =时,最小运输成本为696元. 【解析】 【分析】(1)由题意可知,汽车的行驶时间为166v(小时),汽车每小时...的运输成本为20020.20v +,从而确定全程运输成本y (元)表示为速度v (千米/时)的函数关系,即可. (2)由(1)可知,()216684110000.0222025y v v v v ⎛⎫=+=+ ⎪⎝⎭,根据对号函数,求解即可. 【详解】(1)因为汽车从甲地进入该高速公路后匀速行驶到乙地,车速[]70,120v ∈(千米/时).所以汽车的行驶时间为166v(小时) 又汽车每小时...的运输成本(以元为单位)由可变部分和固定部分组成:可变部分为20.02v ,固定部分为220元所以汽车每小时...的运输成本为20022.20v +(元) 则全程运输成本()[]20.0270,120166220,y v vv =+∈ (2) 由(1)可知,()216684110000.0222025y v v v v ⎛⎫=+=+ ⎪⎝⎭当v ⎡∈⎣时,函数841100025y v v ⎛⎫=+ ⎪⎝⎭单调递减当v ⎡⎤∈⎣⎦时,函数841100025y v v ⎛⎫=+ ⎪⎝⎭单调递增所以,当105v =≈时,全程运输成本取得最小值即最小运输成本为()2min 1660.02105220696105y =⨯+≈元. 【点睛】本题考查函数的实际应用,属于中档题. 20.已知m 是整数,幂函数()22m m f x x -++=在[)0,+∞上是单调递增函数.(1)求幂函数()f x 的解析式;(2)作出函数()()1g x f x =-的大致图象;(3)写出()g x 的单调区间,并用定义法证明()g x 在区间[)1,+∞上的单调性.【答案】(1)()2f x x =;(2)图象见解析;(3)减区间为(][],1,0,1-∞-;增区间为[][)1,0,1,-+∞,证明见解析.【解析】【分析】(1)根据幂函数()22mm f x x -++=在[)0,+∞上是单调递增函数,可知220m m -++>,解不等式即可.(2)由(1)可知()2f x x =,则()21g x x =-,先画出21y x =-的图象,再将该图象x 轴下方的部分翻折到x 轴上方,即可.(3)根据(2)图象写出单调区间,再根据定义法证明函数单调性,即可.【详解】(1)由题意可知,220m m -++>,即12m -<<因为m 是整数,所以0m =或1m =当0m =时,()2f x x =当1m =时,()2f x x = 综上所述,幂函数()f x 的解析式为()2f x x =. (2) 由(1)可知()2f x x =,则()21g x x =- 函数()g x 的图象,如图所示:(3)由(2)可知,减区间为(][],1,0,1-∞-;增区间为[][)1,0,1,-+∞当[)1,x ∈+∞时,()2211g x x x =-=- 设任意的1x ,[)21x ∈+∞,且120x x ->则()()()()()()2222121212121211g x g x x x x x x x x x -=---=-=-+ 又1x ,[)21x ∈+∞,且120x x ->∴()()120g x g x ->即()g x 在区间[)1,+∞上单调递增.【点睛】本题考查求幂函数的解析式以及画函数图象,单调性的定义法证明.属于中档题.21.已知函数()()()4log 1,0,1a f x x a a =+->≠的反函数()1fx -的图象经过点()5,1P -,函数()2(),21x g x b b R =-∈+为奇函数. (1)求函数()f x 的解析式;(2)求函数()()22xF x g x =+-的零点; (3)设()g x 的反函数为()1gx -,若关于x 的不等式()()1g k x f x -+<在区间()1,0-上恒成立,求正实数k 的取值范围.【答案】(1)()()24log 1f x x =+-;(2)4log 3x =;(3)(]0,4.【解析】【分析】(1)根据原函数与反函数的关系可知,函数()f x 过点()1,5-,代入求解a 值,即可.(2)由题意可知()00g =,解得1b =,从而确定()22121x x F x =-+-+,令()0F x =,即()()21212x x -+=,即43x =,解方程,即可.(3)由题意可知,()()121log ,1,11x g x x x-+=∈--,则不等式()()1g k x f x -+<变形为()2214log 1x k x-<++,令()1,0,1t x t =+∈,则244log 4k t t ⎛⎫<++- ⎪⎝⎭,令244log 4y t t ⎛⎫=++- ⎪⎝⎭,根据函数的单调性,可知244log 44y t t ⎛⎫=++-> ⎪⎝⎭,从而求解正实数k 的取值范围.【详解】(1)由题意,()f x 过点(1,5)-,即()14log 25a f -=+=,解得2a = 所以()()24log 1f x x =+-. (2)()g x 为R 上的奇函数∴()0201021g b b =-=-=+,解得1b =,即()2121x g x =-+ 则()()22x F x g x =+-令()0F x =,即221021x x -+-=+ 则()()()2212121412x x x x -+=-=-=即43x =,解得4log 3x =.(3)由(2)可知()2121x g x =-+ ∴()()121log ,1,11x g x x x-+=∈-- 即()()()12214log 1log 1x k f x g x x x-+<-=+---()()()2222114144log 4log 11x x x x x-+-++=+=+++ 令()1,0,1t x t =+∈,则2224444log 4log 4t t k t t t -+⎛⎫<+=++- ⎪⎝⎭令244log 4y t t ⎛⎫=++- ⎪⎝⎭,()0,1t ∈ 244log 4y t t ⎛⎫=++- ⎪⎝⎭在()0,1t ∈单调递减 ∴22444log 44lo 41g 14y t t ⎛⎫⎛⎫=++->++-= ⎪ ⎪⎝⎭⎝⎭若关于x 的不等式()()1gk x f x -+<在区间()1,0-上恒成立,则4k ≤ 又k 为正实数∴(0,4]k ∈.【点睛】本题考查求函数的解析式,函数的零点,以及恒成立问题求参数取值范围,属于较难的题.。

上海市上海中学2019-2020学年高一数学上学期期末考试试题(含解析)

上海市上海中学2019-2020学年高一数学上学期期末考试试题(含解析)

【详解】因为函数
y
x2
x 2x
5
的定义域为 R

y 1
当 x 0 时,
x 5 2 x,
u
因为
x
5 x

(,
5) 和(
5, ) 上单调递增,在[
5, 0) 和 (0,
5] 上单调递减,
y 1
根据复合函数单调性法则,可知
x
5 x
2
应该在
[
5, 0) 和 (0,
5] 上单调递增,
y x 而函数 x2 2x 5 本身在 x 0 处有意义,且函数图象不间断,
【详解】当 a 1时:函数 y f (x) ax 单调递增,
f 2 a2 2, f (4) a4 4a 2

当 0 a 1时:函数
y
f
(x) ax 单调递减,
f
2 a2
4,
f (4) a4
2
,无解.
综上所述: a 2
故答案为 2
【点睛】本题考查了函数的定义域和值域,分类讨论是一种常用的方法,需要熟练掌握.
意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.
12.已知函数 f (x) || x 1| | x 3 | 1| ,若 f 4a2 6a f (4a) ,则实数 a 的取值范围
为_______.
3
【答案】
4
13 , 3 4
13
1 2
3 4
,
5.函数 f (x) x2 4x(x 0) 的反函数为_________;
【答案】 2 x 4(x 0)
【解析】
【分析】
x 2 y 4 y 0

上海高一上学期期末数学试题(解析版)

上海高一上学期期末数学试题(解析版)

高一上学期期末数学试题一、填空题1化成有理数指数幂的形式为__________. 0)a >【答案】13a 【分析】根据给定条件,利用分数指数幂的意义求解作答. 【详解】. 0a >114111113333444()()()a a a a a +=⋅===故答案为:13a 2.不等式的解集是___________. |1|2x -<【答案】(1,3)-【分析】根据绝对值的意义直接求解即可. 【详解】, |1|2x -< ,212x ∴-<-<解得,13x -<<所以不等式的解集为. (1,3)-故答案为:(1,3)-3.已知a 、b 是方程的两个根,则______. 23410x x -+=11a b+=【答案】4【分析】直接利用韦达定理代入计算即可.【详解】由韦达定理可得,41,33a b ab +==4113413a b a b ab++===故答案为:4.4.已知扇形的弧所对的圆心角为,且半径为,则该扇形的面积为________. 54︒10cm 2cm 【答案】15π【分析】根据角度制与弧度制的互化,可得圆心角,再由扇形面积公式求解即可. 3π10α=【详解】由题意,根据角度制与弧度制的互化,可得圆心角.则该扇形的面积为3π5410α=︒=. 213π1015π210⨯⨯=2cm 故答案为: 15π5.已知,则角属于第____________象限. sin 0tan θθ<θ【答案】二或三【分析】根据题意,结合三角函数在各个象限的符号,即可得到结果. 【详解】因为,即与的符号相反, sin 0tan θθ<sin θtan θ所以为第二或第三象限, θ故答案为: 二或三6.已知是定义在上的奇函数,当时,,则____. ()y f x =R 0x >()21x f x =-(2)f -=【答案】3-【详解】 由题意得,函数为奇函数,所以.()y f x =()2(2)2(21)3f f -=-=--=-7.已知函数的反函数为,若函数的图像过点,则实数a 的()3x f x a =+1()y f x -=1()y f x -=(3,2)值为__________. 【答案】-6【分析】由的图象过点得函数的图象过点,把点代入1()y f x -=(3,2)()y f x =(2,3)(2,3)()y f x =的解析式求得的值.a 【详解】解:的图象过点,1()y f x -= (3,2)函数的图象过点,∴()y f x =(2,3)又,()3x f x a =+,即.233a ∴+=6a =-故答案为:. 6-8.已知,则____________. cos )ααβ=-=π,0,2αβ⎛⎫∈ ⎪⎝⎭cos(2)αβ-=【分析】根据,得到,求出π,0,2αβ⎛⎫∈ ⎪⎝⎭ππ,22αβ⎛⎫-∈- ⎪⎝⎭sin )ααβ=-=法,结合余弦的和角公式求出答案.【详解】,故,π,0,2αβ⎛⎫∈ ⎪⎝⎭ππ,22αβ⎛⎫-∈- ⎪⎝⎭因为,所以,sin()0αβ-=>π0,2αβ⎛⎫-∈ ⎪⎝⎭所以,sin )ααβ==-==故()()()()2cos cos cos sin sin cos αβααβααβααβ⎡⎤-=+--⎦=--⎣. ==9.在数学解题中,时常会碰到形如“”的式子,它与“两角和的正切公式”的结构类似.若1x yxy+-,则________.sincos855tan 15cos sin 55a b a b πππππ+=-b a =【分析】将已知条件左边分式分子分母同时除以,结合两角和的正切公式,求得的值. cos5a πba【详解】由已知分子分母同时除以得,sincos855tan 15cos sin 55a b a b πππππ+=-cos 5a π. tan85tan 151tan 5ba b a πππ+=-又,所以. tantan853tantan()15531tan tan 35πππππππ+=+=-tan 3b a π=【点睛】本小题主要考查两角和的正切公式,考查齐次方程的计算,属于中档题.10.若函数有2个零点,则实数a 的取值范围是______.()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩【答案】(](]2,01,2- 【分析】画出的图像,分,,,,讨()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩2a ≤-20a -<≤01a <≤12a <≤2a >论观察图像可得答案.【详解】当时,函数零点为1,只有1个零点2a ≤-()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,1,有2个零点,符合;20a -<≤()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,0,1,有3个零点;01a <≤()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩当时,函数零点为-2,0,有2个零点;12a <≤()2,1,x x x x af x x x a⎧-<=⎨-≥⎩当时,函数零点为-2,0,2,有3个零点;2a >()2,1,x x x x af x x x a ⎧-<=⎨-≥⎩综上:实数a 的取值范围是 (](]2,01,2- 故答案为:.(](]2,01,2- 【点睛】思路点睛:对于分段函数的零点问题,注意根据两段函数的零点合理分类,分类时注意按一定的次序进行.二、单选题11.以下命题正确的是( ) A .终边重合的两个角相等 B .小于 的角都是锐角 90 C .第二象限的角是钝角 D .锐角是第一象限的角【答案】D【分析】根据象限角的定义判断求解即可.【详解】对于A,例如和中边相同,但两个角不相等,故A 错误;30 390对于B,例如,但不是锐角,故B 错误;090< 0 对于C,例如是第二象限角,但不是钝角,故C 错误; 210- 210- 因为锐角为大于小于,所以锐角在第一象限,故D 正确. 0 90 故选:D.12.若函数的一个正零点附近的函数值用二分法计算,其参考数据如下:32()22f x x x x =+-- (1)2f =- (1.5)0.625f = (1.25)0.984f =-(1.375)0.260f =-(1.4375)0.162f =(1.40625)0.054f =-那么方程的一个近似根(精确度0.1)为( ).A .1.2 B .1.4 C .1.3 D .1.5 32220x x x +--=【答案】B【分析】根据二分法求零点的步骤以及精确度可求得结果.【详解】解:因为,所以,所以函数在内有零点,因为(1)0,(1.5)0f f <>(1)(1.5)0f f <(1,1.5),所以不满足精确度;1.510.50.1-=>0.1因为,所以,所以函数在内有零点,因为(1.25)0f <(1.25)(1.5)0f f <(1.25,1.5),所以不满足精确度;1.5 1.250.250.1-=>0.1因为,所以,所以函数在内有零点,因为(1.375)0f <(1.375)(1.5)0f f <(1.375,1.5),所以不满足精确度;1.5 1.3750.1250.1-=>0.1因为,所以,所以函数在内有零点,因为(1.4375)0f >(1.4375)(1.375)0f f <(1.375,1.4375),所以满足精确度;1.4375 1.3750.06250.1-=<0.1所以方程的一个近似根(精确度)是区间内的任意一个值(包32220x x x +--=0.05(1.375,1.4375)括端点值),根据四个选项可知选B . 故选:B13.已知全集及集合,,则的U =R 2128,4aA a a -⎧⎫=≤<∈⎨⎬⎩⎭Z {}23100B b b b b =+->∈R ,A B 元素个数为( ) A .4 B .3C .2D .1【答案】B【分析】可求出集合,,然后进行交集和补集的运算求出,然后即可得出的元素个A B A B A B 数.【详解】解:,2128,4a A a a -⎧⎫=≤<∈⎨⎬⎩⎭Z {}23100B b b b b =+->∈R ,,,,1,2,3,,或,且{|223A a a ∴=--<…}{|14a Z a a ∈=-<…}{0a Z ∈=4}{|5B b b =<-2}b >,U =R ,, ∴{|52}B b b =-……{0,1,2}A B = 的元素个数为:3.∴A B 故选:. B 14.函数,因其图像类似于汉字“囧”,故被称为“囧函数”,下列说法中正确的个数为1()||1f x x =-( )①函数的定义域为; ②; ()f x {}1x x ≠2022((2023))2021f f =-③函数的图像关于直线对称; ④当时,函数的最大值为; ()f x 1x =(1,1)x ∈-()f x 1-⑤方程有四个不同的实根. 2()40f x x -+=A .2 B .3C .4D .5【答案】B【分析】根据分式分母不为零可求得定义域判断①;利用解析式可求得判断()f x ()()2023f f ②;通过判断③;分别在和的情况下得到,判断④;利用()()20f f ≠(]1,0x ∈-[)0,1x ∈()max f x 数形结合判断⑤.【详解】对于①,由得:,的定义域为,①错误;10x -≠1x ≠±()f x \{}1x x ≠±对于②,,,②正确;()120232022f = ()()112022202312022202112022f f f ⎛⎫∴===-⎪⎝⎭-对于③,,,, ()12121f ==- ()10101f ==--()()20f f ∴≠不关于直线对称,③错误;()f x \1x =对于④,当时,,此时; (]1,0x ∈-()1111f x x x ==---+()()01f x f ≤=-当时,,此时; [)0,1x ∈()11f x x =-()()01f x f ≤=-综上所述:当时,,④正确;()1,1x ∈-()max 1f x =-对于⑤,在平面直角坐标系中,作出与的大致图象,()f x 24y x =-由图象可知与有四个不同交点,()f x 24y x =-方程有四个不同的根,⑤正确.∴()240f x x -+=所以正确的个数为3. 故选:B.三、解答题15.已知,求下列各式的值:1tan 2,tan 42παβ⎛⎫+==- ⎪⎝⎭(1);tan α(2). sin()2sin cos 2sin sin cos()αβαβαβαβ+-++【答案】(1)13(2) 1-【分析】(1)两角和的正切展开求解.(2)两角和的正余弦展开合并同类项,再运用两角和的正余的逆运用转化为正切求解.【详解】(1) πtantan π1tan 4tan 2π41tan 1tan tan 4ααααα++⎛⎫+=== ⎪-⎝⎭-⋅1tan 3α∴=(2)()()sin sin cos cos sin ,cos cos cos sin sin αβαβαβαβαβαβ+=⋅+⋅+=⋅-⋅sin()2sin cos 2sin sin cos()2sin sin cos cos sin 2sin cos cos s c s in o sin sin αβαβαβαβαβαβαβαβαβαβ+-∴=++⋅+⋅-⋅⋅-+⋅ ()()()sin cos sin sin cos tan sin sin cos cos cos βααβαββααβαββα-⋅-⋅===-⋅+⋅-又 ()11tan tan 523tan 1111tan tan 61132βαβααβ-----====-+⋅-⎛⎫+⨯- ⎪⎝⎭sin()2sin cos 12sin sin cos()αβαβαβαβ+-∴=-++16.某小微公司每年燃料费约20万元.为了“环评”达标,需要安装一块面积为(单位:平()0x x ≥方米)可用10年的太阳能板,其工本费为(单位:万元),并与燃料供热互补工作,从此,公司2x每年的燃料费为(,k 为常数)万元.记y 为该公司10年的燃料费与安装太阳能板1040kx +0x ≥的费用之和.(1)求k 的值,并写出函数的表达式;()y f x =(2)求y 的最小值,并指出此时所安装的太阳能板的面积x . 【答案】(1),(); 800k =80042xy x =++0x ≥(2)38万元,安装的太阳能板的面积为36平方米.【分析】(1)根据每年的燃料费计算可得k 值,进而写出函数的表达式. ()y f x =(2)利用(1)中函数表达式结合均值不等式即可计算最小值及所对x 值. 【详解】(1)依题意,当时,,解得, 0x =2040k=800k =于是得该公司10年的燃料费与安装太阳能板的费用之和,,800800101040242x xy x x =⋅+=+++0x ≥所以,函数的表达式为,. 800k =()y f x =80042xy x =++0x ≥(2)由(1)知,,, 0x ≥8004223842x y x +=+-≥=+当且仅当,即时取“=”, 800442x x +=+36x =所以y 的最小值是38万元,此时所安装的太阳能板的面积为36平方米. 17.已知函数的表达式为.()y f x =()9233x x f x a =-⋅+(1)若,求函数的值域; 1,[0,1]a x =∈()y f x =(2)当时,求函数的最小值;[1,1]x ∈-()y f x =()h a (3)对于(2)中的函数,是否存在实数,同时满足下列两个条件:(i );(ii )()h a ,m n 3n m >>当的定义域为,其值域为;若存在,求出的值;若不存在,请说明理由. ()h a [,]m n 22,m n ⎡⎤⎣⎦,m n 【答案】(1)[]2,6(2)22821,9331()3,33126,3aa h a a a a a ⎧-<⎪⎪⎪=-≤≤⎨⎪->⎪⎪⎩(3)不存在,理由见解析【分析】(1)由,利用的范围可得的范围,进而可得答案;()2312x y =-+x 3x (2)令,函数可转化为,分、、讨论可得答3x t =()f x ()()223g t t a a =-+-13a <133a ≤≤3a >案;(3)假设满足题意的,存在,函数在上是减函数,求出的定义域、值域,列m n ()h a ()3,+∞()h a 出方程组,求解与已知矛盾,即可得到结论.【详解】(1)当时,由,得,1a =9233x x y =-⨯+()2312x y =-+因为,所以,,[]0,1x ∈[]31,3x∈[]2,6y ∈所以函数的值域为.()y f x =[]2,6(2)令,因为,故,函数可转化为3x t =[]1,1x ∈-1,33t ⎡⎤∈⎢⎥⎣⎦()f x , ()()222233g t t at t a a =-+=-+-①当时,;13a <()1282393ah a g ⎛⎫==- ⎪⎝⎭②当时,;133a ≤≤()()23h a g a a ==-③当时,.3a >()()3126h a g a ==-综上所述,. ()22821,93313,33126,3a a h a a a a a ⎧-<⎪⎪⎪=-≤≤⎨⎪->⎪⎪⎩(3)假设满足题意的,存在,m n 因为,,3n m >>()126h a a =-所以在上是严格减函数,()y h a =()3,+∞所以在上的值域为,()y h a =[],m n ()(),⎡⎤⎣⎦h n h m 又在上的值域为,所以,即, ()y h a =[],m n 22,m n ⎡⎤⎣⎦()()22h n m h m n ⎧=⎪⎨=⎪⎩22126126n m m n ⎧-=⎨-=⎩两式相减,得,()()()226m n m n m n m n -=-=+-因为,所以,3n m >>6m n +=而由,可得,与矛盾.3n m >>6m n +>6m n +=所以,不存在满足条件的实数,.m n 18.已知函数的定义域是使得解析式有意义的x 集合,如果对于定义域内的任意实数x ,函数()f x 值均为正,则称此函数为“正函数”.(1)证明函数是“正函数”; ()()2lg 11f x x =++(2)如果函数不是“正函数”,求正数a 的取值范围. ()11a f x x x =+-+(3)如果函数是“正函数”,求正数a 的取值范围. ()()()222242122x a x a f x x a x a +--+=+--+【答案】(1)证明见解析,(2)(3)(,1]-∞(){}6,13- 【解析】(1)有题知:,即证.()1f x ≥(2)首先讨论当时,显然不是“正函数”. 当时,从反面入手,假设0a ≤()11a f x x x =+-+0a >是“正函数”,求出的范围,再取其补集即可.()f x a (3)根据题意得到:或,解方程和不等式组即可. 22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩12242122a a a a --+==--+【详解】(1).2()lg(1)1lg111f x x =++≥+=函数值恒为正数,故函数是“正函数”.2()lg(1)1f x x =++(2)当时,,0a ≤(0)10f a =-<显然不是“正函数”. ()11a f x x x =+-+当时0a >假设为“正函数”.则恒大于零. ()11a f x x x =+-+()f x. ()1221a f x x x =++-≥+所以,即20->1a >所以不是“正函数”时, ()11a f x x x =+-+.01a <≤综上:.1a ≤(3)有题知:若函数是“正函数”, ()22(2)242(1)22x a x a f x x a x a +--+=+--+则或. 22(2)4(42)0(1)8(22)0a a a a ⎧---<⎨---<⎩12242122a a a a --+==--+解得:或.61a -<<3a =【点睛】本题主要考查函数的新定义,同时考查了对所学知识的综合应用,属于难题.。

上海高一上数学期末考试试卷

上海高一上数学期末考试试卷
【解析】
【分析】
根据原函数与反函数的关系,解方程 ,即可.
【详解】
令 解得
函数 的反函数为 .
故答案为:
13.1
【解析】
【分析】
根据函数 为偶函数,则定义域关于原点的对称,且 ,列方程组得 ,解方程组即可.
【详解】
函数 是定义域为 的偶函数
,解得 ,

故答案为:
14.10或100
【解析】
【分析】
令 ,则方程 变形为 ,解得 或 ,即 或 ,解方程即可.
16.
【解析】
【分析】
根据 为奇函数,且在 上是减函数,可知 ,即 ,令 ,根据函数 在 上单调递增,求解 的取值范围,即可.
【详解】
为奇函数,且在 上是减函数
在 上是减函数.
∴ ,即 .
令 ,则 在 上单调递增.
若使得不等式 在 上都成立.
则需 .
故答案为:
17.
【解析】
【分析】
由题意可知,函数 在 单调递增,则 ,解方程,即可.
【详解】
(1)由题意, 过点 ,即 ,解得
所以 .
(2) 为 上的奇函数
∴ ,解得 ,即

令 ,即

即 ,解得 .
(3)由(2)可知

令 ,则
令 ,
在 单调递减

若关于 的不等式 在区间 上恒成立,则
又 为正实数
∴ .
【详解】
函数
函数 在 单调递增
即 ,
又 函数 在区间 上的最大值比最小值大 .
,解得 或 (舍去)
综上所述:
18.(1) ;(2)偶函数,证明见解析.
【解析】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档