高考数学总复习第六章不等式第2讲二元一次不等式组与简单的线性规划问题课时练习
(全国通用)高考数学大一轮复习 第六篇 不等式 第3节 二元一次不等式(组)与简单的线性规划问题习题

第3节二元一次不等式(组)与简单的线性规划问题选题明细表知识点、方法题号二元一次不等式(组)表示的平面区域1,4,9含参数的线性规划3,5,6,7,10,12目标函数的最值2,8,13,14,15线性规划的实际应用11基础对点练(时间:30分钟)1.不等式组所表示的平面区域是( D )解析:画出直线x=2,在平面上取直线的右侧部分(包含直线本身);再画出直线x-y=0,取直线的右侧部分(包含直线本身),两部分重叠的区域就是不等式组表示的平面区域.故选D.2.(2016·某某卷)若变量x,y满足则x2+y2的最大值是( C )(A)4 (B)9(C)10 (D)12解析: 作出不等式组表示的可行域如图所示,由x2+y2表示可行域内的点(x,y)到原点的距离平方可知,点A(3,-1)满足条件,即x2+y2的最大值为32+(-1)2=10.故选C.3.(2016·某某模拟)已知函数f(x)=log a x(a>1)的图象经过区域则a的取值X 围是( C )(A)(1,] (B)(,+∞)(C)[,+∞) (D)(2,+∞)解析: 作出不等式组表示的可行域,如图中阴影部分所示.联系函数f(x)=log a x(a>1)的图象,能够看出,当图象经过区域的边界点A(3,3)时,a可以取到最小值,而显然只要a大于,函数f(x)=log a x(a>1)的图象必然经过区域内的点.则a的取值X围是[,+∞).故选C.4.(2015·某某校级三模)若A为不等式组表示的平面区域,则a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( D )(A)9(B)3(C)(D)解析: 如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ACD是斜边为3的等腰直角三角形,△OEC是直角边为1的等腰直角三角形,所以区域的面积S=S△ACD-S△OEC=×3×-×1×1=.5.(2014·某某卷)x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为( D )(A)或-1 (B)2或(C)2或1 (D)2或-1解析:线性约束条件对应的可行域如图所示:目标函数z=y-ax化为y=ax+z,当a>0时,要使其取得最大值的最优解不唯一,需动直线y=ax+z与2x-y+2=0平行或重合,此时a=2;同理当a<0时,需动直线y=ax+z与x+y-2=0平行或重合,此时a=-1,故选D.6.(2016·某某章丘期末)若实数x,y满足不等式组且x+y的最大值为9,则实数m等于( C )(A)-2 (B)-1(C)1 (D)2解析: x-my+1=0恒过点(-1,0),旋转直线x-my+1=0可知可行域只可能是△ABC,且x+y的最大值只在点C处取得,联立方程组得C(,)(若m=,则与2x-y-3=0平行,不可能),(x+y)max=+=9,解得m=1.故选C.7.(2016·某某某某名校联考)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于( A )(A)(B)(C)1 (D)2解析: 根据约束条件画出可行域,如图,由图可知当直线z=2x+y经过点B时,z最小,由解得所以z min=2×1-2a=1,解得a=.故选A.8.导学号 18702285已知x,y满足则的取值X围是( C )(A)[0,] (B)[2,] (C)[1,] (D)[0,]解析:不等式组表示的平面区域如图中阴影部分所示.因为==1+,表示区域内的点与(4,2)连线的斜率.斜率最小值为0,点(-3,-4)与M(4,2)连线斜率最大为=.所以的取值X围为[1,].故选C.9.若点P(m,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y<3表示的平面区域内,则m=.解析:由题意可得解得m=-3.答案:-310.(2016·某某模拟)若直线y=2x上存在点(x,y)满足约束条件则实数m的取值X围是.解析: 由题意,由可求得交点坐标为(1,2),要使直线y=2x上存在点(x,y)满足约束条件则点(1,2)在可行域内,如图所示,可得m≤1.答案:(-∞,1]11.导学号 18702284某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电、劳力、获得利润及每天资源限额(最大供应量)如下表所示:产品限额资源甲产品(每吨)乙产品(每吨)资源限额(每天)煤(t) 9 4 360电(kW·h) 4 5 200劳力(个) 3 10 300利润(万元) 6 12问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元.依题意可得约束条件利润目标函数z=6x+12y.如图,作出可行域,作直线l:6x+12y=0,把直线l向右上方平移至l1位置,直线经过可行域上的点M时z=6x+12y取最大值.解方程组得M(20,24).所以生产甲种产品20 t,乙种产品24 t,才能使此工厂获得最大利润.能力提升练(时间:15分钟)12.(2016·某某八校联考)已知变量x,y满足约束条件若z=x-2y的最大值与最小值分别为a,b,且方程x2-kx+1=0在区间(b,a)上有两个不同实数解,则实数k的取值X围是( C )(A)(-6,-2) (B)(-3,2)(C)(-,-2)(D)(-,-3)解析: 作出可行域,如图所示,则目标函数z=x-2y在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3,所以a=1,b=-3,从而可知方程x2-kx+1=0在区间(-3,1)上有两个不同实数解.令f(x)=x2-kx+1,则⇒-<k<-2,故选C.13.导学号 18702286如果实数a,b满足条件:则的最大值是.解析: 根据约束条件画出可行域,如图,表示可行域内的点与原点(0,0)连线的斜率,设z的几何意义表示可行域内点P与原点O(0,0)连线的斜率,易知当直线OP过点B(,)时,取最大值,最大值为3,直线OP过点A(1,1)时,取最小值,最小值为1,所以∈[1,3].所以===2-因为∈[1,3].所以的最大值为.答案:14.(2014·某某卷)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值X 围是.解析:可行域如图所示,则A(1,0),B(2,1),C(1,),设z=ax+y,即得1≤a≤.答案:[1,]15.导学号 18702287变量x,y满足(1)假设z1=4x-3y,求z1的最大值;(2)设z2=,求z2的最小值;(3)设z3=x2+y2,求z3的取值X围.解: 作出可行域如图中阴影部分,联立易得A(1,),B(1,1),C(5,2).(1)z1=4x-3y⇔y=x-,易知平移y=x至过点C时,z1最大,且最大值为4×5-3×2=14.(2)z2=表示可行域内的点与原点连线的斜率大小,显然直线OC斜率最小.故z2的最小值为.(3)z3=x2+y2表示可行域内的点到原点距离的平方,而2=OB2<OA2<OC2=29.故z3∈[2,29].好题天天练1.(2015·某某卷)设实数x,y满足则xy的最大值为( A )(A)(B)(C)12 (D)16解题关键:判断xy取得最大值的点,并分类讨论确定最大值.解析: 先画出可行域,再将xy转化为矩形面积S,求S的最大值.表示的可行域如图中阴影部分所示.令S=xy,不妨设在点M(x0,y0)处S取得最大值,且由图象知点M(x0,y0)只可能在线段AD,AB,BC上.①当M(x0,y0)在线段AD上时,x0∈[-2,0],此时S=xy≤0;②当M(x0,y0)在线段AB上时,x0∈[0,2],S=xy=x·=x(7-)=-+7x=-(x-7)2+,当x0=2时,wordS max=-(2-7)2+=-+=12;③当M(x0,y 0)在线段BC上时,x 0∈[2,4],S=xy=x·(10-2x)=-2x2+10x=-2(x-)2+,当x0=时,S max =.综上所述,xy的最大值为.2.导学号 18702288设实数x,y满足则z=-的取值X围是.解析: 由于表示可行域内的点(x,y)与原点(0,0)的连线的斜率,如图,求出可行域的顶点坐标A(3,1),B(1,2),C(4,2),则k OA=,k OB=2,k OC=,可见∈[,2],令=t,则z=t-在[,2]上单调递增,所以z∈[-,].答案:[-,]11 / 11。
2019年高考数学总复习第六章不等式第2讲二元一次不等式组与简单的线性规划问题课时作业

第2讲 二元一次不等式(组)与简单的线性规划问题基础巩固题组(建议用时:30分钟)一、选择题1.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )解析 法一 不等式(x -2y +1)(x +y -3)≤0等价于⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0或⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,画出对应的平面区域,可知C 正确.法二 结合图形,由于点(0,0)和(0,4)都适合原不等式,所以点(0,0)和(0,4)必在区域内,故选C.答案 C2.不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A.1B.12C.13D.14解析 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D =12,所以S △BCD =12×(x C -x B )×12=14. 答案 D3.(2017·湖州市统检)不等式组⎩⎪⎨⎪⎧x -y ≤0,x +y ≥-2,x -2y ≥-2的解集记为D ,若(a ,b )∈D ,则z =2a -3b 的最小值是( )A.-4B.-1C.1D.4解析 画出不等式组表示的平面区域,如图中阴影部分所示,当a =-2,b =0,z =2a -3b 取得最小值-4.答案 A4.(2016·浙江卷)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2 C.322D. 5解析 已知不等式组所表示的平面区域如图所示阴影部分,由⎩⎪⎨⎪⎧x -2y +3=0,x +y -3=0,解得A (1,2), 由⎩⎪⎨⎪⎧x +y -3=0,2x -y -3=0,解得B (2,1).由题意可知,当斜率为1的两条直线分别过点A 和点B 时,两直线的距离最小, 即|AB |=(1-2)2+(2-1)2= 2.答案 B 5.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1B.2或12C.2或1D.2或-1解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.答案 D。
高考数学一轮复习 第六章 不等式 第二节 二元一次不等式(组)与简单的线性规划问题课件

C目录 ONTENTS
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
高考·导航
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二元 一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题,并 能加以解决.
主干知识 自主排查
1.二元一次不等式(组)表示的平面区域
不等式
表示区域
直线 Ax+By 不包括 Ax+By+C>0
+C=0 某一 边界直线
侧的所有点组 包括
Ax+By+C≥0 成的平面区域
边界直线
不等式组
各个不等式所表示平面区域 的 公共部分
2.线性规划中的基本概念
名称
意义
约束条件 由变量 x,y 组成的 不等式(组)
由 x,y 的 一次 不等式(或方程)组成的不等 线性约束条件
式(组)
目标函数
关于 x,y 的函数 解析式 ,如 z=2x+3y 等
线性目标函数 关于 x,y 的 一次 解析式
名称 可行解
意义 满足线性约束条件的解 (x,y)
可行域
所有可行解组成的 集合
最优解
使目标函数取得 最大值 或 最小值 的可 行解
核心考点 互动探究
题组练通
y≤-x+2, 1.(2018·泰安模拟)不等式组 y≤x-1,
y≥0
域的面积为( )
A.1
B.12
C.13
D.14
所表示的平面区
解析:作出不等式组对应的区域为△BCD,
由题意知 xB=1,xC=2.由yy==x--x+1,2, 得 yD=12,所以 S△BCD =12×(xC-xB)×12=14. 答案:D
高考专题练习: 二元一次不等式(组)及简单的线性规划问题

1.二元一次不等式(组)表示的平面区域满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念1.画二元一次不等式表示的平面区域的直线定界,特殊点定域(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.3.平移规律当b >0时,直线z =ax +by 向上平移z 变大,向下平移z 变小;当b <0时,直线z =ax +by 向上平移z 变小,向下平移z 变大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)× 二、易错纠偏常见误区| (1)不会用代点法判断平面区域; (2)不明确目标函数的最值与等值线截距的关系; (3)不理解目标函数的几何意义; (4)对“最优解有无数个”理解有误.1.若点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________. 解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞2.设x ,y 满足约束条件⎩⎨⎧y +2≥0,x -2≤0,2x -y +1≥0.则z =x +y 的最大值与最小值的比值为________.解析:不等式组所表示的平面区域如图中阴影部分所示,z =x +y 可化为y =-x +z ,当直线y =-x +z 经过A 点时,z 最大,联立⎩⎪⎨⎪⎧x -2=0,2x -y +1=0.得⎩⎪⎨⎪⎧x =2,y =5,故A (2,5),此时z =7;当直线y =-x +z 经过B 点时,z 最小,联立⎩⎪⎨⎪⎧y +2=0,2x -y +1=0,得⎩⎨⎧x =-32,y =-2,故B ⎝ ⎛⎭⎪⎫-32,-2,此时z =-72,故最大值与最小值的比值为-2.答案:-23.已知x ,y 满足条件⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,则z =y -1x +3的最大值为________.解析:作出可行域如图中阴影部分所示,问题转化为区域上哪一点与点M (-3,1)连线斜率最大,观察知点A ⎝ ⎛⎭⎪⎫-52,52,使k MA 最大,z max =k MA =52-1-52+3=3.答案:34.已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取得最大值的点(x ,y )有无数个,则a 的值为________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,所以-a =k AB =1,所以a =-1.答案:-1二元一次不等式(组)表示的平面区域(多维探究) 角度一 平面区域的面积不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于()A .32B .23C .43D .34【解析】 由题意得不等式组表示的平面区域如图阴影部分所示,A ⎝ ⎛⎭⎪⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .【答案】 C角度二 平面区域的形状若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是________.【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝ ⎛⎭⎪⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞(1)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(2)根据平面区域确定参数的方法在含有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案.1.已知约束条件⎩⎨⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k的值为( )A .1B .-1C .0D .-2解析:选A .作出约束条件表示的可行域如图中阴影部分所示,要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,所以不成立,所以k >0,则必有BC ⊥AB ,因为x +y -4=0的斜率为-1,所以直线kx -y =0的斜率为1,即k =1,满足题意,故选A .2.设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)解析:选C .作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].求目标函数的最值(多维探究) 角度一 求线性目标函数的最值(2021·郑州第一次质量预测)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则y -2x 的最小值是( ) A .-1 B .-6 C .-10D .-15【解析】不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,3x +y -4≤0表示的平面区域如图中阴影部分所示.令z =y -2x ,作出直线y =2x ,并平移,当直线z =y -2x 过点B (2,-2)时,z 的值最小,最小值为-6,故选B .【答案】 B(1)求目标函数的最值形如z =ax +by (b ≠0)的目标函数,可变形为斜截式y =-a b x +zb (b ≠0). ①若b >0,当直线过可行域且在y 轴上的截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;②若b <0,当直线过可行域且在y 轴上的截距最大时,z 值最小,在y 轴上的截距最小时,z 值最大.(2)求目标函数最优解的常用方法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最优解,到底哪个顶点为最优解,可有两种方法判断:①将可行域各顶点的坐标代入目标函数,通过比较各顶点函数值大小即可求得最优解;②将目标函数的直线平移,最先通过或最后通过的顶点便是最优解. 角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,则z 的取值范围为________;(2)若z =x 2+y 2,则z 的最大值为________,最小值为________.【解析】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率,因此yx 的取值范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5.【答案】 (1)[2,+∞) (2)5 1【迁移探究1】 (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].【迁移探究2】 (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max =2+1=3,z min =12+1=32.常见两类非线性目标函数的几何意义(1)x 2+y 2表示点(x ,y )与原点(0,0)间的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.角度三 求参数值或取值范围(2021·贵阳市第一学期监测考试)已知实数x ,y 满足⎩⎨⎧x +2≥y ,x ≤2,y -1≥0,若z=x +ay (a >0)的最大值为10,则a = ( )A .1B .2C .3D .4【解析】 不等式组表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =2,x -y +2=0, 解得⎩⎪⎨⎪⎧x =2,y =4,所以A (2,4),由⎩⎪⎨⎪⎧x =2,y -1=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),由⎩⎪⎨⎪⎧y -1=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以C (-1,1).若(2,4)是最优解,则2+4a =10,a =2,经检验符合题意;若(2,1)是最优解,则2+a =10,a =8,经检验不符合题意;若(-1,1)是最优解,则-1+a =10,a =11,经检验不符合题意.综上所述,a =2,故选B .【答案】 B求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.1.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________.解析:作出不等式组⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a 表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,平移直线2x +3y =0,显然过A (a ,1-a )时,z =2x +3y 取得最小值,则2a +3(1-a )=2,解得a =1.答案:12.(2021·开封市第一次模拟考试)已知点A (0,2),动点P (x ,y )的坐标满足条件⎩⎨⎧x ≥0,y ≤x ,则|P A |的最小值是________.解析:依题意,画出不等式组⎩⎨⎧x ≥0,y ≤x 表示的平面区域,如图中阴影部分所示,结合图形可知,|P A |的最小值等于点A (0,2)到直线x -y =0的距离,即|0-2|2= 2.答案: 23.(2021·湖北八校第一次联考)已知实数x ,y 满足⎩⎨⎧2x -y +3≥0,2x +y -5≤0,y ≥1,则z =|x-y |的取值范围为________.解析:画出可行域如图中阴影部分所示,z =|x -y |=|x -y |2·2表示可行域内的点(x ,y )到直线x -y =0的距离的2倍.作出直线x -y =0,由图可得可行域内的点(x ,y )到直线x -y =0的距离的最小值为0,最大值为直线2x -y +3=0与2x +y -5=0的交点C ⎝ ⎛⎭⎪⎫12,4到直线x -y =0的距离,即724,所以z 的取值范围为⎣⎢⎡⎦⎥⎤0,72.答案:⎣⎢⎡⎦⎥⎤0,72线性规划的实际应用(师生共研)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元 C .18万元D .19万元【解析】 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点(2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .【答案】 C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:36 800[A 级 基础练]1.不等式组⎩⎨⎧x -3y +6≤0,x -y +2>0表示的平面区域是( )解析:选C .用特殊点代入,比如(0,0),容易判断为C . 2.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D .若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D .3.(2020·高考浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0,则z =x +2y的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)解析:选B .画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).故选B .4.若M 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2 连续变化到1时,动直线x +y =a 扫过M 中的那部分区域的面积为( )A .1B .32C .34D .74解析:选D .在平面直角坐标系中作出区域M 如图中阴影部分所示,当a 从-2连续变化到1时,动直线x +y =a 扫过M 中的那部分区域为图中的四边形AODE ,所以其面积S =S △AOC -S △DEC =12×2×2-12×1×12=74,故选D .5.若x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -m ≥0,x -3≤0,若z =2x -3y 的最大值为9,则正实数m 的值为( )A .2B .3C .4D .8解析:选A .作出x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -m ≥0,x -3≤0表示的可行域如图中阴影部分所示,由图可知z =2x -3y 在点A 处取得最大值, 由⎩⎪⎨⎪⎧x +y -m =0,x =3解得A (3,m -3), 由z max =2×3-3(m -3)=9,解得m =2. 故选A .6.(2021·广州市阶段训练)设x ,y 满足约束条件⎩⎨⎧1≤x ≤3,0≤x +y ≤2,则z =x -2y的最小值为________.解析:依题意,在平面直角坐标系内作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0,并平移,当平移到经过该平面区域内的点(1,1)时,相应直线在x 轴上的截距最小,此时z =x -2y 取得最小值,最小值为-1.答案:-17.(2021·合肥第一次教学检测)已知实数x ,y 满足⎩⎨⎧x ≥y ,x ≤2y ,x +y -6≤0,则z =2x+y 取得最大值时的最优解为________.解析:方法一:作不等式组⎩⎪⎨⎪⎧x ≥y ,x ≤2y ,x +y -6≤0表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,并平移,根据z 的几何意义,很容易看出当直线平移到点B 处时z 取得最大值,联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,得B (4,2).方法二:易知目标函数z =2x +y 的最大值在交点处取得,只需求出两两相交的三个交点的坐标,代入z =2x +y ,即可求得最大值.联立⎩⎪⎨⎪⎧x =y ,x -2y =0,解得⎩⎪⎨⎪⎧x =0,y =0为原点,代入可得z =0;联立得⎩⎪⎨⎪⎧x =y ,x +y -6=0,解得⎩⎪⎨⎪⎧x =3,y =3,将(3,3)代入可得z =9;联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =4,y =2,将(4,2)代入可得z =10.通过比较可知,z 的最大值为10,故最优解为(4,2).答案:(4,2)8.(2021·四省八校第二次质量检测)已知变量x ,y 满足约束条件⎩⎨⎧x -2≤0,x -2y +2≥0,x +y +1≥0,若-x +y ≥-m 2+4m 恒成立,则实数m 的取值范围为________. 解析:设z =-x +y ,作出可行域如图中阴影部分所示,作出直线-x +y =0,并平移可知当直线过点B (2,-3)时z 取得最小值,所以z min =-5,所以-m 2+4m ≤-5,m 2-4m -5≥0⇒m ≤-1或m ≥5,所以m 的取值范围为(-∞,-1]∪[5,+∞).答案:(-∞,-1]∪[5,+∞)9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.已知x ,y 满足⎩⎨⎧y >0,x +y +1<0,3x +y +9>0,记点(x ,y )对应的平面区域为P .(1)设z =y +1x +3,求z 的取值范围; (2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域P ,当反射光线所在直线l 经过区域P 内的整点(即横纵坐标均是整数的点)时,求直线l 的方程.解:平面区域如图所示(阴影部分),易得A ,B ,C 三点坐标分别为A (-4,3),B (-3,0),C (-1,0).(1)由z =y +1x +3知z 的值即是定点M (-3,-1)与区域内的点Q (x ,y )连接的直线的斜率,当直线过A (-4,3)时,z =-4; 当直线过C (-1,0)时,z =12.故z 的取值范围是(-∞,-4)∪⎝ ⎛⎭⎪⎫12,+∞.(2)过点(-5,1)的光线被x 轴反射后的光线所在直线必经过点(-5,-1),由题设可得区域内坐标为整数点仅有点(-3,1),故直线l 的方程是y -1(-1)-1=x +3(-5)+3,即x -y +4=0.[B 级 综合练]11.已知点(x ,y )满足⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +y 仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(-1,2)B .(-2,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫-∞,-12解析:选B .作出不等式组对应的平面区域,如图中阴影部分所示,由z =ax +y 可得y =-ax +z ,直线的斜率k =-a , 因为k AC =2,k AB =-1,目标函数z =ax +y 仅在点A (1,0)处取得最小值,则有k AB <k <k AC , 即-1<-a <2,所以-2<a <1,即实数a 的取值范围是(-2,1).故选B .12.若点M (x ,y )满足⎩⎨⎧x 2+y 2-2x -2y +1=0,1≤x ≤2,0≤y ≤2,则x +y 的取值集合是( )A .[1,2+2]B .[1,3]C .[2+2,4]D .[1,4]解析:选A .x 2+y 2-2x -2y +1=(x -1)2+(y -1)2=1,根据约束条件画出可行域,如图中阴影部分所示,令z =x +y ,则y =-x +z ,根据图象得到当直线过点(1,0)时目标函数取得最小值,为1,当直线和半圆相切时,取得最大值,根据点到直线的距离等于半径得到|2-z |2=1⇒z =2±2,易知2-2不符合题意,故z =2+2,所以x +y 的取值范围为[1,2+2].故选A .13.已知点A (2,1),O 是坐标原点,P (x ,y )的坐标满足⎩⎨⎧2x -y ≤0x -2y +3≥0y ≥0,设z =OP →·OA→,则z 的最大值是________. 解析:方法一:由题意,作出可行域,如图中阴影部分所示.z =OP →·OA →=2x +y ,作出直线2x +y =0并平移,可知当直线过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,即C (1,2),则z 的最大值是4.方法二:由题意,作出可行域,如图中阴影部分所示,可知可行域是三角形封闭区域.z =OP →·OA →=2x +y ,易知目标函数z =2x +y 的最大值在顶点处取得,求出三个顶点的坐标分别为(0,0),(1,2),(-3,0),分别将(0,0),(1,2),(-3,0)代入z =2x +y ,对应z 的值为0,4,-6,故z 的最大值是4.答案:414.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料ABC甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域; (2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.[C 级 提升练]15.已知实数x ,y 满足⎩⎨⎧6x +y -1≥0,x -y -3≤0,y ≤0,则z =y -ln x 的取值范围为________.解析:作出可行域如图(阴影部分),其中A (16,0),B (3,0),C (47,-177).由图可知,当y =ln x +z 过点A (16,0)时z 取得最大值,z max =0-ln 16=ln 6.设y =ln x +z 的图象与直线y =x -3相切于点M (x 0,y 0),由y =ln x +z 得y ′=1x ,令1x 0=1得x 0=1∈⎝ ⎛⎭⎪⎫47,3,故y =ln x +z 与y =x -3切于点M (1,-2)时,z 取得最小值,z min =-2-ln 1=-2.所以z =y -ln x 的取值范围为[-2,ln 6]. 答案:[-2,ln 6]16.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎨⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则n =________.解析:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0表示的可行域,如图中阴影部分所示.设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =- 3. 又直线l 过点A (53,5), 所以53=-3×5+n , 解得n =10 3.当α=π6时,同理可得m =3,n =0(舍去). 综上,n =10 3. 答案:10 3。
高考数学总复习课时作业:第六章 第3节 二元一次不等式(组)与简单的线性规划问题 含解析

第六章 第3节1.设A ={(x ,y )|x ,y,1-x -y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是()解析:A[由已知得⎩⎪⎨⎪⎧x +y >1-x -y ,x +(1-x -y )>y ,y +(1-x -y )>x ,即⎩⎪⎨⎪⎧x +y >12,y <12,x <12.]2.(2020·西安市模拟)已知O 是坐标原点及点A (2,1),点M (x ,y )是平面区域⎩⎪⎨⎪⎧y ≤x x +y ≤1y ≥-1,内的一个动点,则OA →·OM →的最大值为( )A .3 B.32 C .-3D .-4解析:A [设z =OA →·OM →,则z =2x +y ,即y =-2x +z ,平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过⎩⎪⎨⎪⎧y =-1x +y =1的交点A (2,-1)时,直线y =-2x +z 的截距最大,此时z 也最大, 此时z max =2×2-1=3.]3.(2020·天津市模拟)已知x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +1≥0x +y -1≤03x -y -3≤0,则目标函数z =2x -y +3的最小值为( )A .1B .2C .4D .5解析:B [由约束条件作出可行域如图,设可行域内一点(x ,y ),由图可知,直线z =2x -y +3经过D 点时取到最大值,经过C 点时取到最小值,联立⎩⎪⎨⎪⎧x -y +1=0x +y -1=0,解得C (0,1),∴z 的最小值为-1+3=2.]4.(2020·德州市一模)已知不等式组⎩⎪⎨⎪⎧y ≤-x +2y ≤kx +1y ≥0所表示的平面区域为面积等于94的三角形,则实数k 的值为( )A .1B .-2C .1或-2D .-29解析:A[∵不等式组⎩⎨⎧y ≤-x +2y ≤kx +1y ≥0所表示的平面区域为面积等于94的三角形,如图:平面为三角形,且过点(2,0),∵y =kx +1,与x 轴的交点为⎝⎛⎭⎫-1k ,0, y =kx +1与y =-x +2的交点为⎝⎛⎭⎪⎫1k +1,2k +1k +1, 三角形的面积为:12×⎝⎛⎭⎫2+1k ×2k +1k +1=94,解得k =1.]5.(2019·厦门市一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤12x +y ≥-1x -y ≤0,则z =|x +3y |的最大值是( )A.13 B .1 C.43D .2解析:D[画出x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤12x +y ≥-1x -y ≤0表示的平面区域,由⎩⎪⎨⎪⎧x -y =0x +2y =1解得B ⎝⎛⎭⎫13,13, 由⎩⎪⎨⎪⎧x +2y =12x +y =-1解得A (-1,1), 由⎩⎪⎨⎪⎧x -y =02x +y =-1解得C ⎝⎛⎭⎫-13,-13. 设目标函数为z ′=x +3y ,作出目标函数对应的直线,直线过C ⎝⎛⎭⎫-13,-13时,直线的纵截距最小,z ′最小,最小值为-43;当直线过A (-1,1)时,直线的纵截距最大,z ′最大,最大值为2;∴目标函数z =|x +3y |的取值范围是[0,2],最大值为2.]6.(2019·泉州市模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2x -y +1≤0x +2y -2≥0,则z =x 2+y 2的最小值为_____ .解析:不等式组⎩⎨⎧x ≤2x -y +1≤0x +2y -2≥0表示的平面区域如图所示,则z =x 2+y 2的几何意义为区域内的点到原点的距离的平方, 由图象知,OA 的距离最小,由⎩⎪⎨⎪⎧x -y +1=0x +2y -2=0,解得A (0,1), 所以|OA |2=1,所以z =x 2+y 2的最小值为1. 答案:17.若不等式组⎩⎪⎨⎪⎧x -y +2≥0ax +y -2≤0y ≥0,表示的平面区域的面积为3,则实数a 的值是________ .解析:作出可行域,如图中阴影部分所示,区域面积 S=12×⎝⎛⎭⎫2a +2×2=3,解得a =2.答案:28.(2019·聊城市一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0x -2y ≤0x +2y ≤0,则z =2x ⎝⎛⎭⎫116y的最大值为________ .解析:画出约束条件⎩⎪⎨⎪⎧x -y +1≥0x -2y ≤0x +2y ≤0表示的平面区域,如图所示;又z =2x⎝⎛⎭⎫116y=2x ·2-4y=2x -4y , 设t =x -4y ,则目标函数t =x -4y 过点B 时,取得最大值,由⎩⎪⎨⎪⎧x -y +1=0x -2y =0,得B (-2,-1); ∴z 的最大值为2-2-4×(-1)=4.答案:49.(2019·杭州市高三模拟)若实数x ,y 满足⎩⎪⎨⎪⎧x +y ≥0x ≤1x -2y ≥0.求:(1)x 的取值范围; (2)|x |+|y |的取值范围. 解:(1)由约束条件⎩⎨⎧x +y ≥0x ≤1x -2y ≥0作出可行域如图,由图可知,0≤x ≤1. (2)当x ≥0,y ≥0时,z =|x |+|y |=x +y 过⎝⎛⎭⎫1,12时有最大值为32, 过O (0,0)时有最小值0;当x ≥0,y ≤0时,z =|x |+|y |=x -y 过(1,-1)时有最大值为2, 过O (0,0)时有最小值0.所以|x |+|y |的取值范围是[0,2].10.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +12=0,过A (3,4)时z 取最小值-2,过C (1,0)时z 取最大值1.所以z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故a 的取值范围是(-4,2).。
二元一次不等式(组)与简单线性规划问题练习题含答案

二元一次不等式(组)与简单的线性规划问题练习题
1、画出下列二元不等式所表示的平面区域:21
03
x y x y +-≤-+
2、已知二次函数()f x 的图象过原点,且1(1)2(1)4f f -≤-≤≤≤,求(2)f -的取值范围。
3、求函数23z x y =+的最大值,式中的,x y 满足约束条件23240700
x y x y x y +-≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩
4、某公司的A ,B 两仓库至多可以分别调运出某型号的机器14台,8台。
甲地需要10台,乙地需要8台。
已知从A 仓库将1台机器运到甲地的运费为400元,运到乙地的运费为800元;B 仓库将1台机器运到甲地的运费为300元,运到乙地的运费为500元.问怎样安排调运方案,可使运输费用最少?
5、某厂拟生产甲、乙两种适销产品,每件销售收入分别为3千元、2千元.甲、乙两种产品都需要在A ,B 两种机床上加工,A ,B 两种机床上每加工一件甲种产品所需时间分别为1小时、2小时;每加工一件乙种产品所需时间分别为2小时、1小时.如果A ,B 两种机床每月有效使用时数分别为400小时、500小时。
如何安排生产,才能使销售总收入最大?
6、要将两种大小不同的钢板截成A ,B ,C 三种规格的小钢板,每张钢板可截得三种规格的小钢板的块数如下表所示:
如果至少需要A ,B ,C 三种规格的小钢板各15块,18块,27块,问分别截这两种钢板各多少张可以满足需要,且使所用两种钢板的张数最少?
二元一次不等式(组)与简单的线性规划问题练习题 答案
1、 2、 3、24 4、 5、 6、
二元一次不等式(组)与简单的线性规划问题练习题 答案
1、
2、 3、24 4、 5、 6、。
高考数学一轮复习 第6章 不等式 6.2 二元一次不等式(组)与简单的线性规划问题课后作业 理

6.2 二元一次不等式(组)与简单的线性规划问题[基础送分 提速狂刷练]一、选择题1.(2018·唐山模拟)已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞) 答案 B解析 根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24.故选B.2.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,43B.⎝⎛⎭⎪⎫-∞,13C.⎝ ⎛⎭⎪⎫-∞,-23D.⎝⎛⎭⎪⎫-∞,-53 答案 C解析 图中阴影部分表示可行域,要求可行域内包含y =12x -1上的点,只需要可行域的边界点(-m ,m )在y =12x -1下方,也就是m <-12m -1,即m <-23.故选C.3.(2017·山东日照一模)已知变量x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -2y +3≥0,x ≥0,则z =(2)2x +y的最大值为( )A. 2 B .2 2 C .2 D .4答案 D解析 作出满足不等式组的平面区域,如图所示,令m =2x +y ,则当m 取得最大值时,z =(2)2x +y 取得最大值.由图知直线m =2x +y 经过点A (1,2)时,m 取得最大值,所以z max=(2)2×1+2=4,故选D.4.已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y -7≥0,x +3y -13≤0,x -y -1≤0,则z =|2x -3y +4|的最大值为( )A .3B .5C .6D .8答案 C解析 不等式组 ⎩⎪⎨⎪⎧3x +y -7≥0,x +3y -13≤0,x -y -1≤0表示的平面区域如图中阴影部分所示,其中A (2,1),B (1,4).设t =2x -3y ,平移直线y =23x ,则直线经过点B 时,t =2x -3y 取得最小值-10,直线经过点A 时,t =2x -3y 取得最大值1,所以-6≤t +4≤5,所以0≤z ≤6.所以z 的最大值为6,故选C.5.(2018·石家庄质检)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥1,mx -y ≤0,3x -2y +2≥0,且z =3x -y 的最大值为2,则实数m 的值为( )A.13 B.23 C .1 D .2答案 D解析 若z =3x -y 的最大值为2,则此时目标函数为y =3x -2,直线y =3x -2与3x -2y +2=0和x +y =1分别交于A (2,4),B ⎝ ⎛⎭⎪⎫34,14,mx -y =0经过其中一点,所以m =2或m =13,当m =13时,经检验不符合题意,故m =2,选D. 6.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -2y +6≥0,x ≤2,则z =(x -1)2+y 2的最大值为( )A .4 B.17 C .17 D .16答案 C解析 z =(x -1)2+y 2表示点(x ,y )与点P (1,0)间距离的平方.画出约束条件所表示的平面区域如图中阴影部分所示,易知P (1,0)与A (2,4)间的距离最大,因此z max =(2-1)2+42=17.故选C.7.(2017·邢台模拟)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0 答案 D解析 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x ,得⎩⎪⎨⎪⎧x =-2,y =2,即B (-2,2),由⎩⎪⎨⎪⎧x +2y =2,x -7y =2,得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0),由⎩⎪⎨⎪⎧y -4=x ,x -7y =2,得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1),要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0,故选D.8.(2018·南昌十校一模)已知不等式组⎩⎪⎨⎪⎧2x -y -2≥0,3x +y -8≤0,x +2y -1≥0,则z =yx +1的最大值与最小值的比值为( )A .-2B .-12C .-83D .-13答案 C解析 如图所示,不等式组⎩⎪⎨⎪⎧2x -y -2≥0,3x +y -8≤0,x +2y -1≥0所表示的平面区域为图中的阴影部分,易知z =yx +1表示平面区域内的点与定点P (-1,0)连线的斜率.由⎩⎪⎨⎪⎧3x +y -8=0,2x -y -2=0,可得⎩⎪⎨⎪⎧x =2,y =2,故A (2,2),由⎩⎪⎨⎪⎧3x +y -8=0,x +2y -1=0,可得⎩⎪⎨⎪⎧x =3,y =-1,故B (3,-1),数形结合知AP的斜率最大,此时z =yx +1最大,故z max =23;BP 的斜率最小,z min =-14.故z =y x +1的最大值与最小值的比值为-83,故选C.9.(2017·江西模拟)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50答案 B解析 设种植黄瓜x 亩,种植韭菜y 亩,因此,原问题转化为在条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0下,求z =0.55×4x +0.3×6y -1.2x -0.9y =x +0.9y 的最大值.画出可行域如图.利用线性规划知识可知,当x ,y 取⎩⎪⎨⎪⎧x +y =50,1.2x +0.9y =54的交点B (30,20)时,z 取得最大值.故选B.10.(2018·石家庄质检)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为( )A .-1B .-52+17C.13 D .-75答案 D解析作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,表示可行域内的点与点P (-3,2)连线的斜率加上1,由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =1-125=-75,故选D.二、填空题11.(2018·银川质检)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为________. 答案 8解析 画出不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0表示的可行域,如图中阴影部分所示,将z =2x -y 化为y =2x -z ,-z 是直线y =2x -z 的纵截距,由⎩⎪⎨⎪⎧x +y -7=0,x -3y +1=0得⎩⎪⎨⎪⎧x =5,y =2,∴B 的坐标为(5,2),则y =2x -z 过点B (5,2)时,z =2x -y 有最大值10-2=8. 12.(2018·广州模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +2≥0,x -2y -2≤0,x +y -2≤0,若z =x -ay (a >0)的最大值为4,则a =________. 答案 3解析 作出不等式组表示的平面区域如图中阴影部分所示,则A (2,0),B (-2,-2).显然直线z =x -ay 过A 时不能取得最大值4,若直线z =x -ay 过点B 时取得最大值4,则-2+2a =4,解得a =3,此时,目标函数为z =x -3y ,作出直线x -3y =0,平移该直线,当直线经过点B 时,截距最小,此时,z 的最大值为4,满足条件.13.(2017·山西五校3月联考)不等式组⎩⎪⎨⎪⎧y -1≥0,x -y +2≥0,x +4y -8≤0表示的平面区域为Ω,直线x =a (a >1)将平面区域Ω分成面积之比为1∶4的两部分,则目标函数z =ax +y 的最大值为________.答案 9解析 如图,平面区域Ω为△ABC 及其内部,作直线x =a (1<a <4)交BC ,AC 分别于点E ,F .由题意可知S △EFC =15S △ABC ,则12(4-a )·⎝ ⎛⎭⎪⎫-14a +2-1=15×12×5×1=12,可得a =2,所以目标函数z =ax +y 即为z =2x +y ,易知z =2x +y 在点C (4,1)处取得最大值,则z max =9.14.(2017·河北衡水中学3月模拟)已知点P (x ,y )的坐标满足⎩⎪⎨⎪⎧x ≤0,y >x ,y <2x +1,则x +yx 2+y2的取值范围为________. 答案 (-2,1]解析 解法一:作出不等式组⎩⎪⎨⎪⎧x ≤0,y >x ,y <2x +1表示的平面区域,如图中阴影部分所示,其中B (-1,-1),C (0,1).设A (1,1),P (x ,y ),向量OA →,OP →的夹角为θ, ∵OA →·OP →=x +y ,|OP →|=x 2+y 2, ∴cos θ=OA →·OP→|OA →||OP →|=x +y 2×x 2+y 2=22×x +y x 2+y 2, 由图可知∠AOC ≤θ<∠AOB , 即45°≤θ<180°, ∴-1<cos θ≤22, 即-1<22×x +y x 2+y 2≤22, ∴-2<x +yx 2+y 2≤1.解法二:作出不等式组⎩⎪⎨⎪⎧x ≤0,y >x ,y <2x +1表示的平面区域,如图中阴影部分所示,其中B (-1,-1),C (0,1), 设P (x ,y ),θ=∠POx ,则x x 2+y2=cos θ,y x 2+y2=sin θ.θ∈⎣⎢⎡⎭⎪⎫π2,5π4,∴x +y x 2+y 2=cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4.∵θ∈⎣⎢⎡⎭⎪⎫π2,5π4,∴θ+π4∈⎣⎢⎡⎭⎪⎫3π4,3π2, ∴sin ⎝ ⎛⎭⎪⎫θ+π4∈⎝ ⎛⎦⎥⎤-1,22. ∴x +yx 2+y2∈(-2,1]. 三、解答题15.某客运公司用A ,B 两种型号的车辆承担甲,乙两地间的长途客运业务,每车每天往返一次.A ,B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1600x +2400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上的截距z2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 16.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A种原料200吨,乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润. 解 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.该二元一次不等式组所表示的平面区域为图1中的阴影部分:(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3,这是斜率为-23,随z 变化的一族平行直线,z3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24).所以z max =2×20+3×24=112.答:生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.。
高考数学一轮复习第6章不等式6.2二元一次不等式(组)与简单的线性规划问题习题理

x+y≥1,
5.(2018·石家庄质检)若 x,y 满足mx-y≤0,
且
3x-2y+2≥0,
z=3x-y 的最大值为 2,则实数 m 的值为( )
1
2
A.3
B.3
C.1
D.2
解析 若 z=3x-y 的最大值为 2,则此时目标函数为 y =3x-2,直线 y=3x-2 与 3x-2y+2=0 和 x+y=1 分别交 于 A(2,4),B34,14,mx-y=0 经过其中一点,所以 m=2 或 m=13,当 m=13时,经检验不符合题意,故 m=2,选 D.
课后作业夯关
6.2 二元一次不等式(组)与 简单的线性规划问题
[基础送分 提速狂刷练] 一、选择题 1.(2018·唐山模拟)已知点(-3,-1)和点(4,-6)在直 线 3x-2y-a=0 的两侧,则 a 的取值范围为( ) A.(-24,7) B.(-7,24) C.(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞) 解析 根据题意知(-9+2-a)·(12+12-a)<0.即(a+ 7)(a-24)<0,解得-7<a<24.故选 B.
-15≤k≤35,
所以-15≤k≤0,故选 D.
8 . (2018·南 昌 十 校 一 模 ) 已 知 不 等 式 组
2x-y-2≥0,
3x+y-8≤0, x+2y-1≥0,
则 z=x+y 1的最大值与最小值的比值为(
)
A.-2
B.-12
C.-83
D.-13
解析
2x-y-2≥0,
如图所示,不等式组3x+y-8≤0, x+2y-1≥0
x+y-2≥0,
6.若变量 x,y 满足约束条件x-2y+6≥0, x≤2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 二元一次不等式(组)与简单的线性规划问题基础巩固题组 (建议用时:30分钟)一、选择题1.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )解析 法一 不等式(x -2y +1)(x +y -3)≤0等价于⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0或⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,画出对应的平面区域,可知C 正确.法二 结合图形,由于点(0,0)和(0,4)都适合原不等式,所以点(0,0)和(0,4)必在区域内,故选C. 答案 C2.不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A.1B.12C.13D.14解析 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D =12,所以S △BCD =12×(x C -x B )×12=14.答案 D3.(2017·湖州市统检)不等式组⎩⎪⎨⎪⎧x -y ≤0,x +y ≥-2,x -2y ≥-2的解集记为D ,若(a ,b )∈D ,则z =2a -3b 的最小值是( )A.-4B.-1C.1D.4解析 画出不等式组表示的平面区域,如图中阴影部分所示,当a =-2,b =0,z =2a -3b 取得最小值-4. 答案 A4.(2016·浙江卷)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2 C.322D. 5解析 已知不等式组所表示的平面区域如图所示阴影部分,由⎩⎪⎨⎪⎧x -2y +3=0,x +y -3=0,解得A (1,2), 由⎩⎪⎨⎪⎧x +y -3=0,2x -y -3=0,解得B (2,1).由题意可知,当斜率为1的两条直线分别过点A 和点B 时,两直线的距离最小, 即|AB |=(1-2)2+(2-1)2= 2. 答案 B5.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B.2或12C.2或1D.2或-1解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 答案 D6.若函数y =2x图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12B.1C.32D.2解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x的图象上存在点(x ,y )满足约束条件, 故m 的最大值为1. 答案 B7.(2017·石家庄质检)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥-1,4x +y ≤9,x +y ≤3,若目标函数z =y -mx (m >0)的最大值为1,则m 的值是( ) A.-209B.1C.2D.5解析 作出可行域,如图所示的阴影部分.化目标函数z =y -mx (m >0)为y =mx +z ,由图可知,当直线y =mx+z 过A 点时,直线在y 轴的截距最大,由⎩⎪⎨⎪⎧x =1,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B. 答案 B8.(2017·杭州七校联考)若变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( ) A.322B.5C.92D.5解析 作出不等式组对应的平面区域如图中阴影部分所示.设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方, 由图知C 、D 间的距离最小,此时z 最小.由⎩⎪⎨⎪⎧y =1,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1), 此时z min =(x -2)2+y 2=4+1=5,故选D. 答案 D 二、填空题9.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.答案 310.已知O 是坐标原点,点M 的坐标为(2,1),若点N (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≤2,x ≥12,y ≥x上的一个动点,则OM →·ON →的最大值是________.解析 依题意,得不等式组对应的平面区域如图中阴影部分所示,其中A ⎝ ⎛⎭⎪⎫12,12,B ⎝ ⎛⎭⎪⎫12,32,C (1,1). 设z =OM →·ON →=2x +y ,当目标函数z =2x +y 过点C (1,1)时,z =2x+y 取得最大值3. 答案 311.(2017·绍兴质检)已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的最大值为________,最小值为________.解析 法一 设2x -3y =a (x +y )+b (x -y ),则由待定系数法可得⎩⎪⎨⎪⎧a +b =2,a -b =-3,解得⎩⎪⎨⎪⎧a =-12,b =52,所以z =-12(x +y )+52(x -y ). 又⎩⎪⎨⎪⎧-2≤-12(x +y )≤12,5≤52(x -y )≤152,所以两式相加可得z ∈[3,8],即z max =8,z min =3.法二 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示. 平移直线2x -3y =0,当相应直线经过x -y =2与x +y =4的交点A (3,1)时,z 取得最小值,z min =2×3-3×1=3;当相应直线经过x +y =-1与x -y =3的交点B (1,-2)时,z 取得最大值,z max =2×1+3×2=8. 答案 8 312.已知实数x ,y 满足⎩⎪⎨⎪⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为________.解析 作出不等式组满足的可行域如图阴影部分所示.作出直线l 0:x -2y =0,∵y =x 2-b2,∴当l 0平移至A 点处时b 有最小值,b min =-a ,又b min =-2, ∴a =2,当l 0平移至B (a ,-2a )时,b 有最大值b max =a -2×(-2a )=5a =10. 答案 1013.(2017·台州统检)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -3≥0,x -2y ≤0,则y 的最小值为________;当ax +y 的最大值为32时,实数a 的值为________.解析 不等式⎩⎪⎨⎪⎧x -y +2≥0,x +y -3≥0,x -2y ≤0所表示的可行域如图阴影部分,由⎩⎪⎨⎪⎧x +y -3=0,x -2y =0得可行域最低点M 的坐标为(2,1), ∴y min =1,令z =ax +y ,即y =-ax +z ,由题意知,当-a 大于直线x -y +2=0的斜率1,即-a >1,a <-1时,z =ax +y 有最大值,且取得最大值32的最优解为点N (如图),由⎩⎪⎨⎪⎧x -y +2=0,x +y -3=0得N ⎝ ⎛⎭⎪⎫12,52,∴32=12a +52,a =-2.答案 1 -2能力提升题组 (建议用时:15分钟)14.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A.1 800元 B.2 400元 C.2 800元D.3 100元解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元,则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0,即3x +4y =0. 平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4), ∴z max =300×4+400×4=2 800(元),故选C. 答案 C15.(2017·湖州监测)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是( )A.-5B.-12C.12D.5解析 作出不等式对应的平面区域如图中阴影部分所示,则w =y -1x -1的几何意义是区域内的点P (x ,y )与定点A (1,1)所在直线的斜率,由图象可知当P 位于点⎝ ⎛⎭⎪⎫13,43时,直线AP 的斜率最小,此时w =y -1x -1的最小值为43-113-1=-12,故选B.答案 B16.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是________. 解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.答案 ⎝ ⎛⎭⎪⎫12,+∞ 17.(2015·浙江卷)若实数x ,y 满足x 2+y 2≤1,则|2x +y -4|+|6-x -3y |的最大值是________.解析 ∵x 2+y 2≤1,∴2x +y -4<0,6-x -3y >0,∴|2x +y -4|+|6-x -3y |=4-2x -y +6-x -3y =10-3x -4y . 令z =10-3x -4y ,如图,设OA 与直线-3x -4y =0垂直;∴直线OA 的方程为y =43x ,联立⎩⎪⎨⎪⎧y =43x ,x 2+y 2=1,得A ⎝ ⎛⎭⎪⎫-35,-45,∴当z =10-3x -4y 过点A 时,z 取最大值,z max =10-3×⎝ ⎛⎭⎪⎫-35-4×⎝ ⎛⎭⎪⎫-45=15.答案 1518.(2017·浙江名校联考)已知实数x ,y 满足条件⎩⎪⎨⎪⎧2x +3y -6≥0,x -4y +8≥0,3x -y -9≤0,则z =x -yx +y的最大值为________,z 取得最大值的最优解为________.解析 不等式组表示的可行域为如图所示的阴影部分,当x =0,y =2,此时z =0-20+2=-1,当x ≠0时,令u =yx∈[0,+∞),则z=1-yx 1+y x=1-u 1+u =2-(1+u )1+u =21+u -1≥21-1=1,即z 的最大值为1,此时u =y x=0,故最优解为(3,0). 答案 1 (3,0)。