上海市上海交通大学附属中学2019-2020学年高一上学期期末数学试题(解析版)
2019-2020学年上海市中学高一上学期期末数学试题及答案解析

2019-2020学年上海市中学高一上学期期末数学试题及答案解析一、单选题1.已知复数113z i =+,23z i =+(i 为虚数单位),在复平面内,12z z -对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】利用复数的减法求出复数12z z -,即可得出复数12z z -对应的点所在的象限.【详解】复数113z i =+,23z i =+,()()1213322z z i i i ∴-=+-+=-+, 因此,复数12z z -在复平面内对应的点在第二象限. 故选B. 【点睛】本题考查复数的几何意义,同时也考查了复数的减法运算,利用复数的四则运算法则将复数表示为一般形式是解题的关键,考查计算能力,属于基础题.2.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( ) A .B .4C .D .以上都不对【解析】根据向量的运算,化简得1212222MF MF MN MO MN NO+-=-=,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点, 根据向量的运算,可得122222MF MFMN MO MN NO+-=-=,又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥,所以122224MF MFMN NO a +-=≥=,即122MF MFMN+-的最小值为4.故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 3.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=【答案】B【解析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =,从而可求解.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22aBF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得3n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑二、填空题4.椭圆22154x y +=的焦距等于________【答案】2【解析】根据椭圆方程,求出,a b ,即可求解. 【详解】设椭圆的焦距为2c ,椭圆方程为22154x y +=, 225,4,1a b c ∴==∴=.故答案为:2. 【点睛】本题考查椭圆标准方程及参数的几何意义,属于基础题.5.双曲线221169x y -=的两条渐近线的方程为________.【答案】34yx 【解析】令220169x y -=解得结果【详解】令220169x y -=解得两条渐近线的方程为34yx 【点睛】本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题.6.若线性方程组的增广矩阵是123c ⎛⎫⎪,其解为1x =⎧⎨,则12c c +=________【答案】6【解析】本题可先根据增广矩阵还原出相应的线性方程组,然后将解11x y =⎧⎨=⎩代入线性方程组即可得到1c 、2c 的值,最终可得出结果. 【详解】解:由题意,可知:此增广矩阵对应的线性方程组为:1223x y c y c +=⎧⎨=⎩, 将解11x y =⎧⎨=⎩代入上面方程组,可得:1251c c =⎧⎨=⎩. 126c c ∴+=.故答案为:6. 【点睛】本题主要考查线性方程组与增广矩阵的对应关系,以及根据线性方程组的解求参数.本题属基础题. 7.已知复数22iz i+=,则z 的虚部为________.【答案】-1【解析】先根据复数的除法中的分母实数化计算出z 的结果,然后根据z 的结果直接确定虚部. 【详解】 因为()22242122242i i i i z i i i i +⋅+-====-⋅-,所以z 虚部为1-.【点睛】(1)复数的除法运算,采用分母实数化的方法,根据“平方差公式”的形式完成分母实数化;(2)复数z a bi =+,则z 的实部为a ,虚部为b ,注意实、虚部都是数值.8.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于________。
2020年上海交通大学附属中学高一数学理上学期期末试题含解析

2020年上海交通大学附属中学高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若∈(),且3cos2=sin(),则sin2的值为A.一 B. C.一 D.参考答案:A2. 奇函数在是增函数,且,若函数对所有的,都成立,求实数的取值范围()B. C. 或 D. 或或参考答案:D略3. 设A={}, B={}, 下列各图中能表示从集合A到集合B的映射是( )参考答案:D4. 使根式分别有意义的的允许值集合依次为M、F,则使根式有意义的的允许值集合可表示为()A、 B、 C、 D、参考答案:B5. 已知函数,则f[f(﹣1)]=()A.0 B.1 C.2 D.参考答案:C【考点】分段函数的应用.【分析】由已知中函数,将x=﹣1代入可得答案.【解答】解:∵函数,∴f(﹣1)=1,∴f[f(﹣1)]=f(1)=2,故选:C6. 如果集合中只有一个元素,则的值是()A.0B.0或1C.1D.不能确定参考答案:B7. 如果sin α + cos α > tan α + cot α,那么角α的终边所在的象限是()(A)一或二(B)二或三(C)二或四(D)一或四参考答案:C8. 已知表示三条不同的直线,表示两个不同的平面,下列说法中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则参考答案:D【分析】利用线面平行、线面垂直的判定定理与性质依次对选项进行判断,即可得到答案。
【详解】对于A,当时,则与不平行,故A不正确;对于B,直线与平面平行,则直线与平面内的直线有两种关系:平行或异面,故B不正确;对于C,若,则与不垂直,故C不正确;对于D,若两条直线垂直于同一个平面,则这两条直线平行,故D正确;故答案选D【点睛】本题考查空间中直线与直线、直线与平面位置关系相关定理的应用,属于中档题。
9. 若某几何体的三视图如图所示,则这个几何体的直观图可以是()A. B.C. D.参考答案:D试题分析:由已知中三视图的上部分有两个矩形,一个三角形,故该几何体上部分是一个三棱柱,下部分是三个矩形,故该几何体下部分是一个四棱柱.考点:三视图.10. 如图在三棱锥中,E?F是棱AD上互异的两点,G?H是棱BC上互异的两点,由图可知①AB与CD互为异面直线;②FH分别与DC?DB互为异面直线;③EG与FH互为异面直线;④EG与AB互为异面直线.其中叙述正确的是 ( )A.①③B.②④C.①②④D.①②③④参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 函数的定义域为______________________参考答案:12. 集合的非空真子集的个数为_____________.参考答案:6略13. 函数的图像恒过的点是______________参考答案:(1,-1)14. 下列四个命题:(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;(3)y=x2﹣2|x|﹣3的递增区间为[1,+∞);(4)y=1+x和y=表示相等函数.(5)若函数f(x﹣1)的定义域为[1,2],则函数f(2x)的定义域为.其中正确的命题是(写出所有正确命题的序号)参考答案:(5)【考点】命题的真假判断与应用.【分析】(1),如函数y=﹣,在x>0时是增函数,x<0也是增函数,不能说f(x)是增函数;(2),若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0,a>0或a<0,a=b=0时,与x轴没有交点,(3),y=x2﹣2|x|﹣3的递增区间为[1,+∞),(﹣∞,﹣1];(4),y=1+x和y=的对应法则、值域不一样,表示不相等函数.(5),若函数f(x﹣1)的定义域为[1,2]?0≤x﹣1≤1,则函数f(2x)满足0≤2x≤1,定义域为.【解答】解:对于(1),如函数y=﹣,在x>0时是增函数,x<0也是增函数,不能说f(x)是增函数,故错;对于(2),若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0,a>0或a<0,a=b=0时,与x轴没有交点,故错,对于(3),y=x2﹣2|x|﹣3的递增区间为[1,+∞),(﹣∞,﹣1],故错;对于(4),y=1+x和y=的对应法则、值域不一样,表示不相等函数,故错.对于(5),若函数f(x﹣1)的定义域为[1,2]?0≤x﹣1≤1,则函数f(2x)满足0≤2x≤1,定义域为,故正确.故答案为:(5)15. 直线被圆截得的弦长为.参考答案:16. 把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是____参考答案:一条直线两点17. 已知关于x,y的不等式组,表示的平面区域内存在点,满足,则m的取值范围是______.参考答案:【分析】作出不等式组对应的平面区域,要使平面区域内存在点点满足,则平面区域内必存在一个C点在直线的下方,A在直线是上方,由图象可得m的取值范围.【详解】作出x,y的不等式组对应的平面如图:交点C的坐标为,直线的斜率为,斜截式方程为,要使平面区域内存在点满足,则点必在直线的下方,即,解得,并且A在直线的上方;,可得,解得,故m的取值范围是:故答案为【点睛】本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强.在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域?②求出可行域各个角点的坐标?③将坐标逐一代入目标函数?④验证,求出最优解.三、解答题:本大题共5小题,共72分。
2019-2020学年上海市上海中学高一上学期期末数学试题解析

2019-2020学年上海市上海中学高一上学期期末数学试题一、单选题1)A BC D答案:C调区间,借助于自变量的大小,得到函数值的大小,从而得到结果解:项不正确;观察B、C、D三项很明显C项正确,故选:C.点评:该题考查的是有关根据偶函数在给定区间上的单调性,判断函数值的大小的问题,涉及到的知识点有偶函数图象的对称性,偶函数的定义,根据单调性比较函数值的大小,属于简单题目.21)A B C D答案:D首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 解:设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x ,再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +,该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 点评:该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目. 3.设方程3|ln |xx -=的两个根1x 、2x ,则( )A .120x x <B .121=x xC .121x x >D .121x x <答案:D作出函数图象,根据图象和对数的运算性质即可求出答案. 解:作出函数图象如图所示:若方程3ln xx -=的两根为12,x x ,则1201x x <<<,12123ln ,3ln x x x x --==故选:D.点评:该题考查的是有关方程的根的大小的判断,涉及到的知识点有对数的运算法则,解决方程根的问题时,可以应用图象的交点来完成,属于简单题目.4()A B C D答案:B. 解:故选:B.点评:该题以分段函数的形式考查了函数的值域,函数解析式的求解,以及利用恒成立求参数取值范围的问题,属于较难题目,解决该题的关键是利用条件可分析函数的图象,利用数形结合比较好分析.二、填空题5_________.在保证对数式的真数大于0的前提下由对数的差等于商的对数去掉对数符号,求解分式方程得答案.解:点评:该题考查的是有关对数方程的求解问题,在解题的过程中,注意对数式有意义的条件,对数式的运算法则,属于基础题目.6________.根据指数函数的值域,结合根式有意义的条件,求得函数的值域,得到答案.解:点评:该题考查的是有关函数的值域的求解问题,属于基础题目.7先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项.解:点评:该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目.8;.解:.点评:本题考查了函数的定义域和值域,分类讨论是一种常用的方法,需要熟练掌握.9_________;.解:点评:本题考查了反函数的计算,忽略掉定义域是容易发生的错误.10_______.将0写成1. 解:点评:该题考查的是有关对数不等式的解法,在解题的过程中,注意结合函数有意义的条件,应用对数函数的单调性,属于简单题目.11________.答案:奇函数 2数,得到结果. 解:2的周期函数,故答案为:奇函数. 点评:该题考查的是有关函数奇偶性的判断问题,在解题的过程中,注意借助于函数的周期性来完成,属于简单题目. 12_______.结合复合函数的单调性法则,.解:递减,根据复合函数单调性法则,点评:该题考查的是有关函数单调区间的求解问题,涉及到的知识点有对勾函数的单调区间,复合函数单调性法则,属于简单题目.13__________..解:点评:该题考查的是有关根据函数的单调性确定参数的取值范围的问题,涉及到的知识点有指数型函数的单调性,对勾函数的单调区间,复合函数单调性法则,属于中档题目.14_________.根据式子的意义,只有一个正根,画出函数图象求得结果.解:可知所求m 的取值范围是:1(,1]4,故答案为:1(,1]4.点评:该题考查的是有关根据方程根的情况求参数的取值范围的问题,在解题的过程中,注意将问题正确转化,注意应用函数图象解决问题,属于简单题目. 15.已知函数23()4f x ax =+,()ag x x x =+,对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,则a 的取值范围为__________. 答案:5,42⎡⎤⎢⎥⎣⎦对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,等价于min max ()()f x g x ≥在区间[1,2]上恒成立,对a 的取值进行分类讨论,利用单调性求出min ()f x 和min ()g x ,列出关于a 的不等式组求得答案.解:当0a <时,23()4f x ax =+在区间[1,2]上单调递减,min 3()(2)44f x f a ==+,()ag x x x=+在区间[1,2]上单调递增,min ()1g x a =+, 所以3414a a +≥+,解得112a ≥,因为0a <,所以无解; 当0a ≥时,可知min 3()(1)4f x f a ==+, 当01a ≤≤时,()ag x x x=+在区间[1,2]上单调递增,其最小值为(1)1g a =+,点评:该题考查的是有关根据恒成立求参数的取值范围的问题,涉及到的知识点有根据题意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.16值范围为_______.会出现哪些情况,列出对应的式子求解即可.解:画出函数图象如图所示:可以看到(2)(3)1f f ==,要使2(46)(4)f a a f a +=,则有以下几种情况:①246141a a a ⎧+≤⎨≤⎩,解得31331344x ---+≤≤; ②22146 2.514 2.5464a a a a a a ⎧<+≤⎪<≤⎨⎪+=⎩,无解; ③222.54632.543464a a a a a a ⎧<+≤⎪<≤⎨⎪+=⎩,无解. ④2214631434645a a a a a a ⎧<+≤⎪<≤⎨⎪++=⎩,无解; ⑤246343a a a ⎧+≥⎨≥⎩,解得34a ≥,⑥246243a a a ⎧+=⎨≥⎩,无解; ⑦246342a a a ⎧+≥⎨=⎩,解得12a =;所以a 的取值范围为31331313[,][,)4424---+⎧⎫+∞⎨⎬⎩⎭U U , 故答案为:31331313[,][,)4424---+⎧⎫+∞⎨⎬⎩⎭U U . 点评:该题考查的是有关根据函数值相等,求参数的取值范围的问题,涉及到的知识点有含有绝对值的式子的化简,函数值相等的条件,属于中档题目.三、解答题17(1(2.答案:(1(2(1(2. 解:(1(2点评:该题考查的是有关根据函数在某一区间上的解析式,结合函数奇偶性的定义,求得函数的解析式,属于简单题目.18(1(2.答案:(1(2(1)(2. 解:(1(2点评:该题考查的是有关求方程的解或者方程在某个区间上有解求参数的取值范围的问题,在解题的过程中,注意换元思想的应用,以及二次函数在某个区间上的值域的求解方法,属于中档题目.19.某环线地铁按内、外线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异),新调整的方案要求内环线列车平均速度为20千米/小时,外环线列车平均速度为30千米/小时,现内、外环线共有18列车.(1(2)要使内、外环线乘客的最长候车时问之差距不超过1分钟,问内、外环线应各投入几列列车运行?(3)要使内、外环线乘客的最长候车时间之和最小,问内、外环线应各投入几列列车运行?答案:(1(2)内环线11列列车,外环线7列列车;(3)内环线10列列车,外环线8列列车..(1)根据题意,结合最长候车时间等于两列列车对应的时间差,列车式子得出结果,注意自变量的取值范围;(2)根据题意,列出对应的不等关系式,求解即可,在解的过程中,注意自变量的取值范围;(3)根据题意,列出式子,结合对勾函数的单调性,求得函数的变化趋势,最后求得.解:(1(2所以当内环线投入11列列车运行,外环线投入7列列车时,内外环线乘客的最长候车时间之差不超过1分钟; (3所以内环线10列列车,外环线8列列车时,内、外环线乘客的最长候车时间之和最小. 点评:该题考查的是有关函数的应用题,涉及到的知识点有建立函数模型,求解不等式,求函数的最小值,属于较难题目.20(1(2(3答案:(1)属于;(2(3)证明见解析(1(2结果;(3解:(1此方程恒成立,(2(3点评:该题考查的是有关函数的问题,涉及到的知识点有新定义,方程有解转化为函数有零点,分类讨论思想,属于难题.21(1点;(2(3.答案:(1(2)单调递增;(3(1(2)将函数解析式中的绝对值符号去掉,得到分段函数,利用导数,分类讨论求得函数的单调性;(3)化简函数解析式,将不等式转化,找出不等式恒成立的关键条件,得到结果. 解:(1(2,(3点评:该题考查的是有关函数的综合题,涉及到的知识点有绝对值的意义,求函数的零点,应用导数研究函数的单调性,根据恒成立求参数的取值范围,属于难题.。
2019-2020学年上海交大附中高一(上)期末数学试卷

2019-2020学年上海交大附中高一(上)期末数学试卷试题数:21.满分:01.(填空题.3分)弧度数为2的角的终边落在第___ 象限.2.(填空题.3分)若幂函数f (x )=x α图象过点 (2,12) .则f (3)=___ . 3.(填空题.3分)已知 sinα+cosαsinα−2cosα =2.则tanα的值为___ . 4.(填空题.3分) cos 23π8−sin 23π8=___ . 5.(填空题.3分)已知lg2=a.10b =3.则log 125=___ .(用a 、b 表示) 6.(填空题.3分)若tanα= 43 ;则cos (2α+ π2 )=___ . 7.(填空题.3分)已知函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1的值域为R.则实数a 的取值范围是___ .8.(填空题.3分)已知θ∈(0. π2 ).2sin2θ=1+cos2θ.则tanθ=___ . 9.(填空题.3分)已知α∈(- π2.0).sin (π-2α)=- 12.则sinα-cosα=___10.(填空题.3分)已知锐角α.β满足sin (2α+β)=3sinβ.则tan (α+β)cotα=___ . 11.(填空题.3分)已知α.β∈(0.π).且tan (α-β)=2√33 .tanβ=- 5√311.2α-β的值为___ .12.(填空题.3分)已知f (x )是定义域为R 的单调函数.且对任意实数x.都有f[f (x )+34x +1 ]= 25.则f (log 2sin17π6)=___ . 13.(单选题.3分)“sinα<0”是“α为第三、四象限角”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件14.(单选题.3分)A 为三角形ABC 的一个内角.若sinA+cosA= 1225.则这个三角形的形状为( ) A.锐角三角形 B.钝角三角形 C.等腰直角三角形D.等腰三角形15.(单选题.3分)已知函数f(x)=log a(6-ax)在x∈[2.3)上为减函数.则a的取值范围是()A.(1.2)B.(1.2]C.(1.3)D.(1.3]16.(单选题.3分)设x1.x2分别是f(x)=x-a-x与g(x)=xlog a x-1(a>1)的零点.则x1+9x2的取值范围是()A.[8.+∞)B.(10.+∞)C.[6.+∞)D.(8.+∞)17.(问答题.0分)已知α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.(1)求tan2α的值;(2)求cosβ的值.18.(问答题.0分)已知函数f(x)=3x-a•3-x.其中a为实常数;(1)若f(0)=7.解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性.并说明理由.19.(问答题.0分)高境镇要修建一个扇形绿化区域.其周长为400m.所在圆的半径为r.扇形的圆心角的弧度数为θ.θ∈(0.2π).(1)求绿化区域面积S关于r的函数关系式.并指数r的取值范围:(2)所在圆的半径为r取何值时.才能使绿化区域的面积S最大.并求出此最大值.20.(问答题.0分)已知函数y=f(x)的定义域为(1.+∞).对于定义域内的任意实数x.有f (2x)=2f(x)成立.且x∈(1.2]时.f(x)=log2x.(1)当x∈(1.23]时.求函数y=f(x)的最大值;(2)当x∈(1.23.7]时.求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1).求实数b的最小值.21.(问答题.0分)已知函数f(x)=log a(x+ √x2−1).x∈(1.+∞).a>0且a≠1.(1)若a为整数.且f(2a+2−a2)=2.试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f -1(x).若f-1(n)<4n+4−n2(n∈N*).试确定a的取值范围;(3)若a=2.此时y=f(x)的反函数为y=f-1(x).令g(x)= 2f −1(x)+k2f−1(x)+1.若对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.试确定实数k的取值范围.2019-2020学年上海交大附中高一(上)期末数学试卷参考答案与试题解析试题数:21.满分:01.(填空题.3分)弧度数为2的角的终边落在第___ 象限.【正确答案】:[1]二【解析】:根据题意.分析可得π2<2<π.由象限角的定义分析可得答案.【解答】:解:根据题意. π2<2<π.则弧度数为2的角的终边落在第二象限.故答案为:二【点评】:本题考查象限角.涉及弧度制的应用.属于基础题.2.(填空题.3分)若幂函数f(x)=xα图象过点(2,12) .则f(3)=___ .【正确答案】:[1] 13【解析】:根据题意求出幂函数的解析式.再计算f(3)的值.【解答】:解:幂函数f(x)=xα图象过点(2,12) .则2α= 12.解得α=-1.∴f(x)=x-1;∴f(3)=3-1= 13.故答案为:13.【点评】:本题考查了幂函数的定义与应用问题.是基础题.3.(填空题.3分)已知sinα+cosαsinα−2cosα=2.则tanα的值为___ .【正确答案】:[1]5【解析】:利用同角三角函数基本关系式化简已知等式即可得解.【解答】:解:∵ sinα+cosαsinα−2cosα = tanα+1tanα−2=2.∴tanα=5.故答案为:5.【点评】:本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.4.(填空题.3分)cos23π8−sin23π8=___ .【正确答案】:[1]- √22【解析】:利用二倍角公式、诱导公式.求得所给式子的值.【解答】:解:cos23π8−sin23π8=cos 6π8=-cos π4=- √22.故答案为:−√22.【点评】:本题主要考查二倍角公式、诱导公式的应用.属于基础题.5.(填空题.3分)已知lg2=a.10b=3.则log125=___ .(用a、b表示)【正确答案】:[1] 1−a2a+b【解析】:化指数式为对数式.把要求解的式子利用对数的换底公式化为含有lg2和lg3的代数式得答案.【解答】:解:∵10b=3.∴lg3=b.又lg2=a.∴log125= lg5lg12=lg102lg(3×4)=1−lg2lg3+2lg2=1−a2a+b.故答案为:1−a2a+b.【点评】:本题考查了对数的换底公式.考查了对数的运算性质.是基础题.6.(填空题.3分)若tanα= 43;则cos(2α+ π2)=___ .【正确答案】:[1]- 2425.【解析】:利用诱导公式.二倍角的正弦函数公式.同角三角函数基本关系式化简所求即可求解.【解答】:解:∵tanα= 43.∴cos(2α+ π2)=-sin2α= −2sinαcosαsin2α+cos2α= −2tanα1+tan2α= −2×431+169=- 2425.故答案为:- 2425 .【点评】:本题主要考查了诱导公式.二倍角的正弦函数公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题. 7.(填空题.3分)已知函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1的值域为R.则实数a 的取值范围是___ .【正确答案】:[1][0. 12 )【解析】:根据分段函数的表达式.分别求出每一段上函数的取值范围进行求解即可.【解答】:解:当x≥1时.f (x )=2x-1≥1. 当x <1时.f (x )=(1-2a )x+3a.∵函数f (x )= {(1−2a )x +3a ,x <12x−1,x ≥1 的值域为R.∴(1-2a )x+3a 必须到-∞.即满足: {1−2a >01−2a +3a ≥1.解得0≤a < 12 .故答案为:[0. 12 ).【点评】:本题考查了函数的性质.运用单调性得出不等式组即可.难度不大.属于中档题. 8.(填空题.3分)已知θ∈(0. π2 ).2sin2θ=1+cos2θ.则tanθ=___ . 【正确答案】:[1] 12【解析】:利用二倍角公式.同角三角函数基本关系式化简即可得解.【解答】:解:∵θ∈(0. π2 ). ∴cosθ>0. ∵2sin2θ=1+cos2θ.∴4sinθcosθ=2cos 2θ.可得tanθ= 12. 故答案为: 12 .【点评】:本题主要考查了二倍角公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.9.(填空题.3分)已知α∈(- π2 .0).sin (π-2α)=- 12 .则sinα-cosα=___ 【正确答案】:[1]- √62【解析】:由已知利用诱导公式化简可得sin2α=- 12.进而根据同角三角函数基本关系式即可化简求解.【解答】:解:∵α∈(- π2 .0).sin (π-2α)=sin2α=- 12 . ∴sinα<0.cosα>0.∴sinα-cosα=- √(sinα−cosα)2 =- √1−sin2α =- √1−(−12) =- √62. 故答案为:- √62 .【点评】:本题主要考查了诱导公式.二倍角公式.同角三角函数基本关系式在三角函数化简求值中的应用.属于基础题.10.(填空题.3分)已知锐角α.β满足sin (2α+β)=3sinβ.则tan (α+β)cotα=___ . 【正确答案】:[1]2【解析】:由题意利用2α+β=(α+β)+α.β=(α+β)-α.结合三角恒等变换公式计算即可.【解答】:解:sin (2α+β)=3sinβ.sin (α+β)cosα+cos (α+β)sinα=3[sin (α+β)cosα-cos (α+β)sinα]. 2sin (α+β)cosα=4cos (α+β)sinα. 又α、β为锐角.所以sinα≠0.cos (α+β)≠0. 所以tan (α+β)cotα= sin (α+β)cosαcos (α+β)sinα=2.故答案为:2.【点评】:本题考查了三角恒等变换应用问题.也考查了三角函数求值问题.是基础题. 11.(填空题.3分)已知α.β∈(0.π).且tan (α-β)= 2√33 .tanβ=- 5√311.2α-β的值为___ .【正确答案】:[1]- 2π3【解析】:由题意配角:α=(α-β)+β.利用两角和的正切公式算出tanα的值.再算出tan (2α-β)的值.根据α、β的范围与它们的正切值.推出2α-β∈(-π.0).即可算出2α-β的值.【解答】:解:由tan (α-β)=2√33 .tanβ=- 5√311. ∴tanα=tan[(α-β)+β]= tan (α−β)+tanβ1−tan (α−β)tanβ = 2√33−5√3111−2√33×(−5√311)= √39 . 由此可得tan (2α-β)=tan[(α-β)+α]= tan (α−β)+tanα1−tan (α−β)tanα = 2√33+√391−2√33×√39= √3 . 又α∈(0.π).且tanα= √39 <1. ∴0<α< π4 .又β∈(0.π).tanβ=- 5√311 <0. ∴ π2 <β<π.因此2α-β∈(-π.0).可得-π<2α-β<0. 所以2α-β=- 2π3 . 故答案为:- 2π3 .【点评】:本题考查了两角和与差的正切公式、特殊角的三角函数值等知识.是中档题.解题时注意在三角函数求值问题中“配角找思路”思想.12.(填空题.3分)已知f (x )是定义域为R 的单调函数.且对任意实数x.都有f[f (x )+34x +1]= 25 .则f (log 2sin17π6)=___ . 【正确答案】:[1]- 75【解析】:根据题意.分析可得f (x )+ 34x +1 为常数.设f (x )+ 34x +1 =t.变形可得f (x )=- 34x +1 +t.分析可得f (t )=- 34t +1 +t= 25 .解可得t 的值.即可得f (x )的解析式.将x=log 2sin 17π6代入可得答案.【解答】:解:根据题意.f (x )是定义域为R 的单调函数.且对任意实数x 都有f[f (x )+34x +1]= 25 .则f (x )+34x +1为常数.设f (x )+34x +1=t.则f (x )=-34x +1+t. 又由f[f (x )+ 34x +1 ]= 25 .即f (t )=- 34t +1 +t= 25 . 解可得t=1. 则f (x )=- 34x +1 +1. ∵sin17π6 = 12.则f (log 2 12 )=f (-1)=- 34−1+1 +1=- 75 ;故答案为:- 75 .【点评】:本题考查函数的单调性的性质以及应用.还考查了三角函数求值.诱导公式.对数的运算.换元法的思想.关键是求出函数的解析式.属于中档题. 13.(单选题.3分)“sinα<0”是“α为第三、四象限角”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 【正确答案】:B【解析】:由α为第三、四象限角.可得sinα<0.反之不成立.即可判断出结论.【解答】:解:由α为第三、四象限角.可得sinα<0.反之不成立.例如 α=3π2. 故选:B .【点评】:本题考查了三角函数求值、简易逻辑的判定方法.考查了推理能力与计算能力.属于基础题.14.(单选题.3分)A 为三角形ABC 的一个内角.若sinA+cosA= 1225 .则这个三角形的形状为( ) A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.等腰三角形 【正确答案】:B【解析】:将已知式平方并利用sin 2A+cos 2A=1.算出sinAcosA=- 4811250 <0.结合A∈(0.π)得到A 为钝角.由此可得△ABC 是钝角三角形.【解答】:解:∵sinA+cosA= 1225 .∴两边平方得(sinA+cosA )2= 144625 .即sin 2A+2sinAcosA+cos 2A= 144625 . ∵sin 2A+cos 2A=1.∴1+2sinAcosA= 144625 .解得sinAcosA= 12 ( 144625 -1)=- 4811250 <0.∵A∈(0.π)且sinAcosA <0.∴A∈( π2 .π).可得△ABC 是钝角三角形 故选:B .【点评】:本题给出三角形的内角A 的正弦、余弦的和.判断三角形的形状.着重考查了同角三角函数的基本关系、三角形的形状判断等知识.属于基础题.15.(单选题.3分)已知函数f (x )=log a (6-ax )在x∈[2.3)上为减函数.则a 的取值范围是( ) A.(1.2) B.(1.2] C.(1.3) D.(1.3]【正确答案】:B【解析】:由已知中f (x )=log a (6-ax )在x∈[2.3)上为减函数.结合底数的范围.可得内函数为减函数.则外函数必为增函数.再由真数必为正.可得a 的取值范围.【解答】:解:若函数f (x )=log a (6-ax )在x∈[2.3)上为减函数. 则 {a >16−3a ≥0 解得:a∈(1.2].故选:B .【点评】:本题考查的知识点是复合函数的单调性.其中根据已知分析出内函数为减函数.则外函数必为增函数.是解答的关键16.(单选题.3分)设x 1.x 2分别是f (x )=x-a -x 与g (x )=xlog a x-1(a >1)的零点.则x 1+9x 2的取值范围是( ) A.[8.+∞) B.(10.+∞) C.[6.+∞) D.(8.+∞) 【正确答案】:B【解析】:函数的零点即方程的解.将其转化为图象交点问题.又有函数图象特点.得到交点的对称问题.从而求解.【解答】:解:由设x1.x2分别是函数f(x)=x-a-x和g(x)=xlog a x-1的零点(其中a>1).可知 x1是方程a x= 1x 的解;x2是方程1x=log a x 的解;则x1.x2分别为函数 y= 1x的图象与函数y=a x和函数y=log a x 的图象交点的横坐标;设交点分别为A(x1. 1x1).B(x2. 1x2)由 a>1.知0<x1<1;x2>1;又因为y=a x和y=log a x 以及 y= 1x的图象均关于直线y=x 对称. 所以两交点一定关于y=x 对称.由于点A(x1. 1x1).关于直线 y=x的对称点坐标为(1x1.x1).所以x1= 1x2.有x1x2=1.而x1≠x2则x1+9x2=x1+x2+8x2≥2 √x1x2 +8x2>2+8=10.即x1+9x2∈(10.+∞)故选:B.【点评】:本题考查了函数的概念与性质、对数函数以及指数函数.17.(问答题.0分)已知α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.(1)求tan2α的值;(2)求cosβ的值.【正确答案】:【解析】:(1)利用同角三角函数基本关系式可求cosα.tanα的值.进而根据二倍角的正切函数公式可求tan2α的值.(2)利用同角三角函数基本关系式可求sin(α+β)的值.根据两角差的余弦函数公式可求cosβ的值.【解答】:解:(1)∵α∈(0. π2).sinα= 4√37.∴cosα= √1−sin2α = 17 .tanα= sinαcosα=4 √3 .∴tan2α= 2tanα1−tan2α = 2×4√31−(4√3)2=- 8√347.(2)∵α∈(0. π2).β∈(0. π2).sinα= 4√37.cos(α+β)=- 1114.∴α+β∈(0.π).sin(α+β)= √1−cos2(α+β) = 5√314.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(- 1114)× 17+ 5√314× 4√37= 12.【点评】:本题主要考查了同角三角函数基本关系式.二倍角的正切函数公式.两角差的余弦函数公式在三角函数化简求值中的应用.属于基础题.18.(问答题.0分)已知函数f(x)=3x-a•3-x.其中a为实常数;(1)若f(0)=7.解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性.并说明理由.【正确答案】:【解析】:(1)根据f(0)=7.求解a的值.再解方程f(x)=5即可.(2)根据奇偶性定义判断即可.【解答】:解:(1)由f(0)=7.即1-a=7.可得a=-6.那么3x+6•3-x=5.∴(3x-2)(3x-3)=0.解得x=1或x=log32.(2)由f(-x)=-a•3x+3-x.当a=-1时.可得f(-x)=f(x)此时f(x)是偶函数.当a=1时.f(-x)=-f(x)此时f(x)是奇函数.当a≠±1时.f(x)是非奇非偶函数.【点评】:本题考查了奇偶性的定义判断和指数函数的化简运算.属于基础题.19.(问答题.0分)高境镇要修建一个扇形绿化区域.其周长为400m.所在圆的半径为r.扇形的圆心角的弧度数为θ.θ∈(0.2π).(1)求绿化区域面积S关于r的函数关系式.并指数r的取值范围:(2)所在圆的半径为r取何值时.才能使绿化区域的面积S最大.并求出此最大值.【正确答案】:【解析】:(1)由扇形的周长求出θ的值.再根据题意求出r的取值范围.计算扇形的面积;(2)利用函数解析式求出S的最大值以及r的值.【解答】:解:(1)由题意知.扇形的周长为2r+θr=400.所以θ= 400−2rr;又θ∈(0.2π).所以200π+1<r<200;所以扇形的面积为S= 12θr2= 12• 400−2rr=-r2+200r.其中r的取值范围是(200π+1.200);(2)S(r)=-r2+200r=-(r-100)2+10000.当r=100时.S(r)取得最大值为10000.即半径为r=100m时.绿化区域的面积S最大.最大值10000m2.【点评】:本题考查了根据实际问题选择函数模型的应用问题.是基础题.20.(问答题.0分)已知函数y=f(x)的定义域为(1.+∞).对于定义域内的任意实数x.有f (2x)=2f(x)成立.且x∈(1.2]时.f(x)=log2x.(1)当x∈(1.23]时.求函数y=f(x)的最大值;(2)当x∈(1.23.7]时.求函数y=f(x)的最大值;(3)已知f(1200)=f(b)(实数b>1).求实数b的最小值.【正确答案】:【解析】:(1)根据条件.对任意的x∈(1.+∞).恒有f (2x )=2f (x )成立.所以f (x )=2f ( x2 );且x∈(1.2]时.f (x )=log 2x∈(0.1];所以当x∈(2.4]时.x2 ∈(1.2].f (x )=2f ( x 2 )=2log 2 x 2∈(0.2];同理可以依次推出当x∈(2n-1.2n ]时.f (x )的解析式.即可得当x∈(1.23]时函数y=f (x )的最大值;(2)当x∈(1.23.7]时.23≤23.7≤24.由(1)可得f (x )的解析式.即可得函数值; (3)根据f (1200)=f (b )(实数b >1).解出b 的值.进而求实数b 的最小值即可.【解答】:解:(1)对任意的x∈(1.+∞).恒有f (2x )=2f (x )成立.所以f (x )=2f ( x2 ); 且x∈(1.2]时.f (x )=log 2x∈(0.1];所以当x∈(2.4]时. x 2 ∈(1.2].f (x )=2f ( x 2 )=2log 2 x2 ∈(0.2]; 当x∈(4.8]时. x 2 ∈(2.4].f (x )=2f ( x 2 )=4log 2 x4 ∈(0.4]; 当x∈(8.16]时. x 2 ∈(4.8].f (x )=2f ( x 2 )=8log 2 x8 ∈(0.8]; …;当x∈(2n-1.2n ]时. x 2 ∈(2n-2.2n-1].f (x )=2f ( x 2 )=2n-1log 2 x2n−1 ∈(0.2n-1]; 所以x∈(2n-1.2n ]时.f (x )的最大值是2n-1;所以x∈(1.23]时.f (x )= { log 2x ,x ∈(1,2]2log 2x 2,x ∈(2,4]4log 2x 4,x ∈(4,8] .的最大值为f (23)=4log 2 2322 =4; (2)当x∈(1.23.7]时.23≤23.7≤24.所以f (x )的最大值为f (23.7)=23×log 2 23.723 =8×(3.7-3)=5.6; (3)由f (1200)=f (b )(实数b >1). 且1200=210× 7564 .210<210× 7564 <211. 所以f (1200)=210×log 2210×7564210 =210×log 2 7564 .f (b )=f (2× b2 )=2f ( b 2 )=22f ( b22 )=…=2n-1 f ( b2n−1 ); 当 b2n−1 ∈(1.2]时.∴f (b )=2n-1log 2 b2n−1 ;∵f (1200)=f (b ).则210×log 2 7564 =2n-1log 2 b2n−1 ;b=2n-1• (7564)211−n .1<n <11当n=10时.b2n−1 =( 7564 )2∈(1.2];b=29×( 7564)2;当n=9时. b 2n−1 =( 7564 )4∈(1.2];b=28×( 7564 )4;当n=8时. b2n−1 =(7564)8∉(1.2];…29×(7564)2>28×(7564)4;∴实数b的最小值为28×(7564)4=256×(7564)4.【点评】:本题考查了抽象函数及其应用.考查了计算能力.分析解决问题的能力.转化与化归的思想.属于中档题.21.(问答题.0分)已知函数f(x)=log a(x+ √x2−1).x∈(1.+∞).a>0且a≠1.(1)若a为整数.且f(2a+2−a2)=2.试确定一个满足条件的a的值;(2)设y=f(x)的反函数为y=f -1(x).若f-1(n)<4n+4−n2(n∈N*).试确定a的取值范围;(3)若a=2.此时y=f(x)的反函数为y=f-1(x).令g(x)= 2f −1(x)+k2f−1(x)+1.若对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.试确定实数k的取值范围.【正确答案】:【解析】:(1)由对数和指数的运算性质.化简可得所求值;(2)由反函数的定义和求解步骤.可得f -1(x)= a x+a−x2(若a>1.x>0;若0<a<1.x<0).再由指数函数和对勾函数的单调性.对a讨论.可得所求范围;(3)求得y=f-1(x)= 2x+2−x2(x>0).g(x)=1+ k−12x+2−x+1.对k讨论.分k=1.k>1.k<1.判断g(x)的单调性可得g(x)的值域.再由题意可得任意两个尽可能小的函数值不小于另一个尽可能大的函数值.解不等式可得所求范围》【解答】:解:(1)由f(x)=log a(x+ √x2−1).x>1.a>0且a≠1.可得f(2a+2−a2)=log a(2a+2−a2 + √4a+2+4−a4−1)=log a(2a+2−a2 + 2a−2−a2)=log a2a=2.即a2=2a.可得整数a=2或4;(2)由y=f(x)=log a(x+ √x2−1).x>1.可得a y=x+ √x2−1 .即a y-x= √x2−1 . 平方可得a2y-2xa y+1=0.即有x= a y+a−y2.可得f -1(x)= a x+a−x2(若a>1.x>0;若0<a<1.x<0).f-1(n)<4n+4−n2(n∈N*).即为a n+a−n2<4n+4−n2.若0<a<1.则a n+a-n单调递减.可得14<a<1;可得a的取值范围为(14.1)∪(1.4);(3)若a=2.此时y=f(x)的反函数为y=f-1(x)= 2x+2−x2(x>0).g(x)= 2f−1(x)+k2f−1(x)+1 = 2x+2−x+k2x+2−x+1=1+ k−12x+2−x+1.当k=1时.g(x)=1.符合题意;当k>1时.g(x)在x>0递减.可得g(x)∈(1.1+ k−13).对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.可得1+1≥1+ k−13.解得1<k≤4;当k<1时.g(x)在x>0递增.可得g(x)∈(1+ k−13.1).对一切实数x1.x2.x3.不等式g(x1)+g(x2)>g(x3)恒成立.可得2(1+ k−13)≥1.解得- 12≤k<1.综上可得k的范围是[- 12.4].【点评】:本题主要考查函数恒成立问题解法.注意运用函数的单调性和转化思想.考查反函数的求法.化简整理的运算能力.是一道难题.。
上海市上海中学2019-2020学年高一数学上学期期末考试试题(含解析)

【详解】因为函数
y
x2
x 2x
5
的定义域为 R
,
y 1
当 x 0 时,
x 5 2 x,
u
因为
x
5 x
在
(,
5) 和(
5, ) 上单调递增,在[
5, 0) 和 (0,
5] 上单调递减,
y 1
根据复合函数单调性法则,可知
x
5 x
2
应该在
[
5, 0) 和 (0,
5] 上单调递增,
y x 而函数 x2 2x 5 本身在 x 0 处有意义,且函数图象不间断,
【详解】当 a 1时:函数 y f (x) ax 单调递增,
f 2 a2 2, f (4) a4 4a 2
;
当 0 a 1时:函数
y
f
(x) ax 单调递减,
f
2 a2
4,
f (4) a4
2
,无解.
综上所述: a 2
故答案为 2
【点睛】本题考查了函数的定义域和值域,分类讨论是一种常用的方法,需要熟练掌握.
意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.
12.已知函数 f (x) || x 1| | x 3 | 1| ,若 f 4a2 6a f (4a) ,则实数 a 的取值范围
为_______.
3
【答案】
4
13 , 3 4
13
1 2
3 4
,
5.函数 f (x) x2 4x(x 0) 的反函数为_________;
【答案】 2 x 4(x 0)
【解析】
【分析】
x 2 y 4 y 0
2019-2020年上海市交大附中高一上期中数学试卷(含答案案)

上海交通大学附属中学2019-2020学年度第一学期高一数学期中考试试卷一、填空题1.函数y =的定义域是____________2. 已知{}|12A x x =-<<,{}2|30,R x x x x -<∈,则A B ⋂=____________3. 当0x >时,函数()1f x x x -=+的值域为____________4. 设{|52U x x =-≤<-或25,}x x Z <≤∈,{}2|2150A x x x =--=,{}3,3,4B =-则U A C B ⋂=____________5. 已知集合{}{}2,1,|2A B x ax =-==,若A B A ⋃=,则实数a 值集合为____________6. 满足条件{}{}{}1,3,53,5,71,3,5,7,9⋃=的所有集合A 的个数是____________个7. 已知不等式2202x x x a+≤+解集为A ,且2,3A A ∈∉,则实数a 的取值范围是____________ 8. 若函数()f x a 的取值范围为____________9. 已知,a b 是常数,且0ab ≠,若函数()33f x ax =+的最大值为10,则()f x 的最小值为 ____________10. 设正实数,a b 满足324a ab b ++=,那么1ab的最小值为____________ 11. 设()()2,043,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若()0f 是()f x 的最小值,则a 的取值范围为____________ 12. 若方程()22420ax a x --+=在(0,2)内恰有一解,则实数a 的取值范围为____________ 二、选择题13. 下列命题中,正确的是( )A. 4x x +的最小值是4B. 的最小值是2C. 如果,a b c d >>,那么a c b d ->-D. 如果22ac bc >,那么a b >14. 设甲为“05x <<”,乙为“23x -<”,那么甲是乙的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件15. 非空集合A,B 满足,{}{},|,|A B P x x A Q x x B ⊂⋂=∅=⊆=≠,则下列关系一定成立的是( )A. A B P Q ⋃=⋃B. P Q ⋂=∅C. {}P Q ⋂=∅D. A B P Q ⊂⋃≠⋃ 16. 已知函数()1y f x =+为偶函数,则下列关系一定成立的是( )A. ()()f x f x =-B. ()()11f x f x +=-+C. ()()11f x f x +=--D. ()()1f x f x -+=三、解答题17. 已知集合21|1,1x A x x R x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}22|210,B x x ax a x R =-+-≤∈. (1)求集合A ; (2)若集合U=R ,()U B C A B ⋂=,求实数a 的取值范围.18. 已知函数()f x x a x b =-++.(1)若1,2a b ==,求不等式()5f x ≤的解;(2)对任意0,0a b >>,试确定函数()y f x =的最小值M (用含,a b 的代数式表示),若正数,a b 满足42a b ab +=,则,a b 分别取何值时,M 有最小值,并求出此最小值.19. 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每1厘米厚的隔热层建造成本为6万元。
2019-2020学年上海中学高一(上)期末数学试卷

2019-2020学年上海中学高一(上)期末数学试卷一、填空题1. 函数f(x)=√2−x +ln (x −1)的定义域为________.2. 设函数f(x)=(x+1)(x−a)x 为奇函数,则实数a 的值为________.3. 已知y =log a x +2(a >0且a ≠1)的图象过定点P ,点P 在指数函数y =f(x)的图象上,则f(x)=________.4. 方程92x+1=(13)x 的解为________.5. 对任意正实数x ,y ,f(xy)=f(x)+f(y),f(9)=4,则f(√3)=________.6. 已知幂函数f(x)=(m 2−5m +7)x m 是R 上的增函数,则m 的值为________.7. 已知函数f(x)={2x (x ≤0)log 2x(0<x ≤1)的反函数是f −1(x),则f −1(12)=________.8. 函数y =log 34|x 2−6x +5|的单调递增区间为________.9. 若函数f(x)=log a (x 2−ax +2)(a >0且a ≠1)满足:对任意x 1,x 2,当x 1<x 2≤a 2时,f(x 1)−f(x 2)>0,则a 的取值范围为________√2) .10. 已知x >0,定义f(x)表示不小于x 的最小整数,若f (3x +f(x))=f(6.5),则正数x 的取值范围为________.11. 已知函数f(x)=log a (mx +2)−log a (2m +1+2x )(a >0且a ≠1)只有一个零点,则实数m 的取值范围为________.12. 已知函数f(x)={log 12(1−x),−1≤x ≤n 22−|x−1|−3,n <x ≤m ,(n <m)的值域是[−1, 1],有下列结论:(1)n =0时,m ∈(0, 2];(2)n =12时,m ∈(12,2];(3)n =[0,12)时,m ∈(n, 2],其中正确的结论的序号为________.二、选择题下列函数中,是奇函数且在区间(1, +∞)上是增函数的是( )A.f(x)=3|x|B.f(x)=1x −xC.f(x)=−x 3D.f(x)=−log 2x+1x−1已知f(x)是定义在R 上的偶函数,且在区间(−∞, 0)上单调递增,若实数m 满足f(|m −1|)>f(−1),则m 的取值范围是( )A.(−∞, 0)∪(2, +∞)B.(−∞, 0)C.(0, 2)D.(2, +∞)如果函数f(x)在其定义域内存在实数x 0,使得f(x 0+1)=f(x 0)+f(1)成立,则称函数f(x)为“可拆分函数”,若f(x)=lg a 2x +1为“可拆分函数”,则a 的取值范围是( )A.(32,3)B.(12,32)C.(32,3]D.(3, +∞]定义在(−1, 1)上的函数f(x)满足f(x)=1f(x−1)+1,当x ∈(−1, 0]时,f(x)=1x+1−1,若函数g(x)=|f(x)−12|−mx −m 在(−1, 1)内恰有3个零点,则实数m 的取值范围是( )A.[14,916)B.(14,916)C.[14,12)D.(14,12) 三.解谷题已知函数f(x)=2x −1的反函数是y =f −1(x),g(x)=log 4(3x +1).(1)画出f(x)=2x −1的图象;(2)解方程f −1(x)=g(x).已知定义在R 上的奇函数f(x)=ka x −a −x ((a >0且a ≠1),k ∈R).(1)求k 的值,并用定义证明当a >1时,函数f(x)是R 上的增函数;(2)已知f(1)=32,求函数g(x)=a 2x +a −2x 在区间[0, 1]上的取值范围.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t 相关,当10≤t ≤20时电车为满载状态,载客量为400人,当2≤t <10时,载客量会减少,减少的人数与(10−t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为Q =6p(t)−1500t −60(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?对于定义域为D 的函数y =f(x),若存在区间[a, b]⊂D ,使得f(x)同时满足,①f(x)在[a, b]上是单调函数,②当f(x)的定义域为[a, b]时,f(x)的值域也为[a, b],则称区间[a, b]为该函数的一个“和谐区间”.(1)求出函数f(x)=x 3的所有“和谐区间”[a, b];(2)函数f(x)=|4x −3|是否存在“和谐区间”[a, b]?若存在,求出实数a ,b 的值;若不存在,请说明理由;(3)已知定义在(2, k)上的函数f(x)=2m −4x−1有“和谐区间”,求正整数k 取最小值时实数m 的取值范围.定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2.(1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1, 1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.参考答案与试题解析2019-2020学年上海中学高一(上)期末数学试卷一、填空题1.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【解析】此题暂无解析此题暂无解答7.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答三.解谷题【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答。
2019-2020学年上海市交大附中高一下学期期末数学试题(解析版)

2019-2020学年上海市交大附中高一下学期期末数学试题一、单选题1.要得到函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数3sin 2y x =的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 【答案】C【解析】将所给函数化为3sin 26y x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,根据三角函数相位变换原则可得结果. 【详解】3sin 23sin 236y x x ππ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴只需将3sin 2y x =的图象向左平移6π个单位长度即可得到3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象 故选:C 【点睛】本题考查三角函数的相位变换,关键是明确相位变换是针对x 的变化量的变换,遵循“左加右减”原则.2.O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,[)0,μ∈+∞,则P 点的轨迹一定经过ABC ∆的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】先根据||AB AB →→、||AC AC →→分别表示向量AB →、AC →方向上的单位向量,确定||||A AB A AC CB →→→→+的方向与BAC ∠的角平分线一致,再由AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭可得到AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,可得答案.【详解】 解:||AB AB →→、||AC AC →→分别表示向量AB →、AC →方向上的单位向量,∴||||A AB A AC C B →→→→+的方向与BAC ∠的角平分线一致,又AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,∴AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,∴向量AP →的方向与BAC ∠的角平分线一致∴P 点的轨迹一定经过ABC 的内心.故选:B . 【点睛】本题考查平面向量的线性运算和向量的数乘,以及对三角形内心的理解,考查化简运算能力.3.已知数列{}n a 为等差数列,10a <且1231990a a a a +++⋅⋅⋅+=,设()*12n n n n b a a a n N ++=∈,当{}n b 的前n 项和n S 最小时,n 的值有( )A .5个B .4个C .3个D .2个【答案】B【解析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值.【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a ,10a <,可以判断数列{}n a 是单调递增数列,991010,0a a ,12n n n n b a a a ++=, 12323412nn n n S a a a a a a a a a ,当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个. 故选:B. 【点睛】本题主要考查等差数列的性质,属于中档题.4.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( ) A .6 B .83C .127D .4【答案】A【解析】作2OA OA '=,7OB OB '=,3OC OC '=,由已知可得O 是'''A B C 的重心,由重心性质可得所求面积比. 【详解】作2OA OA '=,7OB OB '=,3OC OC '=,如图,∵2730OA OB OC ++=,∴O 是'''A B C 的重心,则''''''OA B OB C OC A S S S ==△△△,设''''''OA B OB C OC A S S S t ===△△△, 设,,OAB OAC y OBC S x S S z ===△△△,∵2OA OA '=,7OB OB '=,3OC OC '=,∴''1''sin ''2141sin 2OA B OABOA OB A OB S S OA OB AOB ⋅∠==⋅∠△△,即114x t =,同理16y t =,121z t =,11161462121ABCS x y z t t t t=++=++=△,∴6216121ABCOBCtSS t==△△.故选:A.【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性.二、填空题5.计算:5arcsin sin6π⎛⎫=⎪⎝⎭______;【答案】6π【解析】用诱导公式把5sin6π中的角化到,22ππ⎡⎤-⎢⎥⎣⎦中即可由反正弦函数定义得出结论.也可直接计算.【详解】5arcsin sin arcsin sin666πππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭.或者51arcsin sin arcsin626ππ⎛⎫==⎪⎝⎭故答案为:6π.【点睛】本题考查反正弦函数,掌握反正弦函数定义是解题关键,注意反正弦函数的值域是,22ππ⎡⎤-⎢⎥⎣⎦.6.关于未知数x ,y 的方程组对应的增广矩阵为216320⎛⎫⎪-⎝⎭,则此方程组的解x y +=______;【答案】307【解析】由增广矩阵写出原二元线性方程组,根据方程的解x ,y ,最后求x y +的值. 【详解】由二元线性方程组的增广矩阵为216320⎛⎫⎪-⎝⎭,得到二元线性方程组的表达式2+6320x y x y =⎧⎨-=⎩, 解得127187x y ⎧=⎪⎪⎨⎪=⎪⎩,所以x y +=307. 故答案为: 307. 【点睛】此题主要考查二元线性方程组的增广矩阵的含义,属于基础题. 7.设3,sin 2a α⎛⎫=⎪⎝⎭,1cos ,3b α⎛⎫= ⎪⎝⎭,且//a b ,则cos2=α__________.【答案】0【解析】根据平面向量共线定理可以得到等式,用二倍角的正弦公式以及特殊角的三角函数,求出2α的值,最后计算出它的余弦值即可. 【详解】 因为//a b ,所以31sin cos sin 2122()232k k Z πααααπ⨯=⇒=⇒=+∈, 因此cos 2cos(2)0()2k k Z παπ=+=∈.故答案为:0 【点睛】本题考查了两个平面向量共线定理,考查了二倍角的正弦公式,考查了特殊角的三角函数值,考查了数学运算能力.8.已知函数()sin cos f x a x x =+的一条对称轴为3xπ=,则a =______;【解析】根据三角函数的性质可知()f x 在3x π=取得最大值或最小值,建立方程即可求解. 【详解】()()sin cos f x a x x x ϕ=+=+,其中ϕ是辅助角, 3x π=是()f x 的一条对称轴,231()1322f a a ,整理得230a -+=,解得a =【点睛】本题考查三角函数性质得应用,利用在对称轴的函数值是最大或最小是解题的关键,属于中档题.9.已知平面向量,a b 满足3a =,2b =,3a b ⋅=-,则2a b += .【解析】试题分析:因为222|2|44316127a b a b a b +=++⋅=+-=,所以27a b +=【考点】向量数量积,向量的模10.设211S =,2222121S =++,22222312321S =++++,…,222221221n S n =++++++,希望证明()2213nn n S +=,在应用数学归纳法求证上式时,第二步从k 到1k +应添的项是______. 【答案】()221k k ++【解析】写出1,k k S S +的表达式,通过比较可以知道第二步从k 到1k +应添的项. 【详解】当n k =时,222222212(1)(1)21k S k k k =+++-++-+++,当1n k =+时,2222222122(12(1)()21)11k k S k k k k +=+++-+++++-+++,通过对比可以发现,第二步从k 到1k +应添的项是()221k k ++.故答案为:()221k k ++ 【点睛】本题考查了数学归纳法证明过程中添项问题,属于基础题.11.已知0a b c ++=,3a =,4b =,5c =,则a b b c c a ⋅+⋅+⋅=______; 【答案】25-【解析】由已知得()c a b =-+,再两边平方22+2+25a a b b ⋅=,求得0a b ⋅=,代入可求得答案. 【详解】因为0a b c ++=,所以()c a b =-+,又因为5c =, 所以()225a b+=,即22+2+25a a b b ⋅=,又3a =,4b =,所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c b a c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-, 故答案为:25-. 【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.12.若数列{}n a 为无穷等比数列,且()1231lim 2n n n a a a a a -→∞+++⋅⋅⋅++=-,则1a 的取值范围是______; 【答案】()()4,22,0--⋃-【解析】根据无穷等比数列的前n 项和的极限求解. 【详解】设数列{}n a 公比是q ,在1q <且0q ≠时,()11231lim 21n n n a a a a a a q-→∞+++⋅⋅⋅++==--, ∴12(1)a q =-,又11q -<<且0q ≠,210q -<-<且11q -≠-,∴142a -<<-或120a -<<.故答案为:()()4,22,0--⋃- 【点睛】本题考查无穷等比数列的和,数列{}n a 是公比为q 的无穷等比数列,其前n 项和为n S ,在1q <时,1lim 1n n a S q→∞=-.若1q ≥,则lim n n S →∞不存在. 13.设数列{}n a 是公比为q 的等比数列,则123456789a a a a a a a a a =______; 【答案】0;【解析】根据行列式计算法则和等比数列性质计算即可. 【详解】数列{}n a 是公比为q 的等比数列123456159483726753429186789a a a a a a a a a a a a a a a a a a a a a a a a a a a ∴=++--- 33548372654837260a a a a a a a a a a a a a a .故答案为:0. 【点睛】本题考查等比数列的性质,以及行列式的相关计算,属于中档题.14.已知向量()5,5a =,(),1b λ=,若a b +与a b -的夹角是锐角,则实数λ的取值范围为______; 【答案】()()7,11,7-⋃【解析】利用()()0a b a b +⋅->去掉同向的情形即得. 【详解】由题意()()0a b a b +⋅-> ,即220a b ->,2222551λ+>+,∴77λ-<<,若()a b k a b +=-,则5(5)51(51)k k λλ+=-⎧⎨+=-⎩,解得321k λ⎧=⎪⎨⎪=⎩,综上λ的范围是()()7,11,7-⋃. 故答案为:()()7,11,7-⋃. 【点睛】本题考查向量的夹角与向量的数量积的关系,,a b 是两个非零向量,则,a b 夹角是锐角时,0a b⋅>,,a b夹角是钝角时,0a b⋅<,反之要注意,a b可能同向也可能反向.15.如图,已知O为矩形ABCD内的一点,且OA2=,OC4=,AC5=,则OB OD⋅=______.【答案】52-【解析】建立坐标系,设()O m,n,()C a,b,根据条件得出O,C的坐标之间的关系,再计算OB OD⋅的值.【详解】以A为原点,以AB,AD 为坐标轴建立平面直角坐标系,设()O m,n,()B a,0,()D0,b,则()C a,b,OA2=,OC4=,AC5=,222222a b25m n4()()16m a n b⎧+=⎪∴+=⎨⎪-+-=⎩,整理可得:13am bn2+=.又()OB a m,n=--,()OD m,b n=--,()()()22135OB OD m m a n n b m n am bn422∴⋅=-+-=+-+=-=-.故答案为52-.【点睛】本题考查了平面向量的数量积运算,建立坐标系是突破点,准确计算是关键,属于中档题.16.已知平面直角坐标系内定点()1,1A ,动点B 满足2AB →=,动点C 满足3CB →=,则点C 在平面直角坐标系内覆盖的图形的面积为______; 【答案】24π【解析】本题先将B 固定,得到C 的轨迹,C 的轨迹随着B 的动点而运动从而形成一个圆环,即C 在平面直角坐标系内覆盖的图形. 【详解】因为动点B 满足2AB →=,所以B 点的轨迹是以A 为圆心,2为半径的一个圆, 又因为动点C 满足3CB →=,所以C 点轨迹是以B 为圆心,3为半径的一个圆,当B 点在圆上运动时,点C 的轨迹是以点A 为圆心、以5为半径的圆, C 点在平面直角坐标系内覆盖的图形如下图所示,即C 在平面直角坐标系内覆盖的图形为一个圆环,其中大圆的半径为5,小圆的半径是1,所以点C 在平面直角坐标系内覆盖的图形的面积为22=5124S πππ⋅-⋅=. 故答案为:24π 【点睛】本题考查根据曲线的轨迹方程求面积,考查学生的直观想象能力和作图能力,易错点是把覆盖的面积看成整个圆,属于中档题.三、解答题17.解关于x .y 的一元二次方程组()3322ax y a x a y +=--⎧⎨+-=-⎩,并对解的情况进行讨论.【答案】3a =,无数个解;1a =-,无解;3a ≠且1a ≠-,4111a x a y a --⎧=⎪⎪+⎨-⎪=⎪+⎩.【解析】分情况讨论即可知道解的情况. 【详解】 (1)当33122aa a 时,方程组有无数个解, 解得3a =; (2)当33122a a a 时,方程组无解, 解得1a =-;(3)当312a a 时,方程组只有一组解为4111a x a y a --⎧=⎪⎪+⎨-⎪=⎪+⎩,解得3a ≠且1a ≠-,综上,3a =,无数个解;1a =-,无解;3a ≠且1a ≠-,4111a x a y a --⎧=⎪⎪+⎨-⎪=⎪+⎩.【点睛】本题考查二元一次方程组的解的情况,可以利用直线系数的比例关系讨论,属于基础题. 18.已知x ∈R ,设()3cos ,sin cos m x x x =-,()2sin ,sin cos n x x x =+,记函数()f x m n =⋅.(1)求函数()f x 的最小值,并求出函数()f x 取最小值时x 的值;(2)设ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若()2f C =,c =,求ABC 的面积S 的最大值.【答案】(1)min 2y =-,,6x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2)【解析】(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f (x )=2sin 26x π⎛⎫-⎪⎝⎭,再根据正弦函数的性质即可求出答案; (2)先求出C 的大小,再根据余弦定理和基本不等式,即可求出3ab ≤,根据三角形的面积公式即可求出答案. 【详解】(1)()2223sin cos sin cos f x m n x x x x =⋅=+-2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,令2262x k ππ-=π-,k ∈Z ,即()6x k k Z ππ=-∈时,sin 216x π⎛⎫-=- ⎪⎝⎭,()f x 取最小值2-,所以,()f x 的最小值为2-,所求x 的取值集合是,6x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭; (2)由()2f C =,得sin 216C π⎛⎫-= ⎪⎝⎭, 因为0C π<<,所以112666C πππ-<-<,所以262C ππ-=,3C π=,在ABC 中,由余弦定理2222cos c a b ab C =+-,得223a b ab ab =+-≥,即3ab ≤,当且仅当a b =时取等号,所以ABC 的面积11sin 32224S ab C =≤⨯⨯=,因此ABC 的面积S 【点睛】本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题. 19.已知ABC 内接于O ,AB c =,BC a =,=CA b ,O 的半径为r .(1)若230OA OB OC ++=,试求BOC ∠的大小;(2)若A 为动点,60BAC ∠=︒,AO OC OB λμ=+,试求λμ+的最大值. 【答案】(1)56π;(2)2. 【解析】(1)由230OA OB OC ++=可得2223OB OCOA ,解得3cos BOC,即可求出56BOC ; (2)由60BAC ∠=︒可得120BOC ∠=︒,再由AO OC OB λμ=+平方后得221λμλμ+-=,利用基本不等式可求出λμ+的最大值.【详解】 (1)230OA OB OC ++=, 23OBOCOA ,则2223OBOCOA ,即2224433OBOB OC OCOA ,2222443cos 3r r BOC r r ,解得3cos 2BOC, 56BOC; (2)60BAC ∠=︒,120BOC ∴∠=︒,AO OC OB λμ=+,()()22AOOC OB λμ∴=+,即222222AO OC OC OB OB λλμμ=+⋅+,2222222cos120r r r r ,整理得221λμλμ+-=,即231,22,22132,解得24,即2λμ+≤,当且仅当1λμ==时等号成立,∴λμ+的最大值为2.【点睛】本题考查向量数量积的应用,以及利用基本不等式求最大值,属于综合题. 20.已知平方和公式:()()222121126n n n n ++++⋅⋅⋅+=,其中*n N ∈.(1)记()()()()()22222231521432f n n n =-++⋅⋅⋅+-+-+++⋅⋅⋅+-,其中*n N ∈,求()20f 的值;(2)已知()()22222213214948242n n ++⋅⋅⋅++=++⋅⋅⋅+,求自然数n 的值; (3)抛物线2y kx =.x 轴及直线:AB x a =围成了如图(1)的阴影部分,AB 与x 轴交于点A ,把线段OA 分成n 等份,作以an为底的内接矩形如图(2),阴影部分的面积为S ,n 等于这些内接矩形面积之和.2222231a a a a a a a n k k k k a n n n n n n n n -⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+⨯⨯+⨯⨯+⋅⋅⋅+⨯⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,当n →+∞时的极限值.图(3)中的曲线为开口向右的抛物线2y x =,抛物线y x =x 轴及直线:4AB x =围成了图中的阴影部分,请利用极限平方和公式.反函数或割补法等知识求出阴影部分的面积.【答案】(1)47980;(2)72;(3)163. 【解析】(1)将(20)f 化为2222222222221234565758593657,即可结合公式求解;(2)分别转化()()222222242412n n ++⋅⋅⋅+=+++和()()()()222222222221321123221242n n n n ⎡⎤++⋅⋅⋅++=++++++-+++⎣⎦,然后根据公式求解,建立方程即可求出n ; (3)线段AB 分成n 等份,作以2n为底的内接矩形,则阴影部分的面积可看作是这些内接矩形的面积之和,利用极限即可求出. 【详解】 (1)()()()()()22222231521432f n n n =-++⋅⋅⋅+-+-+++⋅⋅⋅+-,22222222(20)595652145558f2222222212457858592222222222221234565758593657222259601199123196192039702109479806;(2)()()()()22222221212424123n n n n n ++++⋅⋅⋅+=+++=,()()()()222222222221321123221242n n n n ⎡⎤∴++⋅⋅⋅++=++++++-+++⎣⎦212112122122436333n n n n n n n n n ,()()22222213212349248242n n n n ++⋅⋅⋅+++∴==++⋅⋅⋅+, 解得72n =;(3)由题可知,2AB =,如图,把线段AB 分成n 等份,作以2n为底的内接矩形,设阴影部分的面积为S ,则S 可看作是这些内接矩形的面积之和, 则222222242622(1)4444n Snnnnnnnn22222222411231n n nn n328112181644633n n n n nn n n ,当n →+∞时,163S, 所以阴影部分的面积为163. 【点睛】本题考查根据所给公式化简求值,以及用极限求面积,属于较难题.21.设数列{}n a 的前n 项和为n S ,23n n S a +=,*n N ∈,数列{}n b 满足:对于任意的*n N ∈,都有11213211333n n n n n a b a b a b a b n ---⎛⎫+++⋅⋅⋅+=+- ⎪⎝⎭成立.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的通项公式;(3)设数列n n n c a b =,问:数列{}n c 中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.【答案】(1)113n n a -⎛⎫= ⎪⎝⎭;(2)21n b n =-;(3)存在,1c ,2c ,5c 或2a ,3c ,5c .【解析】(1)当2n ≥时,类比写出1123n n S a --+=,两式相减整理得113n n a a -=,当1n =时,求得10a ≠,从而求得数列{}n a 的通项公式.;(2)将113n n a -⎛⎫= ⎪⎝⎭代入已知条件,用与(1)相似的方法,变换求出数列{}n b 的通项公式;(3)由n c 的通项公式分析,得12345c c c c c =>>>>…,假设存在三项s c ,p c ,r c 成等差数列,且s p r <<,则2p s r c c c =+,即()1112212121333p s r p s r ------=+,根据数列{}n c 的单调性,化简得722p ≤<,将2p =或3p =代入已知条件,即可得到结论. 【详解】(1)由23n n S a +=, ① 得()11232n n S a n --+=≥, ② 由①-②得120n n n a a a -+-=,即()1123n n a a n -=≥, 对①取1n =得,110a =≠,所以0n a ≠,所以113n n a a -=为常数, 所以{}n a 为等比数列,首项为1,公比为13, 即113n n a -⎛⎫= ⎪⎝⎭,*n N ∈;(2)由113n n a -⎛⎫= ⎪⎝⎭,可得对于任意*n N ∈有2111211111333333n n n n n b b b b n ----⎛⎫⎛⎫⎛⎫++++=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ③则()()2221231111131323333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫++++=+--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ④则()23111231111112233333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫⎛⎫++++=+-≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ⑤由③-⑤得()212n b n n =-≥,对③取1n =得,11b =也适合上式,因此21n b n =-,*n N ∈, (3)由(1)(2)可知1213n n n n n c a b --==, 则()11412121333n n n n n n n n c c +--+--=-=, 所以当1n =时,1n n c c +=,即12c c =,当2n ≥时,1n n c c +<,即{}n c 在2n ≥且*n N ∈上单调递减, 故12345c c c c c =>>>>…,假设存在三项s c ,p c ,r c 成等差数列,其中s ,p ,*r N ∈,由于12345c c c c c =>>>>…,可不妨设s p r <<,则2p s r c c c =+(),即()1112212121333p s r p s r ------=+, 因为s ,p ,*r N ∈且s p r <<,则1s p ≤-且2p ≥, 由数列{}n c 的单调性可知,1s p c c -≥,即12212333s p s p ----≥, 因为12103r r r c --=>,所以()11122212121233333p s r p p s r p --------=+>, 即()122212333p p p p ---->,化简得72p <, 又2p ≥且*∈p N ,所以2p =或3p =,当2p =时,1s =,即121c c ==,由3r ≥时,21r c c <=,此时1c ,2c ,r c 不构成等差数列,不合题意,当3p =时,由题意1s =或2s =,即1s c =,又359p c c ==,代入()式得19r c =, 因为数列{}n c 在2n ≥且*n N ∈上单调递减,且519c =,4r ≥,所以=5r , 综上所述,数列{}n c 中存在三项1c ,3c ,5c 或2c ,3c ,5c 构成等差数列. 【点睛】本题考查了数列递推关系、等比数列与等差数列的定义、通项公式,涉及到等差和等比数列的判断,数列的单调性等知识的综合运用,考查分类讨论思想与逻辑推理能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.幂函数 f x
1
【答案】
3
【解析】 【分析】
x a 的图像经过点
1 2, ,则 f 3
______.
2
根据幂函数所过的点 ,代入可求得幂函数解析式 ,即可求得 f 3 的值 .
【详解】幂函数 f x
xa 的图像经过点
1 2,
2
1
代入可得
2a
2
解得 a 1
所以幂函数解析式为 f x x 1
则 f 3 31 1 3
一、填空题
2019 学年交大附中高一年级第一学期期末试卷
1.弧度数为 2 的角的终边落在第 ______象限 .
【答案】 二 【解析】 【分析】 将弧度化为角度 ,即可判断出所在象限 .
【详解】根据弧度与角度关系可知 1rad 57.3o
所以 2rad 114.6o
则弧度数为 2 的角的终边落在第二象限 故答案为 :二 【点睛】本题考查了弧度与角度的关系 ,属于基础题 .
1
故答案为 :
3
【点睛】本题考查了幂函数解析式的求法
,函数求值 ,属于基础题 .
sin cos
3. 已知
sin 2cos
2 ,则 tan 的值为 _______.
【答案】 5 【解析】 【分析】
由齐次式化简方法 ,即可得关于 tan 的方程 ,解方程即可求得 tan 的值 . 【详解】根据齐次式化减法方法 ,将式子上下同时除以 cos 可得 tan 1
2 tan 2 变形可得 tan 1 2 tan 2
解得 tan 5
故答案为 : 5
【点睛】本题考查了齐次式的化简求值
4. cos2 3 8
sin 2 3 8
____
【答案】
2
2
【解析】
解答:
,属于基础题 .
cos2 3 8
sin2 3
6π
=cos =-cos
π
=-
8
8
4
2, 2
故答案为 - 2 . 2
5.已知 lg 2 a,10b 3 ,用 a、b 表示 log12 5 =___________.
【答案】 1 a 2a b
【解析】
10
lg
试题分析: 10b
3
b
lg 3
log12 5
2 lg 3 22
lg10 lg 2 1 a lg3 2lg 2 2a b
考点: