【2019-2020】八年级数学上册第十二章全等三角形12.3角的平分线的性质第1课时角的平分线的性质课件新人教版
人教版八年级数学上册课件 12-3 第2课时 角平分线的判定

定义总结
判定定理: 角的内部到角的两边的距离相等的点在角的平分线上.
位置关系
数量关系
应用格式:
∵ PD⊥OA,PE⊥OB,PD = PE, ∴ 点 P 在∠AOB 的平分线上.
O
A
D C
P EB
回顾导入
如图,要在 S 区建一个风筝主题公园,使它到公路 和铁路的距离相等,并且离公路与铁路交叉处距离为
探究新知
知识点1:角平分线的判定
角平分线的性质: 角的平分线上的点到角的角的平分线上呢?
O E
P
B
DP = EP 猜想:角的内部到角的两边距离相等的
点在角的平分线上.
证一证
已知:如图,PD⊥OA,PE⊥OB,垂足分别是 D、E,
PD = PE. 求证:点 P 在∠AOB 的平分线上.
B
A P2
P1 C
P3
典例精析 例1 如图,∠ABC 的平分线与∠ACB 的外角平分线相交 于点 D,连接 AD. 求证:AD 是∠BAC 的外角平分线.
分析:
求证:AD 是∠BAC 的外角平分线.
求证:D 到 BA,AC 的距离相等.
则根据题目条件,可过点 D 作
B
BA,AC,BC 边上的辅助线.
证明:作射线 OP. ∵ PD⊥OA,PE⊥OB,
A
∴∠PDO =∠PEO = 90°.
D
在 Rt△PDO 和 Rt△PEO 中,
OP = OP (公共边),
PD = PE (已知),
O
P
∴ Rt△PDO≌Rt△PEO (HL). ∴∠AOP =∠BOP (全等三角形的对应角相等).
E
B
∴ 点 P 在∠AOB 的平分线上.
人教版八年级上册数学第12章 全等三角形 角的平分线的性质

∴△AMP≌△AMQ(AAS).
∴∠APA=PAQM. =∠AQM, ∠AMP=∠AMQ, AM=AM,
10.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D, DE⊥AB于点E.若AB=6cm,求△DEB的周长.
解:∵AD平分∠CAB,∠C=90°,DE⊥AB, ∴CD=ED,∠C=∠DEA=90°. 在Rt△ACD和Rt△AED中,
12.(中考·长春)感知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°. 易知DB=DC.
探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证DB =DC.
【思路点拨】过点D分别作DE⊥AB 于点E,DF⊥AC交AC的延长线于点F.欲证明DB=DC,只需证明 △DFC≌△DEB即可.
A.SAS B.SSS C.ASA D.HL
B
*2.(2019·烟台)已知∠AOB=60°,以 O 为圆心,以任意长为半径
作弧,交 OA,OB 于点 M,N,分别以点 M,N 为圆心,以 大于12MN 的长度为半径作弧,两弧在∠AOB 内交于点 P,以 OP 为边作∠POC=15°,则∠BOC 的度数为( )
AD=AD, ∴Rt△ACD≌Rt△AED(HL).∴AC=AE. CD=ED, ∵CD=DE,∴BC=CD+DB=DE+D B.
又∵AC=BC,∴AE=AC=DE+DB. ∴DE+DB+BE=AE+BE=AB=6cm. 即△DEB的周长为6cm.
11.如图,P为∠ABC的平分线上的一点,点D和点E分别在AB和BC上,且BD< BE,PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.
人教版八年级上
第十二章 全等三角形
2022八年级数学上册 第十二章 全等三角形12.3 角的平分线的性质第1课时 角的平分线的作法与性

基础题组 中档题组 拓展探究
谢谢收看
9、 人的价值,在招收诱惑的一瞬间被决定 。22.5.622.5.6F riday, May 06, 2022 10、低头要有勇气,抬头要有低气。09:37:4109:37:4109:375/6/2022 9:37:41 AM 11、人总是珍惜为得到。22.5.609:37:4109:37May-226-May-22 12、人乱于心,不宽余请。09:37:4109:37:4109:37Fri day, May 06, 2022 13、生气是拿别人做错的事来惩罚自 己。22.5.622.5.609:37:4109:37:41May 6, 2022 14、抱最大的希望,作最大的努力。2022年5月6日 星期五 上午9时 37分41秒09:37:4122.5.6 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午9时37分22.5.609:37May 6, 2022 16、业余生活要有意义,不要越轨。2022年5月6日 星期五9时37分 41秒09:37:416 May 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午9时37分41秒 上午9时37分09:37:4122.5.6
解:P是线段CD的中点.理由如下:过点P作PE⊥AB于点E. ∵AD∥BC,∠D=90°, ∴∠C=180°-∠D=90°,即PC⊥BC. ∵AP平分∠DAB,PD⊥AD,PE⊥AB, ∴PD=PE.同理可得PC=PE, ∴PC=PD, ∴P是线段CD的中点.
拔尖角度二 利用角平分线构造全等三角形
知识点三 命题的证明
7.求证:全等三角形对应角的平分线相等.
已知:如图,△ABC≌△A′B′C′,AD 和 A′D′分别是∠BAC 和∠B′A′ C′的平分线,
人教版八年级上册数学第12章 全等三角形 【说课稿】 角的平分线的性质

角的平分线的性质尊敬的各位老师,大家好!今天,我说课的题目是《角的平分线的性质》第一课时,选自新人教版教材《数学》八年级上册第十二章第三节。
下面,我从教学背景的分析、教学目标的确定、教学方法与手段的选择、教学过程的设计等四个方面对我的教学设计加以说明。
一、教学背景的分析1、教学内容分析本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
2、学生分析刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。
根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
3、教学环境分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律。
4、教学重点、难点本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点是:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。
二、教学目标的确定1、知识与技能:(1)掌握用尺规作已知角的平分线的方法。
2019-2020学年八年级上学期数学专题12.3 角平分线的性质(测试)(解析版)

专题12.3角平分线的性质(测试)一、单选题1.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BD=2CD,点D到AB的距离为4,则BC的长是()A.4 B.8 C.12 D.16【答案】C【解析】解:如图,过D作DE⊥AB于E,∵∠C=90°,∴CD⊥AC,∵AD平分∠BAC,∴CD=DE,∵D到AB的距离等于4,∴CD=DE=4,又∵BD=2CD,∴BD=8,∴BC=4+8=12,故选:C.2.如图,图中直线表示三条相互交叉的路,现要建一个货运中转站,要求它到三条公路的距离相等,则选择的地址有()A.4处B.3处C.2处D.1处【答案】A【解析】解:∵△ABC 内角平分线的交点到三角形三边的距离相等, ∴△ABC 内角平分线的交点满足条件; 如图:点P 是△ABC 两条外角平分线的交点, 过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC , ∴PE=PF ,PF=PD , ∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个; 综上,到三条公路的距离相等的点有4个, ∴可供选择的地址有4个. 故选:A .3.如图,在ABC ∆中,90C ∠=︒,10AB =,AD 是ABC ∆的一条角平分线.若3CD =,则ABD ∆的面积为( )A .3B .10C .12D .15【答案】D【解析】解:如图,作DE ⊥AB 于E ,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为12×3×10=15.故选:D.4.△ABC中,AB=7,BC=24,AC=25.在△ABC内有一点P到各边的距离相等,则这个距离为()A.1 B.2 C.3 D.4【答案】C【解析】解:∵△ABC中,AB=7,BC=24,AC=25,∴AB2+BC2=72+242=252=AC2,∴∠ABC=90°,连接AP,BP,CP.设PE=PF=PG=xS△ABC=12×AB×CB=84,S△ABC=12AB×x+12AC×x+12BC×x=12(AB+BC+AC)•x=12×56x=28x,则28x=84,x=3.故选:C.5.如图,OP平分∠AOB,点C,D分别在射线OA,OB上,添加下列条件,不能判定△POC≌△POD的是()A .OC =ODB .∠CPO =∠DPOC .PC =PD D .PC ⊥OA ,PD ⊥OB【答案】C【解析】∵OP 是∠AOB 的平分线, ∴∠AOP =∠BOP ,而OP 是公共边,A 、添加OC =OD 可以利用“SAS ”判定△POC ≌△POD ,B 、添加∠OPC =∠OPD 可以利用“ASA ”判定△POC ≌△POD , C 、添加PC =PD 符合“边边角”,不能判定△POC ≌△POD , D 、添加PC ⊥OA ,PD ⊥OB 可以利用“AAS ”判定△POC ≌△POD , 故选:C .6.如图,已知ABC ∆的面积为28cm ,BP 为ABC ∠的平分线,AP BP ⊥于点P ,则PBC ∆的面积为( ).A .23.5cmB .23.9cmC .24cmD .24.2cm【答案】C【解析】延长AP 交BC 的延长线于点E , ∵AP 垂直PB 且PB 平分ABC ∠, ∴ABP EBP ∠=∠.又BP BP =,90APB BPE ∠=∠=︒, ∴()ABP EBP ASA ∆≅∆. ∴BAP BEP S S ∆∆=,AP PE =. ∴APC PCE S S ∆∆=.设ACE S m ∆=,∴8ABE ABC ACE S S S m ∆∆∆=+=+,∴284cm 211222PBC ABE ACE S S S m m ∆∆∆+-==-=.7.如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若32BC =,且:9:7BD CD =,则点D 到AB 边的距离为( ).A .18B .16C .14D .12【答案】C【解析】过点D 作DE AB ⊥于点E , ∵AD 平分BAC ∠,∴DC DE =.又:9:7BD CD =且32BC =,∴18BD =,14CD =. 即14DE =.即点D 到AB 边的距离为14. 故选C8.如图所示,P 是BAC ∠的平分线上一点,PM AB ⊥于点M ,PN AC ⊥于点N .有下列结论:①PM PN =;②AM AN =;③APM ∆与APN ∆面积相等;④90PAN APM ∠+∠=︒,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】由角平分线性质可知①是正确的;可证()Rt Rt AMP ANP HL ∆≅∆,∴AM=AN,APM APN S S ∆∆=,可得②③是正确的;由()Rt Rt AMP ANP HL ∆≅∆可得∠APM=∠APN ,由∠APN+∠PAN=90°可得∠PAN+∠APM=90°,可知④是正确的,故选D.9.如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,下列结论中正确的个数是( ).①AD 平分CDE ∠:②BAC BDE ∠=∠;③DE 平分ADB ∠;④AB AC BE =+. A .3个 B .2个C .1个D .4个【答案】A【解析】因为DE AB ⊥,所以90AED ∠=︒.又AD 是CAB ∠的角平分线,AC CD ⊥,由角平分线的性质得DC DE =,又AD AD =,故ACD AED ∆≅∆,所以ADC ADE ∠=∠,故①成立;在Rt ABC ∆中,90C ∠=︒,故90BAC B ∠+∠=︒,在Rt BDE ∆中,90B EDB ∠+∠=︒,因此BAC B B EDB ∠+∠=∠+∠,即BAC BDE ∠=∠,故②成立;∵ACD AED ∆≅∆,故AC AE =,因此AB AE EB AC BE =+=+,④成立; 当60B ∠=︒时,30EDB ∠=︒,75ADE ∠=︒,显然EDB ADE ∠≠∠,故③不成立.10.作∠AOB 的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是( )A.SAS B.ASA C.AAS D.SSS【答案】D【解析】连接CD、CE,根据作图步骤知OD=OE、CD=CE、OC=OC所以根据SSS可判定△OCE≌△OCD,所以∠BOC=∠AOC,OC平分∠AOB故用尺规作图画∠AOB的角平分线OC,作图依据是SSS,故选:D.11.如图,点P在∠MON的角平分线上,A、B分别在∠MON的边OM、ON上,若OB=3,S△OPB=6,则线段AP的长不可能是()A.3 B.4 C.5 D.6【答案】A【解析】作PC⊥OM于C,PD⊥ON于D,如图所示:∵点P在∠MON的角平分线上,∴PC=PD,∵S△OPB=12OB⋅PD=6,OB=3,∴PD=4,∴线段AP的长不可能是3,故选:A.12.如图,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则以下结论:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周长是4cm.其中正确的有()A.4个B.3个C.2个D.1个【答案】B【解析】解:∵DE⊥AB,∴∠DEA=∠DEB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∵∠C=90°,∠CDA+∠C+∠CAD=180°,∠DEA+∠BAD+∠EDA=180°,∴∠CDA=∠EDA,∴①正确;∵在△ABC中,∠C=90°,AC=BC,∴∠CAB=∠B=45°,∵∠C=∠DEA=∠DEB=90°,∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°,∵∠CDA=∠EDA,∴∠CDA=∠EDA=11352︒⨯=67.5°≠45°,∴∠EDA≠∠BDE,∴DE不平分∠BDA,∴②错误;∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=AE,∴AE=AC=BC , ∵∠B=∠BDE=45°, ∴BE=DE=CD ,∴AE-BE=BC-CD=BD ,∴③正确;△BDE 周长是BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm ,∴④正确; 即正确的个数是3, 故选:B .13.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C【解析】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F , ∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,112884422AC ∴=⨯⨯+⨯⨯,∴AC =6. 故选:C .14.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④△ABD 边AB 上的高等于DC.其中正确的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=12∠CAB=30°,∴∠ADC=90°-∠2=60°,即∠ADC=60°.故②正确;③∵∠BAD =∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④角平分线上的一点到线段两端点的距离相等, 因此判断出△ABD边AB上的高等于DC.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.15.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°【答案】A【解析】作DG ⊥AB 于G ,DH ⊥BC 于H ,∵D 是∠ABC 平分线上一点,DG ⊥AB ,DH ⊥BC ,∴DH=DG ,在Rt △DEG 和Rt △DFH 中,DG DH DE DF⎧⎨⎩== ∴Rt △DEG ≌Rt △DFH (HL ),∴∠DEG=∠DFH ,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD 的度数=180°-140°=40°,故选:A .16.如图,在四边形ABDC 中,∠B =∠D =90°,∠BAC 与∠ACD 的平分线交于点O ,且点O 在线段BD 上,BD =4,则点O 到边AC 的距离是( )A .1B .1.5C .2D .3【答案】C 【解析】解:过O 作OE ⊥AC 于E ,∵∠B =∠D =90°,∠BAC 与∠ACD 的平分线交于点O ,∴OB =OE =OD ,∵BD =4,∴OB =OE =OD =2,∴点O到边AC的距离是2,故选:C.二、填空题17.如图,以O为圆心,适当长为半径画弧,交横轴于点M,交纵轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P.若点P到横轴和纵轴的距离分别为2a-1、a+2,则a=_____.【答案】3【解析】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a-1=a+2,整理得:a =3,18.如图所示,AB//CD,O为∠A、∠C的平分线的交点O,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于_______.【答案】4【解析】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=2,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°−∠BAC)+(180°−∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=2+2=4.故答案为:4.19.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N;再分别以M,N为圆心,以大于12MN的长为半径画弧,两弧交于点G;作射线AG交BC于点D,若CD=2,BD=2.5,P为AB上一动点,则PD的最小值为_____.【答案】2【解析】解:由作法得AD平分∠BAC,∴点D到AB的距离等于DC=2,∴PD的最小值为2.故答案为2.20.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=______.【答案】1【解析】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,∴S△ABC=12AC•BC=12(AC+BC+AB)•r,∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.三、解答题21.按下列要求画图并填空:(1)过点B画出直线AC的垂线,交直线AC于点D,那么点B到直线AC的距离是线段的长.(2)用直尺和圆规作出∠ACB的平分线,若角平分线上有一点P到边AC的距离是3cm,通过你的测量,点P到边BC的距离是cm(保留作图痕迹).【答案】(1)见解析;(2)见解析.【解析】(1)如图所示:点B到直线AC的距离是线段BE的长.(2) 如图所示:点P到边BC的距离是3cm.22.在△ABC中,∠B=20°,∠ACB=110°,AE平分∠BAC,AD⊥BD于点D,求∠EAD的度数.【答案】45°【解析】∵在△ABC中,∠B=20°,∠ACB=110°,∴∠BAC=180°﹣20°﹣110°=50°.∵AE平分∠BAC,∴∠BAE=12∠BAC=25°,∴∠AEC=∠B+∠BAE=20°+25°=45°.∵AD⊥BC,∴∠D =90°,∴∠EAD =90°﹣∠AED =90°﹣45°=45°.23.如图,△ABC 中,∠C=90°,DE ⊥AB 于点E ,F 在AC 上且BE=FC,BD=FD ,求证:AD 是∠BAC 的平分线。
八年级数学上册 第十二章 全等三角形 12.3 角的平分线的性质第1课时 角的平分线的作法及性质教案

12.3 角的平分线的性质第1课时角的平分线的作法及性质【知识与技能】1.掌握角的平分线的作法.2.会利用角平分线的性质.【过程与方法】经历折纸、画图、文字与符号的翻译活动,培养学生的联想、探索、概括归纳的能力.【情感态度】通过实际操作与探究交流,激发学生学习数学的兴趣.【教学重点】角平分线的性质及其应用.【教学难点】灵活应用两个性质解决问题.一、情境导入,初步认识活动 1 学生预习教材,掌握角平分线的作法,小组间交流并动手实际画一画,总结出画角平分线的步骤.活动 2 让学生用准备好的白纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?【教学说明】发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.请同学们折出如图所示的折痕PD、PE,并研究这个图形中隐含了哪些等量关系,互相交流,形成结论.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知由上述活动及交流情况,教师总结以下新知识:1.角平分线上的点到角两边的距离相等.2.到角两边距离相等的点在角的平分线上.【教学说明】1.这两个性质的条件和结论正好相反,分别可以作为证线段相等和证角相等的依据.2.在用几何语言表述性质时,注意强调“点到直线的距离”中的垂直条件.例1 如图所示,要在S 区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m ,这个市场应建于何处(在图上标出它的位置,比例尺为1∶20000)?【教学说明】教师提出下列问题,引导学生理清思路:(1)集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?(2)比例尺为1∶20000是什么意思?(3)图形上,表示500m 的是个什么距离?例2 如图所示,BD 为∠ABC 的平分线,AB=BC,点P 、D 分别在BF 上,PM ⊥AD 于M,PN ⊥CD 于N ,求证:PM=PN.△ABD ≌△CBD 即可得证.【证明】∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD.在△ABD 和△CBD 中,,,,AB CB ABD CBD BD BD =⎧∠=∠=⎪⎨⎪⎩∴△ABD ≌△CBD(SAS).∴∠ADB=∠CDB.即射线DP 为∠ADC 的平分线.又∵PM ⊥AD,PN ⊥CD,∴PM=PN.例3如图,点P 是∠AOB 的平分线OM 上一点,作PD ⊥OB,PC ⊥OA,垂足分别是点D 、C ,点E 、F 分别在线段OD,OC 上,且∠PED=∠PFC,求证:OP平分∠EPF.【分析】欲证OP平分∠EPF,可设法证∠OPE=∠OPF,而要证∠OPE=∠OPF,需证∠OPD=∠OPC和∠DPE=∠CPF.【证明】∵OP平分∠AOB,PD⊥OB,PC⊥OA,垂足分别是点D,C,∴PD=PC,∠ODP=∠OCP=90°.在Rt△ODP与Rt△OCP中,,, PD PC OP OP==⎧⎨⎩∴Rt△ODP≌Rt△OCP(HL).∴OD=OC,∠OPD=∠OPC.在Rt△EDP与Rt△FCP中,∠PED=∠PFC,∠ODP=∠OCP=90°,∴90°-∠PED=90°-∠PFC,即∠DPE=∠CPF.∴∠OPD-∠DPE=∠OPC-∠CPF,∴∠OPE=∠OPF,即OP平分∠EPF.三、运用新知,深化理解______相等.2.如图,在△ABC中,∠A=80°,∠B与∠C的平分线相交于点I,则∠BIC=___.第2题图第3题图△ABC中,∠B=30°,∠C=90°,AD平分∠CAB,交CB于D,且DE⊥AB于E,则∠BDE=_______=_______=_______.【教学说明】指导学生解答上述习题时,应适当启发学生对角平分线性质的灵活运用.°3.∠EDA∠CDA∠CAB四、师生互动,课堂小结1.角平分线的两个性质应牢记并应用于解题中.2.与角平分线有关的求证线段相等,角相等问题,我们可以直接用角平分线性质,不必再利用证三角形全等得到线段相等或角相等.1.布置作业:从教材“”中选取部分题.2.完成练习册中本课时的练习.本课时教学思路按操作、猜想、验证的学习过程,遵循学生的认知规律,充分体现了数学学习的必然性,教学时要始终围绕问题展开,先从出示问题开始,鼓励学生思考、探索问题中所包含的数学知识,再要求学生开展活动——折纸,体验三角形角平分线交于一点的事实,并得出进一步的猜想和开展新活动——尺规作图,从中猜想结论并思考证明的方法,整堂课以学生操作、探究、合作贯穿始终,并充分给学生思考留下足够的空间与时间,形成动手、合作、概括与解决问题的意识与能力.。
2019-2020学年八年级上学期数学专题12.3 角平分线的性质(讲练)(解析版)

专题12.3角平分线的性质(讲练)一、知识点1、角的平分线的作法:课本第19页;2、角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;3、证明一个几何中的命题,一般步骤: ①明确命题中的已知和求证;②根据题意,画出图形,并用数学符号表示已知和求证; ③经过分析,找出由已知推出求证的途径,写出证明过程;4、性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释) 三角形的三条角平分线相交于一点,该点为内心;二、标准例题:例1:如图,OC 为AOB ∠的平分线,CM OB ⊥于M ,5OC =,4OM =,则点C 到射线OA 的距离为( )A .2B .3C .4D .5【答案】B【解析】解:如图,过C 作CF ⊥AO 于F∵OC 为∠AOB 的平分线,CM ⊥OB , ∴CM=CF , ∵OC=5,OM=4,∴CM=3, ∴CF=3, 故选:B .总结:此题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.例2:如图,在三角形ABC 中,90C =∠,AD 平分BAC ∠交BC 于点D ,且2BD CD =,6BC cm =,则点D 到AB 的距离为( )A .4cmB .3cmC .2cmD .1cm【答案】C【解析】如图,过点D 作DE ⊥AB 于E ,∵BD :DC=2:1,BC=6, ∴DC=112+×6=2, ∵AD 平分∠BAC ,∠C=90∘, ∴DE=DC=2. 故选:C .总结:本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.例3:如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .52【答案】C【解析】解:由作法得AG 平分BAC ∠,G ∴点到AC 的距离等于BG 的长,即G 点到AC 的距离为1,所以ACG ∆的面积14122=⨯⨯=. 故选:C .总结:本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了交平分线的性质. 例4:点D ,E 分别在△ABC 的边AC ,BD 上,BD ,CE 交于点F ,连接AF ,∠FAE =∠FAD ,FE =FD .(1)如图1,若∠AEF =∠ADF ,求证:AE =AD ;(2)如图2,若∠AEF≠∠ADF ,FB 平分∠ABC ,求∠BAC 的度数;(3)在(2)的条件下,如图3,点G 在BE 上,∠CFG =∠AFB 若AG =6,△ABC 的周长为20,求BC 长.【答案】(1)见解析;(2)60BAC ∠=︒;(3)7BC =.【解析】(1)∵FAE FAD ∠=∠,AEF ADF ∠=∠,FE FD =. ∴AEF ADF ∆≅∆,∴AE AD =.(2)过F 点分别作AB ,BC ,AC 边上的高,FP ,FQ ,FN ,点P ,Q ,N 为垂足. ∵AF ,BF 分别平分BAC ∠和ABC ∠,∴FP FQ =,FP FN =, ∴FQ FN =,且FN AC ⊥,FQ BC ⊥,∴CF 平分ACB ∠. ∴ACE BCE ∠=∠.∵2BEC BAC ACE BAF ACE ∠=∠+∠=∠+∠, ∴2EFD ABF BEC ABF BAF ACE ∠=∠+∠=∠+∠+∠1180902BAF BAF =⨯︒+∠=︒+∠. ∵FE FD =,∴Rt PEF Rt NDF ∆≅∆,∴PEF FDN ∠=∠,∴180PEF ADF ∠+∠=︒, ∴()42180BAC EFD PEF ADF ∠+∠=-⨯︒-∠-∠360180180=︒-︒=︒. ∴90180BAF BAC ︒+∠+∠=︒且2BAC BAF ∠=∠, ∴60BAC ∠=︒.(3)在BC 上取点R ,使CR CA =,∵CF CF =,FCA FCR ∠=∠,∴CAF CRF ∆≅∆. ∴30CRF CAF ∠=∠=︒,180150BRF CRF ∠=︒-∠=︒. ∵CFG AFB ∠=∠,∴CFG BFG AFB BFG ∠-∠=∠-∠, ∴18060120AFG BFC ∠=∠=︒-︒=︒,∵1302BAF BAC ∠=∠=︒, ∴30AGF ∠=︒,180150BGF AGF ∠=︒-∠=︒. ∴BGF BRF ∠=∠.∵GBF RBF ∠=∠,BF BF =,∴BGF BRF ∆≅∆. ∴BG BR =.∵AC AB BC BG AG BC AC ++=+++6220BR AG BC CR BC =+++=+=, ∴7BC =.总结:本题考查的是全等三角形的判定和性质、角平分线的性质、三角形内角和定理,正确作出辅助性、掌握全等三角形的判定定理和性质定理是解题的关键.三、练习1.如图,点O 在ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC 的大小为( )A .135°B .120°C .90°D .60°【答案】B【解析】∵O 到三边的距离相等 ∴BO 平分∠ABC ,CO 平分∠ACB ∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°−∠A) ∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120° 故选B.2.如图,为了促进当地旅游发展,某地要在三条公路围城的一块三角形平地ABC 上修建一个度假村。
人教版数学八年级上册第十二章12.3角的平分线的性质

E
B
D
BD=CD,
∴ Rt△BDE ≌ Rt△CDF(HL).
DE=DF,
∴ EB=FC.
F C
11
新知应用
例2 如图,在Rt△ABC中,AC=BC,∠C=90°,AP平分
∠BAC交BC于点P,若PC=4, AB=14.
(1)则点P到AB的距离为___4____.
B D
提示:已知角平分线,且存在一条垂线段.
猜想:角的平分线上的点到角的两边的距离相等.
6Leabharlann 新知讲解 验证:角的平分线上的点到角的两边的距离相等.
已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,
垂足分别为D,E.
A
求证:PD=PE.
D
证明:∵PD⊥OA,PE⊥OB, ∴ ∠PDO=∠PEO=90 °. 在△PDO和△PEO中,
14
新知应用
例4 如图,已知AD∥BC,P是∠BAD与∠ABC的平分线的交 点,PE⊥AB于E,且PE=3,求AD与BC之间的距离.
解:过点P作MN⊥AD于点M,交BC于点N. ∵ AD∥BC, ∴ MN⊥BC,MN的长即为AD与BC之间的距离. ∵ AP平分∠BAD,PM⊥AD ,PE⊥AB, ∴ PM= PE. 同理,PN=PE. ∴ PM=PN=PE=3. ∴ MN=6. 即AD与BC之间的距离为6.
1 2
MN的长为
N
O
半径画弧,两弧在∠AOB的内部相交于点C.
∵△CMO≌△CNO(SSS),
(3)画射线OC. 射线OC即为所求.
∴∠COM=∠CON.
4
新知讲解 尺规作角平分线
已知:平角∠AOB. 求作:平角∠AOB的角平分线.