沪科版七年级数学下册精英课件:7.2一元一次不等式第一课时
最新沪科版七年级数学下册电子课本课件【全册】

0002页 0036页 0071页 0091页 0118页 0131页 0168页 0184页 0223页 0239页 0307页 0339页
第6章 实数 6.2 实数 7.1 不等式及其基本性质 7.3 一元一次不等式组 第8章 整式乘法和因式分解 8.2 整式乘法 8.4 因式分解 第9章 分式 9.2 分式的运算 第10章 相交线、平行线和平移 10.2 平行线的判定 10.4 平移
7.4 综合与实践排队问题
最新沪科版七年级数学下册电子课 本课件【全册】
第8章 整式乘法和因式分解
最新沪科版七年级数学下册电子课 本课件【全册】
第6章 实数
最新沪科版七年级数学下册电子课 本课件【全册】
6.1 平方根 、立方根
最新沪科版七年级数学下册电子课 本课件【全册】
6.2 实数
最新沪科版七年级数学下册电子课 本课件【全册】
第7章 一元一次不等式和不等 式组
最新沪科版七年级数学下册电子课 本课件【全册】
7.1 不等式及其基本性质
最新沪科版七年级数学下册电子课 本课件【全册】
7.2 一元一次不等式
最新沪科版七年级数学下册电子课 本课件【全册】
7.3 一元一次不等式组
最新沪科版七年级数学下册电子课 本课件【全册】
不等式及其基本性质课件沪科版数学七年级下册

四、合作探究
一般地,不等式具有如下基本性质: 性质3 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 即,如果a>b,c<0,那么 ac < bc,且 a < b .
cc
四、合作探究
探究四 不等式的其他性质
性质4 如果a>b,那么b < a.
视察下面数轴,试着发现性质5.
c
b
a
性质5 如果a>b,且b>c,那么a > c.
三、自主学习
知识点 不等式的概念
像2x+3≤-6,a-b<0,4.5t<28000等这样, 我们把用不等号(>,<,≥,≤,≠)表示不等关系的式子叫作不等式. 注意:不大于,即小于或等于,用“≤”表示;
不小于,即大于或等于,用“≥”表示.
三、自主学习
练一练
判断下列式子是不是不等式
(1)-3>0;
猜想:不等式具有怎样的性质?
四、合作探究
探究一 不等式的性质1 如图所示,托盘天平的右盘放上一质量为bg的铁球,左盘放上一质量为 ag的立体木块,天平向右倾斜. 用不等号填一填:
a < b, 两边同时加上一个cg的木块后a+c < b+c,
a
ac
b
+c
bc
四、合作探究
ac
bc
a b
-c
两边同时再将cg的木块拿掉a+c-c < b+c-c, 由a<b到a+c<b+c再到(a+c)-c<(b+c)-c,你发现了什么?
你能举出一些例子吗?
四、合作探究
问题2:如果a>b,那么-a<-b,这个式子可理解为: a× -1 <b× -1 .
不等式及其基本性质课件沪科版七年级数学下册

不等式基本性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向 改变.即如果a > b,c < 0,那么 ac < bc,a b .
cc
C. a b
55
D.-3a>-3b
解析:根据不等式的性质1,不等式的两边都加上(或减去)同一数或同
一个整式,不等号的方向不变.故A、B正确.
根据不等式的性质2,不等式的两边都乘(或除以)同一个正数,不等号 的方向不变.故C正确.
根据不等式的基本性质3,不等式的两边同时乘(或除以)同一个负数, 不等号的方向改变,故D选项错误,应为-3a<-3b.
解析:表示不等关系的式子有①-2<0;②2a>3-a;④(a-1)2≥0; ⑥x2+2x≠3;⑦3x>5;⑧5x≤4x-1.共6个. 而③3x+5是代数式,⑤s=vt表示等量关系.故是不等式的有6个.
四、典型例题
归纳总结: 判断一个式子是不是不等式的方法: 用不等号连接的式子是不等式.不等号包括:>,<,≥,≤,≠.
由此可见,“不相等”处处可见. 从今天起,我们开始学习一类新的数学知识: 不等式
三、概念剖析
我们先来试着回答几个问题.
问题1:用适当的符号表示下列关系:
(1)2x与3的和不大于-6; (2)x的5倍与1的差小于x的3倍;
2x+3≤-6 5x-1<3x
(3)a与b的差是负数.
a-b<0
三、概念剖析
第7章 一元一次不等式与不等式组 7.1 不等式及其基本性质
一、学习目标
1.通过实例,理解不等式的概念,正确理解“不大于”、“不小于” 等数学术语; 2.掌握不等式的五个性质,会用不等式比较大小;(重点) 3.学会并准确运用不等式表示数量关系.
解一元一次不等式(第1课时)(课件)七年级数学下册精品课件(苏科版)

新知归纳 一元一次不等式的概念
只含有一个未知数,并且未知数的次数都是1,系数不等于0. 像这样的不等式,叫做一元一次不等式.
新知巩固
1.判断下列各式是否是一元一次不等式? 否 否 是 否
x>0 是
8>4 否
新知巩固
2.已知3x2-m +70>100是关于x的一元一次不等式,则m=__1__. 解:2-m=1,m=1.
解:因为(m-1)x|m|+3>0是关于x的一元一次不等式, 所以m-1≠0,|m|=1,解得m=-1.
课堂检测
6. 若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0 的解为___y_=__2____.
7. 用※定义一种新运算:对于任意数m和n,规定m※n=m2n-mn-3n. 如1※2=12×2-1×2-3×2=-6. 若3※k≥-6,则k的取值范围 是__2__.
将m=1代入不等式,得3x +70>100
如何解这个 不等式呢?
知识回顾
解一元一次方程的一般步骤和依据是什么?
解一元一次方程的一般步骤是: 去分母,去括号,移项,合并同类项,系数化为1.
解一元一次方程的依据是等式的性质.
新知探索
解一元一次不等式能不能采取类似的步骤呢?
请你类比一元一次方程的解法,探索如何解元一次不等式 3x +70>100?说出每一步变形的依据.
0
-6 0
新知巩固
2.当x取什么值时,代数式2x-4的值大于代数式3x+1的值? 解:根据题意,得 2x-4>3x+1 2x-3x>1+4 -x>5 x<-5 当x<-5时,代数式2x-4的值大于代数式3x+1的值.
新知巩固
3.求一元一次不等式10(x+4)+x ≤73的非负整数解. 解: 10x+40+x≤73 11x≤33 x≤3
2013-2014学年沪科版七年级下7.2一元一次不等式讲解与例题

7.2 一元一次不等式1.了解一元一次不等式的概念,掌握一元一次不等式的解法.2.了解解不等式的概念,会用不等式的性质解简单的不等式,并能用数轴表示解集.3.运用一元一次不等式建立数学模型来解决实际问题,体会探索问题的过程,感知数学的应用价值.1.一元一次不等式的概念含有一个未知数,未知数的次数是1、且不等号两边都是整式的不等式叫做一元一次不等式.如不等式x -2≥4,2x +1<11,x -3>2,0.2x +4≤5都是一元一次不等式.(1)一元一次不等式的一般形式:ax +b >(≥)0或ax +b <(≤)0.(a ≠0)(2)一元一次不等式的最简形式:ax >(≥)0或ax <(≤)0.(a ≠0)(3)一元一次不等式概念的理解:①表示不等关系,即式子是不等式.②不等号的左右两边都是整式.例如,1y <2,1x +3≥5就不是一元一次不等式. ③只含有一个未知数,即未知数的个数不能多.例如,2x +y >3不是一元一次不等式.④未知数的最高次数是1.如x 2+x -2≤1不是一元一次不等式.判断式子是否是一元一次不等式,上述四个条件缺一不可.一元一次不等式与一元一次方程的异同相同点:两者都只含有一个未知数,未知数的最高次数是1,左边和右边都是整式. 不同点:一元一次不等式表示不等关系,用不等号连接,不等号有方向;一元一次方程表示相等关系,用等号连接,等号没有方向.【例1】下列不等式是一元一次不等式的是( ).A .2x (x -3)>9B .x +5y <2C .6x -3>2D .1x-3>5 解析:A 中的2x (x -3)应将括号展开,否则容易误认为x 的指数为1,其最高次数为2,故不是一元一次不等式;B 中含有两个未知数,故不是一元一次不等式;D 中不等号左边不是整式,也不是一元一次不等式;只有C 符合一元一次不等式的定义.故选C . 答案:C2.不等式的解集 (1)一般地,能够使不等式成立的未知数的值,叫做这个不等式的解,所有这些解的全体称为这个不等式的解集.求不等式解集的过程叫做解不等式.例如,x =3,4,5,6,7.5,…都是不等式x +2≥5的解,可以用x ≥3来表示,其中x ≥3就是不等式x +2≥5的解集.(2)不等式的解集必须满足的条件:一是解集中的每一个数值都能使不等式成立,解集外的任何一个数值都不能使不等式成立;二是能够使不等式成立的所有数值都在解集中.不等式的解与不等式的解集是两个不同的概念,不等式的解集是由使不等式成立的所有未知数的值组成的,一个不等式的解集包括不等式的每一个解.即所有的解组成了解集,解集包括解.(3)检验一个数是否为不等式的解与检验一个数是否为方程的解的方法相同,即将这个数代入不等式中,看不等式是否成立(其中方程是看等号两边是否相等,而不等式是看是否与不等号方向相同).【例2】下列说法正确的个数是( ).(1)5是不等式x +2>6的解;(2)3是不等式y -1>2的解;(3)所有小于1的整数都是不等式x +1<2的解.A .1B .2C .3D .0解析:把x =5代入(1)中不等式的左、右两边,这时x +2=7,而7>6,即x +2>6成立,所以x =5是不等式x +2>6的解,故说法(1)正确;把y =3代入(2)中不等式的左、右两边,这时y -1=2,即y -1>2不成立,所以3不是不等式y -1>2的解,故说法(2)不正确;因为所有小于1的整数都能使x +1<2成立,故说法(3)正确.因此选B .答案:B3.一元一次不等式的解集及其表示(1)一元一次不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.类似地,使一元一次不等式成立的所有的解,组成了一元一次不等式的解集.(2)解集的形式:任意一个一元一次不等式最终都化简为ax >b 或ax <b (a ≠0)的形式,其解集可分为以下两种情形:①当a >0时,ax >b 的解集为x >b a ,ax <b 的解集为x <b a ;②当a <0时,ax >b 的解集为x <b a ,ax <b 解集为x >b a .(3)一元一次不等式的解集可以用数轴来表示.x <a 的全体实数,在数轴上表示a 左边的所有点,不包括在内;x ≤a 表示小于或等于a 的全体实数,在数轴上表示a 左边的所有点,包括a 在内;x >a 表示大于a 的全体实数,在数轴上表示a 右边的所有点,不包括a 在内;x ≥a 表示大于或等于a 的全体实数,在数轴上表示a 右边的所有点,包括a 在内.【例3】写出下列数轴上所表示的不等式的解集:解:把数轴上的点所表示的数的范围用不等式表示,即为所求的解集.所以(1)的解集为x >0;(2)的解集为x ≤-1.4.解一元一次不等式的步骤解一元一次不等式与解一元一次方程的步骤一样,主要有以下几个步骤:(1)去分母:根据不等式的基本性质2或3,把不等式的两边都乘以各分母的最小公倍数,得到整数系数的不等式.(2)去括号:根据去括号法则去括号,特别要注意括号外面是负号时,括号里面的各项要改变符号.(3)移项:根据不等式的基本性质1,一般把含有未知数的项移到不等号的左边,常数项移到不等号的右边.(4)合并同类项:根据整式的运算法则,将同类项合并.(5)系数化为1:根据不等式的基本性质2或3,将未知数的系数化成1.解一元一次不等式时易错点:(1)去分母时,不含分母的项容易漏乘分母的最小公倍数.如不等式3+2-3x 5≤1+x 2去分母时,常数项3容易漏乘分母的最小公倍数10.(2)去括号时,括号前是负号的,括号内各项的符号均要变.如不等式3-5⎝ ⎛⎭⎪⎫15x -2-4(-1+5x )<0去括号时,不要忽视括号前面的负号.(3)移项时要变号.如不等式7x -6<4x -9移项时,要改变符号.(4)未知数的系数化为1时,不等式的两边都除以未知数的系数,当系数是负数时,不等号的方向改变.如在化简-0.8x ≤-1.6时,两边都除以-0.8,要改变不等号的方向.【例4】解不等式:1+x 3>5-x -22,并在数轴上表示其解集. 分析:将不等式左右两边同时乘以未知数的系数的最小公倍数,然后合并化简求解. 解:去分母,得6+2x >30-3(x -2).去括号,得6+2x >30-3x +6.移项,得2x +3x >30+6-6.合并同类项,得5x >30.未知数系数化为1,得x >6.不等式的解集在数轴上的表示如图所示:在解这个一元一次不等式时要注意移项时要改变符号,系数化为1时,如果同时乘以(或除以)同一个正数,不等号的方向不变,同时乘以(或除以)同一个负数,不等号的方向改变.5.一元一次不等式的应用与列一元一次方程解决实际问题一样,列一元一次不等式解应用题的步骤是:(1)审题.弄清题意和题目中的数量关系和不等关系,即分析题中已知什么、未知什么、求什么.(2)设元.即设未知数.分直接设和间接设两种,设时要带有单位.(3)列不等式.根据不等关系,用含有未知数的代数式表示出来.(4)解不等式.解所列不等式,求出未知数的范围.(5)检验并作答.检验所求解是否符合题意,是否符合实际情况,最后写出答案.【例5】某市自来水公司按如下标准收取水费,若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超过部分每立方米收费2元.小童家某月的水费不少于10元,那么她家这个月的用水量至少是多少?分析:本题目中水费计算方法与用水量在不同的范围内而有所不同,设小童家的用水量是x m 3,当x ≤5时,水费为1.5x 元;当x >5时,不超过5 m 3的部分共收水费为1.5×5元,超过5 m 3部分的水收费2(x -5)元,两部分共1.5×5+2(x -5)元.本题目中不等关系为:某月的水费不少于10元.解:设小童家的用水量是x m 3.由于10>1.5×5,所以小童家的用水量超过5 m 3.根据题意,得1.5×5+2(x -5)≥10.解这个不等式,得x ≥6.25(m 3).故小童家这个月的用水量至少是6.25 m 3.建立不等式模型,即把实际问题转化为不等式问题求解,根据不等关系列出不等式.不等关系的找法可抓住关键词语,如:“至少”“最多”“不超过”“不低于”.6.与一元一次不等式有关的综合题一般情况下,不等式的解有无数个,但在特定的条件下,不等式的解的个数可以是有限个,可以利用这种方法和技巧求不等式的特殊解.求不等式的特殊解时,要先求出不等式的所有解集,再从所有解集中找出题目中要求的特殊解.通常先用数轴表示不等式的解集,再通过数轴求特殊解.不等式的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先要确定不等式的解集,然后再找到相应的答案.【例6】求不等式5-4x 12<1的非正整数解. 分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出符合条件的非正整数解即可.解:解不等式5-4x 12<1. 去分母,得5-4x <12.移项,得-4x <12-5.合并同类项,得-4x <7.未知数系数化为1,得x >-74. 因此原不等式解集为x >-74. 该不等式的解集在数轴上表示为:故不等式5-4x 12<1的非正整数解为-1,0,共两个. 求不等式的特殊解,利用数轴表示解集可避免多解、漏解的现象.7.不等式解集的应用(1)不等式解集的应用范围很广,最典型的是求字母的取值范围.解决这一问题的关键是观察不等式中不等号的方向与其解集中不等号的方向是否一致.若不一致,则说明未知数的系数为负,即未知数的系数小于零;若一致,则说明未知数的系数为正,即未知数的系数大于零.从而把问题转化为关于参数的不等式,解这个不等式得到参数的解.(2)利用不等式的解集还可以解决以下问题:①判断代数式的值的大小关系;②求与之有关联的另一个不等式的解集;③与方程综合求代数式的值.解决这些问题的关键是正确地求出不等式的解集,根据题意列出新的方程或不等式.然后结合数轴或将给出的条件代入,即可确定字母系数的取值范围,但是要注意端点的取舍.【例7】m 取何值时,关于x 的方程23x -1=6m +5(x -m )的解是非负数. 分析:本题首先要解这个关于x 的方程,求出方程的解,根据解是非负数,可以得到一个关于m 的不等式,然后再根据不等式求出m 的范围.解:由原方程,解得x =-3m +313, 因为方程23x -1=6m +5(x -m )的解是非负数, 所以x ≥0,即-3m +313≥0. 解这个不等式,得m ≤-1.8.列一元一次不等式解决实际问题一元一次不等式的应用题与实际生活联系密切.此类题目涉及的知识点主要是一元一次不等式的解法,以及求不等式的特殊解(整数解、非负整数解、非正整数解、正整数解、负整数解).要加强建立不等式模型解决问题的数学意识.对涉及日常生活中的经营决策、方案设计、最佳效益等方面的问题,要了解其中的专业术语和数学关系.例如方案设计问题常常是根据题中的不等关系列不等式,得到某些量的限制条件,从而确定不同的方案,完成对某些实际问题的方案设计.根据题中字母或有关量的限制条件找出符合实际意义的解,一般不等式有无数个解,但应用题要求的往往是符合实际意义的、具体的、有限的特殊解.【例8】为了更好地满足人民生活需求,丰富市场供应,某地区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的矩形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540 m 2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它解:设西红柿种了(24-x )垄.根据题意,得15x +30(24-x )≤540.解得x ≥12.∵x ≤14,且x 是正整数,∴x =12,13,14.故共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄;方案二:草莓种植13垄,西红柿种植11垄;方案三:草莓种植14垄,西红柿种植10垄.。
沪科版数学七年级下册7.2《一元一次不等式》教学设计

沪科版数学七年级下册7.2《一元一次不等式》教学设计一. 教材分析《一元一次不等式》是沪科版数学七年级下册第七章第二节的内容。
这一节主要介绍了一元一次不等式的概念、性质和求解方法。
通过本节课的学习,学生能够理解一元一次不等式的定义,掌握一元一次不等式的解法,并能运用不等式解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析七年级的学生已经学习了代数基础知识和一元一次方程,他们对代数概念有一定的理解。
但是,对于不等式的概念和性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元一次不等式的相关概念和解法。
同时,学生需要通过大量的练习,提高解题技能。
三. 教学目标1.知识与技能:使学生理解一元一次不等式的定义,掌握一元一次不等式的解法,能够运用不等式解决实际问题。
2.过程与方法:通过观察、分析和归纳,培养学生发现和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次不等式的定义和求解方法。
2.难点:一元一次不等式的应用和求解过程。
五. 教学方法1.讲授法:通过讲解一元一次不等式的定义和性质,使学生掌握基本概念。
2.引导法:通过引导学生观察、分析和归纳,培养学生发现和解决问题的能力。
3.实践法:通过大量的练习题,提高学生的解题技能。
六. 教学准备1.教学PPT:制作精美的PPT,展示一元一次不等式的定义、性质和求解方法。
2.练习题:准备适量的一元一次不等式练习题,包括基础题和提高题。
3.教学素材:收集一些与一元一次不等式相关的实际问题,用于课堂拓展。
七. 教学过程1.导入(5分钟)利用PPT展示一些与不等式相关的生活实例,引导学生关注不等式在现实生活中的应用。
提出问题,让学生思考:如何用数学语言来表示这些不等关系?2.呈现(10分钟)讲解一元一次不等式的定义和性质,通过PPT展示相关知识点,引导学生理解和掌握。
7.2一元一次不等式(2)课件ppt沪科版七年级下

14x-21x+56<52 -4x-14
移项,合并同类项,得: -3x<-18 系数化为1,得: X>6
例 2. 当 什么值时,代数式 2x-3 的值
(1) 大于 -3 ( 2 )小于 - x+1 的值
(2)由题意可得不等式: 解:(1)由题意可得不等式:
2x-3>-3
2x-3<-x+1
解这个不等式得:
2(4+x)? 6<3x
去括号,得 8+2x?6<3x
移项,得 2x?3x<?8+6
合并同类项,得 ?x<?2
系数化为1,得 x>2
注意: (1)去分母时,找分母的最小 公倍数,所有项都应乘以最小 公倍数,不要漏项,同时,分 子如果是多项式,注意加括号 (2)去括号时,注意符号是否 变换 (3)移项时注意变号 (4)系数化为1时,注意不等号 的方向是否改变
解这个不等式得: X<
X>0
∴ 当x>0时,代数式 2x ∴ 当x<时,代数式2x-
-3的值大于- 3
3的值小于- x+1的值。
练习
1、当代数式的值大于 10时,x的取值范围是 ______ 2、当x______ 时,代数式的值是非负数 3、思考:求不等式的负整数解
课堂小结:
谈谈你本节课的收获!
一、复习
1、什么是一元一次不等式?
2、解一元一次不等式的一般步骤 和注意事项。
3.解下列不等式,并把它们的解集分别表 示在数轴上: (1)5x<-10; (2)-3(x-4)≤0;
(3)3-x<2x+6
例题分析
例1 . 解不等式: ,并把它的解集表示在数轴上。
沪科版七年级下册数学课件 :7.3一元一次不等式组(共25张PPT)

解下列不等式组: 2x 1x
(1)x 2 4x 1
x512x (2)3x24x
比一比,看谁又快 又好
例2: 2x 3 x 11 ①
2x 3
5
1
2
x
②
解: 由不等式①,得, x 8
由不等式②,得, x
4 5
把不等式①和 ②的解集在数轴上表示出来:
04
8
5
这两个不等式的解集没有公共部分,
所以这个不等式组无解。
解下列不等式组:
(
3
)
2 3
x
x
5 1
3 4
1 x
x
1 8
x 3(x 1) 7
(4)1
2
5x 3
x
(一)概念
1. 由几个一元一次不等式所组成的不等式组叫做一 元一次不等式组 .
2. 几个一元一次不等式的解集的公共部分,叫做由它们 所组成的一元一次不等式组的解集.
探究新知
我90千克
我x千克 我40千克
X+40<90
3X>90
类似于方程组的概念,你能说 出一元一次不等式组的概念吗?
类似于方程组,把这两个或两个以上的 一元一次不等式合起来,就组成一个一元 一次不等式组。
注意:
(1)每个不等式必须为一元一次不等式; (2)不等式必须是只含有同一个未知数; (3)不等式的数量至少是两个或者多个。
x
4,
7 2 x 1 .
√
? 如何解此不等式组呢
小组讨论:
类比方程组的解,怎样确定 不等式组中X的取值范围呢? 提示:在同一个数轴上画出他们的解集 来看看 不等式组中的各不等式解集的公共部分, 就是不等式组中X的取值范围