第一章1.5-1.5.2汽车行驶的路程

合集下载

高中数学 定积分的概念

高中数学  定积分的概念

t
=
i n
-
i
-1 n
i 个小区间的路程为△si,
=
1 n

. S
=
n
Si
.
i =1
O1 (图2)
t
问题2. 我们知道, 汽车以速度 v 作匀速直线运动
时, 经过时间 t 所行驶的路程为 s=vt. 如果汽车作变速
直线运动, 在时刻 t 的速度为 v(t)= -t2+2 ( t 的单位: h,
v 的单位: km/h), 那么它在 0≤t≤1 这段时间内行驶的
将要学的定积 分为我们解决 这类问题.
如图的阴影部分近似于一
y
个梯形, 但有一腰是曲线段,
f(b)
我们称这个图形为曲边梯形.
f(a)
这个图形的面积怎样求呢?
y=f(x)
思想:
Oa
bx
将图形分成无数多的小块.
每小块近似于直边梯形, 可用直边梯形求面积.
这无数小块之和即为整块面积.
下面取 a=0, b=1, f(x)=x2 为例.
O
1x
y
y=x2
O
1x
可以证明, 取 f(x)=x2 在区间
上任意一点 xi 处的值 f(xi) 作为
近似值, 都有
n
S
=
lim
x0
i =1
f
(i
ห้องสมุดไป่ตู้
)x
=
lim
n
i=n1n1
f
(i
)
=
1 3
.
一般地, 对右下图的曲边 梯形, 我们也可采用分割、近 似代替、求和、取极限的方法 求面积.
y

2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)

2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)

第一章导数及其应用§1.1变化率与导数§1.1.1变化率问题§1.1.2导数的概念§1.1.3导数的几何意义§1.2导数的计算§1.2.1几个常用函数的导数§1.2.2基本初等函数的导数公式及导数的运算法则(一) §1.2.2基本初等函数的导数公式及导数的运算法则(二) §1.3导数在研究函数中的应用§1.3.1函数的单调性与导数§1.3.2函数的极值与导数§1.3.3函数的最大(小)值与导数§1.4生活中的优化问题举例§1.5定积分的概念§1.5.1曲边梯形的面积§1.5.2汽车行驶的路程§1.5.3定积分的概念§1.6微积分基本定理§1.7定积分的简单应用§1.7.1定积分在几何中的应用§1.7.2定积分在物理中的应用章末整合提升章末达标测试第二章推理与证明§2.1合情推理与演绎推理§2.1.1合情推理§2.1.2演绎推理§2.2直接证明与间接证明§2.2.1综合法和分析法§2.2.2反证法§2.3数学归纳法章末整合提升章末达标测试第三章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念§3.1.2复数的几何意义§3.2复数代数形式的四则运算§3.2.1复数代数形式的加、减运算及其几何意义§3.2.2复数代数形式的乘除运算章末整合提升章末达标测试模块综合检测§1.1 变化率与导数§1.1.1 变化率问题 §1.1.2 导数的概念[课标要求]1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.(难点) 2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)一、函数平均变化率如果函数关系用y =f (x )表示,那么变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率.习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是平均变化率可以表示为Δy Δx. 二、导数的有关概念 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是f (x 0+Δx )-f (x 0)Δx =ΔyΔx. 2.函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作,即f ′(x 0)=ΔyΔx=f (x 0+Δx )-f (x 0)Δx.知识点一 平均变化率 【问题1】 气球的膨胀率 阅读教材,思考下面的问题.吹一只气球,观察一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答案 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=33V4π, (1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62(dm), 气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16(dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 【问题2】 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答案 (1)在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);(2)在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 【问题3】 结合问题1和问题2说出你对平均变化率的理解.答案 (1)如果上述两个问题中的函数关系用y =f (x )表示,那么问题1中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.问题1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.问题2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.(2)平均变化率的几何意义就是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))所在直线的斜率. (3)平均变化率的取值①平均变化率可以表现函数的变化趋势,平均变化率为0,并不一定说明函数f (x )没有发生变化.②自变量的改变量Δx 取值越小,越能准确体现函数的变化规律. (4)平均变化率的物理意义平均变化率的物理意义是把位移s 看成时间t 的函数s =s (t ),在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.知识点二 函数在某点处的导数【问题1】 (1)物体的平均速度能否精确反映它的运动状态? (2)什么叫做瞬时速度? (3)它与平均速度有什么关系?答案 (1)物体的平均速度不能精确地反映物体的运动状态,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6546-0=0,而运动员依然是运动状态.(2)设物体运动的路程与时间的关系是s =f (t ),当Δt 趋近于0时,函数f (t )在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.(3)平均速度只能粗略地描述物体的运动状态,并不能反映物体在某一时刻的瞬时速度.当时间间隔|Δt |趋近于0时,平均速度v 就无限趋近于t 0时的瞬时速度.【问题2】 平均变化率与瞬时变化率有什么关系?答案 (1)区别:平均变化率不是瞬时变化率.平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢.(2)联系:当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.【问题3】 导数与瞬时变化率有什么关系? 答案 导数与瞬时变化率的关系导数是函数在x 0及其附近函数的改变量Δy 与自变量的改变量Δx 之比在Δx 趋近于0时所趋近的数,它是一个局部性的概念,若ΔyΔx存在,则函数y =f (x )在x 0处有导数,否则不存在导数.可以说导数就是函数在某点处的导数,例如,位移s 关于时间t 的导数就是运动物体在某时刻的瞬时速度.题型一 求函数的平均变化率求函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率. 【解析】 函数f (x )=x 2在x 0到x 0+Δx 的平均变化率为 f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=x 20+2x 0Δx +(Δx )2-x 2Δx=2x 0·Δx +(Δx )2Δx =2x 0+Δx .●规律方法求函数y =f (x )平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.[特别提醒](1)求函数平均变化率时注意Δx ,Δy ,两者都可正、可负,但Δx 的值不能为零,Δy 的值可以为零. (2)求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.若本例中,Δx =13,x 0=1,2,3,比较函数f (x )=x 2在哪一点附近的平均变化率最大?解析 x 0=1到x =1+13=43的平均变化率k 1=f ⎝⎛⎭⎫43-f (1)13=⎝⎛⎭⎫432-1213=73, x 0=2到x =73的平均变化率k 2=f ⎝⎛⎭⎫73-f (2)13=⎝⎛⎭⎫732-2213=133,x 0=3到x =103的平均变化率k 3=f ⎝⎛⎭⎫103-f (3)13=⎝⎛⎭⎫1032-3213=193,由于k 1<k 2<k 3,∴函数f (x )=x 2在x 0=3附近的平均变化率最大. 题型二 物体运动的瞬时速度物体自由落体的运动方程是s =12gt 2(g =9.8 m/s 2),求物体在t =3 s 这一时刻的速度.【解析】 平均速度Δs Δt =12g (3+Δt )2-12g ×32Δt=12g (6+Δt ). 当Δt 趋于0时,Δs Δt =12g (6+Δt )趋于3g ,所以v =3g =29.4(m/s),即物体在t =3 s 时的速度为29.4 m/s.●规律方法求运动物体瞬时速度的步骤(1)求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =ΔsΔt.(3)求瞬时速度:当Δt 无限趋近于0,ΔsΔt 无限趋近于的常数v 即为瞬时速度.提示 求ΔyΔx (当Δx 无限趋近于0时)的极限的方法(1)在极限表达式中,可把Δx 作为一个变量来参与运算.(2)求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.2.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m). 解析 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt)2,ΔsΔt=8+2Δt,ΔsΔt=(8+2Δt)=8.所以,这辆车在t=2时的瞬时速度为8 m/s.题型三求函数在某点处的导数(6分)求函数y=x-1x在x=1处的导数.【规范解答】因为Δy=(1+Δx)-11+Δx-(1-11)=Δx+Δx1+Δx,(2分)所以ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.(4分)当Δx→0时,f′(1)=ΔyΔx=(1+11+Δx)=2,即函数y=x-1x在x=1处的导数为2.(6分)●规律方法求函数y=f(x)在x=x0处的导数的步骤(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=ΔyΔx.3.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解析由导数的定义知,函数在x=2处的导数f′(2)=f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2)=-(Δx)2-Δx,于是f′(2)=-(Δx)2-ΔxΔx=(-Δx-1)=-1.易错误区(一) 对导数的概念理解不清致误若函数f (x )在x =a 的导数为m ,那么 f (a +2Δx )-f (a -2Δx )Δx 的值为________.【解析】f (a +2Δx )-f (a -2Δx )Δx=f (a +2Δx )-f (a )+f (a )-f (a -2Δx )Δx=f (a +2Δx )-f (a )Δx +f (a )-f (a -2Δx )Δx ①=2f (a +2Δx )-f (a )2Δx+2f (a -2Δx )-f (a )-2Δx=2m +2m =4m . 【答案】 4m [易错防范]1.误认为①处两极限值均为m ,即运算结果为2m .2.对平均变化率中自变量的增加量“Δx ”理解不当.在平均变化率f (x 0+Δx )-f (x 0)Δx 中,分子中的“Δx ”与分母中的“Δx ”应取相同值,且可正可负.3.熟记瞬时变化率(即导数)的几种变形形式f (x 0+Δx )-f (x 0)Δx=f (x 0-Δx )-f (x 0)-Δx=f (x 0+n Δx )-f (x 0)n Δx=f (x 0+Δx )-f (x 0-Δx )2Δx=f ′(x 0).若f ′(1)=2 016,则f (1+Δx )-f (1)-2Δx=________.解析f (1+Δx )-f (1)-2Δx=-12f (1+Δx )-f (1)Δx=-12f ′(1)=-12×2 016=-1 008.答案 -1 008[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于 A .8+2Δt B .8+2Δt +4ΔtC .4+ΔtD .8+Δt解析 Δs =s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴Δs Δt =2(Δt )2+8Δt Δt =8+2Δt . 答案 A2.函数y =x 2-2x 在x =2附近的平均变化率是 A .2B .ΔxC .Δx +2D .1解析 Δy =f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx ,∴Δy Δx =(Δx )2+2Δx Δx=Δx +2.答案 C3.设函数y =f (x )可导,则f (1+3Δx )-f (1)Δx 等于 A .f ′(1)B .3f ′(1) C.13f ′(1) D .以上都不对 解析 f (1+3Δx )-f (1)Δx=3f (1+3Δx )-f (1)3Δx =3f ′(1). 答案 B4.一个物体的运动方程为s =(2t +1)2,其中s 的单位是米,t 的单位是秒,那么该物体在1秒末的瞬时速度是A .10米/秒B .8米/秒C .12米/秒D .6米/秒解析 ∵s =4t 2+4t +1,Δs =[4(1+Δt )2+4(1+Δt )+1]-(4×12+4×1+1)=4(Δt )2+12Δt ,Δs Δt =4(Δt )2+12Δt Δt=4Δt +12, ∴v =Δs Δt =(4Δt +12)=12(米/秒). 答案 C5.如果函数y =f (x )=x 在点x =x 0处的瞬时变化率是33,那么x 0的值是 A.34B.12 C .1D .3解析 函数f (x )=x 在x =x 0处的瞬时变化率,f ′(x 0)=x 0+Δx -x 0Δx =Δx Δx (x 0+Δx +x 0)=12x 0=33,答案 A 6.某物体做直线运动,其运动规律是s =t 2+16t(t 的单位是秒,s 的单位是米),则它的瞬时速度为0米/秒的时刻为A .8秒末B .6秒末C .4秒末D .2秒末解析 设当t =t 0时该物体瞬时速度为0米/秒,∵Δs Δt =(t 0+Δt )2+16t 0+Δt -⎝⎛⎭⎫t 20+16t 0Δt =2t 0+Δt -16(t 0+Δt )t 0, ∴Δs Δt=2t 0-16t 20, 由2t 0-16t 20=0得t 0=2. 答案 D二、填空题(每小题5分,共15分)7.函数y =-3x 2+6在区间[1,1+Δx ]内的平均变化率是________.解析 Δy Δx =[-3(1+Δx )2+6]-(-3×12+6)Δx=-6Δx -3(Δx )2Δx=-6-3Δx . 答案 -6-3Δx8.一质点的运动方程为s =1t,则t =3时的瞬时速度为________. 解析 由导数定义及导数的物理意义知s ′=1t +Δt -1t Δt=-Δt (t +Δt )·t ·Δt =-1t 2+t ·Δt =-1t 2, ∴s ′ |t =3=-19,即t =3时的瞬时速度为-19.9.已知曲线y =1x -1上两点A ⎝⎛⎭⎫2,-12、B ⎝⎛⎭⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________. 解析 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝⎛⎭⎫12-1 =12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx 2(2+Δx ). ∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ), 即k =Δy Δx =-12(2+Δx ). ∴当Δx =1时,k =-12×(2+1)=-16. 答案 -16三、解答题(本大题共3小题,共35分)10.(10分)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2的平均速度.解析 (1)v 0=s (Δt )-s (0)Δt=3Δt -(Δt )2Δt=(3-Δt )=3. (2)v 2=s (2+Δt )-s (2)Δt =(-Δt -1)=-1.(3)v -=s (2)-s (0)2=6-4-02=1. 11.(12分)已知f (x )=x 2,g (x )=x 3,求适合f ′(x 0)+2=g ′(x 0)的x 0值.解析 由导数的定义知,f ′(x 0)=Δf Δx =(x 0+Δx )2-x 20Δx =2x 0,g ′(x 0)=Δg Δx =(x 0+Δx )3-x 30Δx=3x 20. 因为f ′(x 0)+2=g ′(x 0),所以2x 0+2=3x 20,即3x 20-2x 0-2=0,解得x 0=1-73或x 0=1+73.12.(13分)节日期间燃放烟花是中国的传统习惯之一,制造时通常希望它在达到最高点时爆裂.如果烟花距地面的高度h (m)与时间t (s)之间的关系式为h (t )=-4.9t 2+14.7t +18,求烟花在t =2 s 时的瞬时速度,并解释烟花升空后的运动状况.解析 因为Δh Δt =h (t +Δt )-h (t )Δt=-9.8t -4.9Δt +14.7, 所以h ′(t )=Δh Δt =(-9.8t -4.9Δt +14.7)=-9.8t +14.7,所以h ′(2)=-4.9,即在t =2 s 时烟花正以4.9 m/s 的速度下降.由h ′(t )=0得t =1.5,所以在t =1.5 s 附近,烟花运动的瞬时速度几乎为0,此时达到最高点并爆裂,在1.5 s 之前,导数大于0且递减,所以烟花以越来越小的速度上升,在1.5 s 之后,导数小于0且绝对值越来越大,所以烟花以越来越大的速度下降,直至落地.§1.1.3 导数的几何意义[课标要求]1.了解导函数的概念;理解导数的几何意义.(难点)2.会求导函数.(重点)3.根据导数的几何意义,会求曲线上某点处的切线方程.(重点、易错点)一、导数的几何意义1.切线:如图,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.显然割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0,当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.2.几何意义:函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f (x 0+Δx )-f (x 0)Δx=f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、函数y =f (x )的导函数从求函数f (x )在x =x 0处导数的过程可以看到,当x =x 0时,f ′(x 0)是一个确定的数.这样,当x 变化时, f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx.知识点一 导数的几何意义【问题1】 曲线的切线是不是一定和曲线只有一个公共点?答案 不一定.曲线的切线和曲线不一定只有一个公共点,和曲线只有一个公共点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.【问题2】 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?答案 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.知识点二 导数与函数的单调性【问题1】 观察下面两个图形,在曲线的切点附近(Δx →0时)曲线与那一小段线段有何关系?答案 能在曲线的切点附近,曲线与切线贴合在一起,可用切线近似代替曲线.【问题2】 按照切线近似代替曲线的思想,切线的单调性能否表示曲线的变化趋势?如上左图,若在某一区间上曲线上各点的切线斜率均为负,则可判定在该区间上曲线的单调性如何?答案 在连续区间上切线斜率的正负,对应了曲线的单调性.【问题3】 如问题1中右图,当t 在(t 0,t 2)上变化时,其对应各点的导数值变化吗?会怎样变化? 答案 会.当t 变化时h ′(t )便是t 的一个函数,我们称它为h (t )的导函数.知识点三 函数y =f (x )的导函数【问题】 函数在某点处的导数与导函数有什么关系?答案 区别:(1)f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;(2)f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关.联系:在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值.题型一 求曲线的切线方程已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,如图,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解析】 (1)∵y =13x 3, ∴y ′=Δy Δx =13(x +Δx )3-13x 3Δx =133x 2Δx +3x (Δx )2+(Δx )3Δx =13[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.∴点P 处的切线的斜率等于4.(2)在点P 处的切线方程是y -83=4(x -2), 即12x -3y -16=0.●规律方法求曲线上某点处的切线方程的步骤(1)求出该点的坐标.(2)求出函数在该点处的导数,即曲线在该点处的切线的斜率.(3)利用点斜式写出切线方程.1.例1中的P 点换为坐标原点(0,0),其他不变,如何解答?解析 由例1知y =13x 3的导函数为y ′=x 2. (1)点P 处的切线斜率k =0.(2)在点P 处的切线方程是y -0=0×(x -0)即y =0.(注意:原点处的切线即x 轴,结合图象理解切线的定义)题型二 求切点坐标过曲线y =x 2上哪一点的切线满足下列条件?(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.【解析】 f ′(x )=f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. ●规律方法求切点坐标的一般步骤(1)先设切点坐标(x 0,y 0).(2)求导函数f ′(x ).(3)求切线的斜率f ′(x 0).(4)由已知条件求出切线的斜率k .由此得到方程f ′(x 0)=k ,解此方程求出x 0.(5)由于点(x 0,y 0)在曲线y =f (x )上,故将x 0代入曲线方程可得y 0,即可写出切点坐标.2.(1)曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.(2)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 解析 (1)根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx , Δy Δx =2x +Δx -3, 所以f ′(x )=Δy Δx =(2x +Δx -3)=2x -3.由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94. (2)由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.答案 (1)⎝⎛⎭⎫32,-94 (2)3 题型三 导数几何意义的综合应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.【解析】 (1)f ′(1)=Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+(1+Δx )-2]-(1+1-2)Δx=(Δx +3)=3, 所以直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2+x -2相切于点B (b ,b 2+b -2),则可求得切线l 2的斜率为2b +1.因为l 1⊥l 2,则有2b +1=-13,b =-23. 所以直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1、l 2与x 轴交点的坐标分别为(1,0)、⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×⎪⎪⎪⎪-52=12512. ●规律方法与导数几何意义相关题目的解题策略(1)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.(2)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线间的位置关系等,因此要综合应用所学知识解题.3.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值. 解析 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9,即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.规范解答(一) 求曲线过点P (x 1,y 1)的切线方程(12分)已知函数y =f (x )=x 3-3x 及y =f (x )上一点P (1,-2),求过点P 与曲线y =f (x )相切的直线l的方程.[审题指导]【规范解答】 (1)y ′=(x +Δx )3-3(x +Δx )-x 3+3xΔx=3x 2-3.(2分)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k =f ′(x 0)=3x 20-3,所以直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又因为直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0), 所以2x 30-3x 20+1=0,即(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.(6分)故所求直线斜率为k =3x 20-3=0或k =3x 20-3=-94, 于是y -(-2)=0·(x -1)或y -(-2)=-94(x -1),即y =-2或y =-94x +14.(10分)故过点P (1,-2)的切线方程为 y =-2或y =-94x +14.(12分)[题后悟道]1.求过点P (x 1,y 1)的切线方程的步骤: (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =Δy Δx. (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率(或利用切点和斜率写出切线方程).(4)根据斜率相等求得x 0,然后求得斜率k (或利用已写出的切线过点P (x ,y ),求出x 0,然后求得斜率k ). (5)根据点斜式写出切线方程. 2.注意事项:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线,点P 不一定是切点,也不一定在曲线上;在点P 处的切线,点P 必为切点,且在曲线上.(2)若曲线y =f (x )在点x 0处的导数f ′(x 0)不存在,则切线与y 轴平行或不存在;若f ′(x 0)=0,则切线与x 轴平行.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解析 y ′=Δy Δx=[2(x +Δx )2-7]-(2x 2-7)Δx=(4x +2Δx )=4x .由于2×32-7=11≠9,故点P (3,9)不在曲线上.设切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小, 结合导数的几何意义知f ′(x A )<f ′(x B ),选B. 答案 B2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为 A .1 B.π4 C.5π4D .-π4解析 f ′(1)=12(1+Δx )2-2+32Δx=12+Δx +12(Δx )2-2+32Δx=(1+12Δx )=1,即切线的斜率为1,故切线的倾斜角为π4.答案 B3.若曲线y =2x 2-4x +a 与直线y =1相切,则a 等于 A .1 B .2 C .3D .4解析 设切点坐标为(x 0,1), 则f ′(x 0)=[2(x 0+Δx )2-4(x 0+Δx )+a ]-(2x 20-4x 0+a )Δx=(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1,即切点坐标为(1,1). ∴2-4+a =1,即a =3. 答案 C4.设曲线y =x 2+x -2在点M 处的切线斜率为3,则点M 的坐标为 A .(0,-2) B .(1,0) C .(0,0)D .(1,1)解析 设点M (x 0,y 0), ∴k =(x 0+Δx )2+(x 0+Δx )-2-(x 20+x 0-2)Δx=2x 0+1, 令2x 0+1=3,∴x 0=1,则y 0=0.故选B. 答案 B5.曲线y =x 2在点(1,1)处的切线与坐标轴所围三角形的面积为 A.14B.12 C .1D .2 解析 f ′(1)=Δy Δx=(1+Δx )2-1Δx=(2+Δx )=2.则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.则三角形的面积为S =12×1×12=14.答案 A6.已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为 A .(1,1)B .(-1,0)C .(-1,0)或(1,0)D .(1,0)或(1,1)解析 设点P (x 0,y 0),则f ′(x 0)=ΔyΔx=[(x 0+Δx )3-(x 0+Δx )]-(x 30-x 0)Δx=3x 20-1=2⇒x 0=±1. 答案 C二、填空题(每小题5分,共15分)7.如果函数f (x )在x =x 0处的切线的倾斜角是钝角,那么函数f (x )在x =x 0附近的变化情况是________(填“逐渐上升”或“逐渐下降”).解析 由题意知f ′(x 0)<0,根据导数的几何意义知,f (x )在x =x 0附近的变化情况是“逐渐下降”. 答案 逐渐下降8.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ab =________.解析a (1+Δx )2+b -(a +b )Δx=(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2, 即a b =12. 答案 129.已知曲线y =x 24的一条切线的斜率为12,则切点的坐标为________.解析 设切点的坐标为(x 0,y 0), 因为Δy Δx =(x 0+Δx )24-x 204Δx =12x 0+14Δx ,当Δx →0时,Δy Δx →12x 0,而切线的斜率为12,所以12x 0=12,所以x 0=1,y 0=14.故切点坐标为⎝⎛⎭⎫1,14. 答案 ⎝⎛⎭⎫1,14 三、解答题(本大题共3小题,共35分) 10.(10分)已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线的方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点? 解析 (1)将x =1代入曲线C 的方程得y =1, ∴切点为P (1,1). ∵y ′=ΔyΔx=(x +Δx )3-x 3Δx=3x 2Δx +3x (Δx )2+(Δx )3Δx=[3x 2+3x Δx +(Δx )2]=3x 2,∴y ′|x =1=3.∴点P 处的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)(x 2+x -2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8). 故第(1)小题中的切线与曲线C 还有其他的公共点.11.(12分)已知一物体的运动方程是s =⎩⎪⎨⎪⎧3t 2+2,0≤t <3,29+3(t -3)2,t ≥3.求此物体在t =1和t =4时的瞬时速度. 解析 当t =1时,Δs Δt =3(1+Δt )2+2-(3×12+2)Δt =6+3Δt , 所以s ′(1)=ΔsΔt=(6+3Δt )=6.故当t =1时的瞬时速度为6. 当t =4时,Δs Δt =29+3(4+Δt -3)2-[29+3×(4-3)2]Δt =6+3Δt , 所以s ′(4)=ΔsΔt=(6+3Δt )=6,故当t =4时的瞬时速度为6.12.(13分)已知曲线f (x )=x 2的一条在点P (x 0,y 0)处的切线,求: (1)切线平行于直线y =-x +2时切点P 的坐标及切线方程; (2)切线垂直于直线12x -4y +5=0时切点P 的坐标及切线方程;(3)切线的倾斜角为60°时切点P 的坐标及切线方程. 解析 f ′(x 0)=(x 0+Δx )2-x 20Δx=2x 0.(1)因为切线与直线y =-x +2平行, 所以2x 0=-1,x 0=-12,即P ⎝⎛⎭⎫-12,14, 所以切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.(2)因为切线与直线12x -4y +5=0垂直,所以2x 0·18=-1,x 0=-4,即P (-4,16).所以切线方程为y -16=-8(x +4), 即8x +y +16=0.(3)因为切线的倾斜角为60°,所以切线的斜率为3,即2x 0=3,x 0=32, 所以P ⎝⎛⎭⎫32,34,所以切线方程为y -34=3⎝⎛⎭⎫x -32, 即43x -4y -3=0.§1.2 导数的计算§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)[课标要求]1.能根据导数的定义求函数y =c ,y =x ,y =x 2,y =x ,y =1x 的导数.(难点)2.掌握基本初等函数的导数公式并能进行简单的应用.(重点、难点)一、常用函数的导数原函数导函数f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x二、基本初等函数的导数公式原函数导函数①f (x )=c f ′(x )=0 ②f (x )=x n (n ∈Q *) f ′(x )=nx n -1 ③f (x )=sin x f ′(x )=cos_x ④f (x )=cos x f ′(x )=-sin_x ⑤f (x )=a x (a >0) f ′(x )=a x ln_a ⑥f (x )=e xf ′(x )=e x ⑦f (x )=log a x (a >0且a ≠1) f ′(x )=1x ln a⑧f (x )=ln xf ′(x )=1x知识点一 几个常用函数的导数【问题1】 用定义求下列常用函数的导数: ①y =c ;②y =x ;③y =x 2;④y =1x ;⑤y =x .答案 ①y ′=0;②y ′=1;③y ′=2x ;④y ′=Δy Δx=1x +Δx -1xΔx=-1x (x +Δx )=-1x 2(其他类似);⑤y ′=12x.【问题2】 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度. (1)函数y =f (x )=c (常数)的导数的物理意义是什么? (2)函数y =f (x )=x 的导数的物理意义呢?答案 (1)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.(2)若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做瞬时速度为1的匀速运动. 【问题3】 由正比例函数y =kx (k ≠0)的图象及导数可知;|k |越大函数增加(k >0)或减少(k <0)的速度越 快.画出函数y =x 2的图象,结合图象及导数说明函数y =x 2的变化情况.答案 图象如图从导数作为函数在一点的瞬时变化率来看,y ′=2x 表明:当x <0时,随着x 的增加,y =x 2减少得越来越慢;当x >0时,随着x 的增加,y =x 2增加得越来越快.若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .知识点二 基本初等函数的导数公式【问题】 你能说出基本初等函数的导数公式的特点吗? 答案 (1)常数函数的导数为零.(2)有理数幂函数f (x )=x α的导数依然为幂函数,且系数为原函数的次数,幂指数是原函数的幂指数减去1. (3)正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数. (4)指数函数的导数依然为指数函数,且系数为原函数底数的自然对数. (5)公式⑥是公式⑤的特例,公式⑧是公式⑦的特例.题型一 利用公式求导数求下列函数的导数:(1)y =x 7;(2)y =1x 2;(3)y =3x ;(4)y =2sin x 2cos x2;(5)y =log 12x 2-log 12x .【解析】 (1)y ′=7x 7-1=7x 6. (2)∵y =x -2,∴y ′=-2x -2-1=-2x -3. (3)∵y =x 13,∴y ′=13x -23.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x .(5)∵y =log 12x 2-log 12x =log 12x ,∴y ′=(log 12x )′=1x ln 12.●规律方法用公式求函数导数的方法(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是将其合理转化为可以直接应用公式的基本函数的模式,如y =1x 2可以写成y =x -2,y = 3x =x 13等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.求下列函数的导数:(1)y =lg 4;(2)y =2x;(3)y =x 2x ;(4)y =2cos 2x 2-1. 解析 (1)y ′=(lg 4)′=0;(2)y ′=(2x )′=2x ln 2;(3)∵y =x 2x=x 2-12=x 32,∴y ′=(x 32)′=32x 12; (4)∵y =2cos 2x 2-1=cos x , ∴y ′=(cos x )′=-sin x .题型二 导数公式在解决切线问题中的应用(6分)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.【规范解答】 y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′0|x x ==2x 0.(2分)∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14.(4分) ∴所求的切线方程为y -14=x -12,(5分) 即4x -4y -1=0.(6分)●规律方法利用导数解决求曲线的切线方程问题的策略求曲线的切线方程主要有两种类型.(1)已知切点型,其步骤为: 求导函数―→求切点处导数,即切线斜率―→写出切线方程 (2)未知切点型,其步骤为:设切点―→求导函数―→求切线斜率k =f ′(x 0) 写出切线的点斜式方程―→列出关于x 0的方程(组)―→求切点―→写出切线方程2.求曲线y =x 过点(3,2)的切线方程.解析 ∵点(3,2)不在曲线y =x 上,∴设过(3,2)与曲线y =x 相切的直线在曲线的切点为(x 0,y 0),则y 0=x 0. ∵y =x ,∴y ′=(x 12)′=12x 12-1=12x. ∴根据导数的几何意义,曲线在点(x 0,y 0)处的切线斜率k =12x 0. ∵切线过点(3,2),∴2-y 03-x 0=12x 0,2-x 03-x 0=12x 0, 整理得(x 0)2-4x 0+3=0,解得x 0=1,x 0=9,∴切点坐标为(1,1)或(9,3).(1)当切点坐标为(1,1)时,切线斜率k =12, ∴切线方程为y -2=12(x -3),即x -2y +1=0. (2)当切点坐标为(9,3)时,切线斜率k =16,∴切线方程为y -2=16(x -3),即x -6y +9=0. 综上可知:曲线y =x 过点(3,2)的切线方程为:x -2y +1=0或x -6y +9=0.易错误区(二) 正确使用求导公式已知直线y =kx 是曲线f (x )=e x 的切线,则k 的值等于________.【解析】 设切点的坐标为(x 0,y 0),由f (x )=e x ,可得y ′=f ′(x )=e x ,又k =y 0x 0,f ′(x 0)=0e x , 所以0e x =y 0x 0且y 0=0e x ①. 解得x 0=1,y 0=e.k =y 0x 0=e. 【答案】 e[易错防范]1.①处一要注意导数0e x ,即切线斜率y 0x 0,二要注意切点在曲线上,即y 0=0e x . 2.导数几何意义的应用本例实质是求过点(0,0)且与曲线y =e x 相切的直线方程的斜率.要把切线的斜率与导数联系起来,要注意切点的坐标既满足切线方程又满足曲线方程.3.牢记导数公式导数公式是函数导数计算的关键,解题时要注意使用.例如,在本例中,要正确应用公式(e x )′=e x .已知曲线y =1x3在点P (-1,-1)处的切线与直线m 平行且距离等于10,求直线m 的方程.解析 因为y ′=-3x 4, 所以曲线在点P (-1,-1)处的切线斜率为k =-3,则切线方程为y +1=-3(x +1),即3x +y +4=0.由题意设直线m 的方程为3x +y +b =0(b ≠4),所以|b -4|32+12=10,所以|b -4|=10, 所以b =14或b =-6,所以直线m 的方程为3x +y +14=0或3x +y -6=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.下列结论不正确的是A .若y =3,则y ′=0B .若y =1x ,则y ′=-x 2C .若y =x ,则y ′=12x D .若y =x ,则y ′=1解析 对于A ,常数的导数为零,故A 正确;对于B ,y ′=(x -12)′=-12x -32=-12x 3,故B 错误; 对于C ,y ′=(x 12)′=12x -12=12x,故C 正确; 对于D ,y ′=x ′=1,故D 正确.答案 B2.已知曲线f (x )=x 3的切线的斜率等于3,则切线有A .1条B .2条C .3条D .不确定 解析 ∵f ′(x )=3x 2=3,解得x =±1,切点有两个,即可得切线有两条.。

1.5.1-2曲线的面积_汽车行驶的路程

1.5.1-2曲线的面积_汽车行驶的路程

§1.5.1 曲边梯形的面积 §1.5.2 汽车行驶的路程预习案 姓名一、学习目标1.通过曲边梯形的面积,了解定积分的实际背景;初步掌握求曲边梯形面积的步骤——四步曲2.了解“以直代曲”、“逼近”的思想方法;1.体会求汽车行驶的路程有关问题的过程,感受在其过程中渗透的思想方法:分割、以不变代变、求和、取极限(逼近)。

3.了解求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程的共同点;探究案二、学习过程问题:我们在小学、初中就学习过求平面图形面积的问题。

有的是规则的平面图形,但现实生活中更多的是不规则的平面图形。

对于不规则的图形我们该如何求面积? (一)连续函数与曲边梯形问题1:函数()y f x =________________________ _____________________________,那么我们称函数()y f x =为在区间I 上的连续函数.问题2:如图,类似于一个梯形,但有一边是曲边()y f x =的一段,我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形称为____________________如何计算这个曲边梯形的面积?要计算上述图形的面积,可将区间[a,b]分成许多小区间,进而把________拆分为一些小____________,对每个小_____________“以直线代曲线”即用__________的面积近似代替____________的面积,得到每个__________面积的近似值,对这些近似值求和,就得到____________面积的近似值.如图可以想象,随着拆分越来越细,近似程度就会越来越好. 问题3:画出由2yx=与直线1,0x y ==围成的曲边梯形.(二)求曲边梯形面积的步骤——四步曲第一步 分割在由2yx=与直线1,0x y ==所围成的曲边梯形中:问题4:把区间[0,1]等间隔地插入1n -个点,将它等分为____个小区间,则第i 个小区间为a b()y f x =a y f x= b ()y f x =________,其区间长度为x ∆=___________,当n →+∞时,x ∆→___.练习1:把区间[2,5]n 等分,所得每个小区间的长度x ∆=( )A .1nB .2nC .3nD .4n练习2:在区间[1,8]中插入6个等分点,则所分的小区间长度x ∆=_____,第3个小区间是__________.第二步 近似代替问题5:在区间1[,]i in n-上,函数2()f x x=的值()f x ≈______,曲边梯形在这个小区间的面积'i i S S ∆≈∆=_____________________,即小矩形的面积'i S ∆近似地代替i S ∆,即以直代曲.第三步 求和问题6:求图1.5-4中阴影部分面积n S (写出过程).n n i x n i f S S ni ni ni in 1111211∙⎪⎭⎫⎝⎛-=∆∙⎪⎭⎫⎝⎛-='∆=∑∑∑==== = = = 从而得到S 的近似值n S S ≈=问题7:2222123n ++++=__________.(用符号“∑”表示)练习3:用符号“∑”表示下列运算:(1)123n ++++= ___________. (2)2222135(21)n ++++-= ____________.第四步 取极限——逼近的思想问题8:从图中,当,n n S S →+∞→,即S =__________=_______________________=_______________. (三)典型例题例1:汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程为s vt =.如果汽车做变速直线运动,在时刻t 的速度为2()2v t t =-+(t 的单位:h ,v 的单位:km/h ),那么它在01t ≤≤这段时间内行驶的路程s (单位:km )是多少?分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解.解: (1).分割(2)近似代替(3)求和(4)取极限训练案1、把区间[1,3]n 等分,所得n 个小区间,每个小区间的长度为( ) A.n1 B.n2 C.n3 D.n212、把区间],[b a )(b a <n 等分后,第i 个小区间是 ( ) A.],1[n i n i - B. )](),(1[a b nia b n i --- C.],1[ni a ni a +-+D. )](),(1[a b ni a a b ni a -+--+3、在“近似替代”中,函数)(x f 在区间],[1+i i x x 上的近似值( ) A.只能是左端点的函数值)(i x f B.只能是右端点的函数值)(1+i x fC.可以是该区间内的任一函数值()∈i i f ξξ(],[1+i i x x )D.以上答案均正确4. 求直线0,2,0x x y ===与曲线2y x =所围成的曲边梯形的面积5. 一辆汽车在笔直的公路上变速行驶,设汽车在时刻t 的速度为2()5v t t =-+(t 的单位:h ,v 的单位:km/h ),试计算这辆汽车在02t ≤≤这段时间内汽车行驶的路程s (单位:km )。

2017-2018学年高中数学人教A版选修2-2学案:第一章 1.5 1.5.3 定积分的概念

2017-2018学年高中数学人教A版选修2-2学案:第一章 1.5 1.5.3 定积分的概念

1.5.3 定积分的概念预习课本P45~47,思考并完成下列问题 (1)定积分的概念是什么?几何意义又是什么?(2)定积分的计算有哪些性质?[新知初探]1.定积分的概念与几何意义(1)定积分的概念:一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξ i )Δx =∑i =1nb -an f (ξ i ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a bf (x )d x ,即⎠⎛a bf (x )d x =li m n →∞∑i =1n b -anf (ξ i ), 这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义:如果在区间[a ,b ]上函数连续且恒有f (x )≥0,那么定积分⎠⎛a bf (x )d x 表示由直线x =a ,x =b (a <b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(如图中的阴影部分的面积).[点睛] 利用定积分的几何意义求定积分的关注点(1)当f (x )≥0时,⎠⎛a bf (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义.(2)计算⎠⎛a bf (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值:当f (x )≥0时,⎠⎛a bf (x )d x =S ;当f (x )<0时,⎠⎛a bf (x )d x =-S .2.定积分的性质(1)⎠⎛a bkf (x )d x =k ⎠⎛a bf (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛a bf 2(x )d x .(3)⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛c bf (x )d x (其中a <c <b ).[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)⎠⎛02x 2d x =1.( )(2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛a b(x 2+2x )d x =⎠⎛a bx 2d x +⎠⎛a b2x d x . ( ) 答案:(1)√ (2)× (3)√ 2.⎠⎛02x d x 的值为( )A .1 B.12 C .2 D .-2答案:C3.已知⎠⎛02f (x )d x =8,则( ) A.⎠⎛01f (x )d x =4 B.⎠⎛02f (x )d x =4C.⎠⎛01f (x )d x +⎠⎛12f (x )d x =8 D .以上答案都不对 答案:C4.已知⎠⎛0tx d x =2,则⎠⎛-t 0x d x =________. 答案:-2[典例] 利用定义求定积分⎠⎛03x 2d x . [解] 令f (x )=x 2,(1)分割:在区间[0,3]上等间隔地插入n -1个点,把区间[0,3]分成n 等份,其分点为x i=3i n (i =1,2,…,n -1),这样每个小区间[x i -1,x i ]的长度Δx =3n(i =1,2,…,n ). (2)近似代替、求和:令ξi =x i =3in (i =1,2,…,n ),于是有和式:∑i =1n f (ξi )Δx =∑i =1n ⎝⎛⎭⎫3i n 2·3n =27n 3∑i =1n i 2=27n 3·16n (n +1)(2n +1)=92⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n . (3)取极限:根据定积分的定义,有⎠⎛03x 2d x =∑i =1nf (ξi )Δx=⎣⎡⎦⎤92⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n =9.用定义求定积分的一般步骤(1)分割:n 等分区间[a ,b ];(2)近似代替:取点ξi ∈[x i -1,x i ],可取ξi =x i -1或ξi =x i ;(3)求和:∑i =1n f (ξi )·b -an;(4)取极限:⎠⎛a bf (x )=li m n →∞∑i =1nf (ξi )·b -an . [活学活用]利用定积分的定义计算⎠⎛12(-x 2+2x )d x 的值. 解:令f (x )=-x 2+2x . (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分为n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n (i =1,2,…,n ),每个小区间的长度为Δx =1n .(2)近似代替、求和取ξi =1+in (i =1,2,…,n ),则 S n =∑i =1n f ⎝⎛⎭⎫1+in ·Δx =∑i =1n ⎣⎡⎦⎤-⎝⎛⎭⎫1+i n 2+2⎝⎛⎭⎫1+i n ·1n =-1n 3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n 2[(n +1)+(n +2)+(n +3)+…+2n ]=-1n 3⎣⎢⎡⎦⎥⎤2n (2n +1)(4n +1)6-n (n +1)(2n +1)6+2n 2·n (n +1+2n )2 =-13⎝⎛⎭⎫2+1n ⎝⎛⎭⎫4+1n +16⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n +3+1n . (3)取极限⎠⎛12(-x 2+2x )d x =S n =-13⎝⎛⎭⎫2+1n ⎝⎛⎭⎫4+1n +16⎝⎛⎭⎫1+1n ⎝⎛⎭⎫2+1n +3+1n =23.[典例] (1)f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x 2,1≤x ≤2.则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d x B.⎠⎛022x 2d xC.⎠⎛01(x +1)d x +⎠⎛122x 2d x D.⎠⎛012x d x +⎠⎛12(x +1)d x(2)已知⎠⎛0ex d x =e 22,⎠⎛0ex 2d x =e33,求下列定积分的值: ①⎠⎛0e(2x +x 2)d x ; ②⎠⎛0e (2x 2-x +1)d x .[解析] (1)由定积分的几何性质得:⎠⎛02f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x .答案:C(2)解:①⎠⎛0e(2x +x 2)d x =2⎠⎛0ex d x +⎠⎛0ex 2d x =2×e 22+e 33=e 2+e 33.②⎠⎛0e(2x 2-x +1)d x =⎠⎛0e2x 2d x -⎠⎛0ex d x +⎠⎛0e1d x , 因为已知⎠⎛0ex d x =e 22,⎠⎛0ex 2d x =e 33, 又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e1d x =1×e =e ,故⎠⎛0e(2x 2-x +1)d x =2×e 33-e 22+e =23e 3-12e 2+e.利用定积分的性质计算定积分的步骤(1)如果被积函数是几个简单函数的和的形式,利用定积分的线性性质进行计算,可以简化计算.(2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连续可加性计算.[活学活用]若f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <0,e -x ,0≤x ≤1.且⎠⎛0-1(2x -1)d x =-2,⎠⎛01e -x d x =1-e -1,求⎠⎛1-1f (x )d x .解:对于分段函数的定积分,通常利用积分区间可加性来计算,即⎠⎛1-1f (x )d x =⎠⎛0-1f (x )d x +⎠⎛01f (x )d x=⎠⎛0-1(2x -1)d x +⎠⎛01e -x d x =-2+1-e -1=-(e -1+1).[典例] 求定积分:⎠⎛02(4-(x -2)2-x )d x .[解] ⎠⎛024-(x -2)2d x 表示圆心在(2,0),半径等于2的圆的面积的14,即⎠⎛024-(x -2)2d x =14×π×22=π.⎠⎛02x d x 表示底和高都为2的直角三角形的面积,即⎠⎛02x d x =12×22=2.∴原式=⎠⎛024-(x -2)2d x -⎠⎛02x d x =π-2.当被积函数的几何意义明显时,可利用定积分的几何意义求定积分,但要注意定积分的符号.[活学活用]计算⎠⎛3-3(9-x 2-x 3)d x 的值. 解:如图所示,由定积分的几何意义得⎠⎛3-39-x 2d x =π×322=9π2,⎠⎛3-3x 3d x =0,由定积分性质得 ⎠⎛3-3(9-x 2-x 3)d x =⎠⎛3-39-x 2d x -⎠⎛3-3x 3d x =9π2.层级一 学业水平达标1.定积分⎠⎛2-2f (x )d x (f (x )>0)的积分区间是( ) A .[-2,2] B .[0,2] C .[-2,0]D .不确定解析:选A 由定积分的概念得定积分⎠⎛2-2f (x )d x 的积分区间是[-2,2].2.定积分⎠⎛13(-3)d x 等于( ) A .-6 B .6 C .-3D .3解析:选A 由定积分的几何意义知,⎠⎛13(-3)d x 表示由x =1,x =3,y =0及y =-3所围成的矩形面积的相反数,故⎠⎛13(-3)d x =-6.3.下列命题不正确的是( )A .若f (x )是连续的奇函数,则⎠⎛a -a f (x )d x =0 B .若f (x )是连续的偶函数,则⎠⎛a -af (x )d x =2⎠⎛0af (x )d xC .若f (x )在[a ,b ]上连续且恒正,则⎠⎛a bf (x )d x >0D .若f (x )在[a ,b ]上连续且⎠⎛a bf (x )d x >0,则f (x )在[a ,b ]上恒正解析:选D A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大.4.设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛1-1f (x )d x 的值是( ) A.⎠⎛1-1 x 2d x B.⎠⎛1-12xd x C.⎠⎛1-1x 2d x +⎠⎛1-12xd x D.⎠⎛0-12xd x +⎠⎛10x 2d x 解析:选D 由定积分性质(3)求f (x )在区间[-1,1]上的定积分,可以通过求f (x )在区间[-1,0]与[0,1]上的定积分来实现,显然D 正确,故应选D.5.下列各阴影部分的面积S 不可以用S =⎠⎛a b[f (x )-g (x )]d x 求出的是( )解析:选D 定积分S =⎠⎛a b[f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,D 项中f (x )的图象不全在g (x )的图象上方.故选D.6.若⎠⎛a b f (x )d x =3,⎠⎛a b g (x )d x =2,则⎠⎛a b[f (x )+g (x )]d x =__________. 解析:⎠⎛a b [f (x )+g (x )]d x =⎠⎛a b f (x )d x +⎠⎛a bg (x )d x =3+2=5. 答案:57.若⎠⎛a b f (x )d x =1,⎠⎛a b g (x )d x =-3,则⎠⎛a b[2f (x )+g (x )]d x =_______. 解析:⎠⎛a b [2f (x )+g (x )]d x =2⎠⎛a b f (x )d x +⎠⎛a bg (x )d x =2×1-3=-1. 答案:-18.计算:⎠⎛0416-x 2d x =____________.解析:⎠⎛0416-x 2d x 表示以原点为圆心,半径为4的14圆的面积,∴⎠⎛0416-x 2d x =14π·42=4π.答案:4π9.化简下列各式,并画出各题所表示的图形的面积. (1)⎠⎛-3-2x 2d x +⎠⎛1-2x 2d x ; (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x .解:(1)原式=⎠⎛1-3x 2d x ,如图(1)所示. (2)⎠⎛01(1-x )d x +⎠⎛12(x -1)d x =⎠⎛02|1-x |d x ,如图(2)所示.10.已知函数f (x )=⎩⎪⎨⎪⎧x 5,x ∈[-1,1],x ,x ∈[1,π),sin x ,x ∈[π,3π],求f (x )在区间[-1,3π]上的定积分. 解:由定积分的几何意义知:∵f (x )=x 5是奇函数,故⎠⎛1-1x 5d x =0; ⎠⎛π3πsin x d x =0(如图(1)所示);⎠⎛1πx d x =12(1+π)(π-1)=12(π2-1)(如图(2)所示).∴⎠⎛-13πf (x )d x =⎠⎛-11x 5d x +⎠⎛1πx d x +⎠⎛-π3πsin x d x =⎠⎛1πx d x =12(π2-1).层级二 应试能力达标1.设f (x )是[a ,b ]上的连续函数,则⎠⎛a bf (x )d x -⎠⎛a bf (t )d t 的值( ) A .小于零 B .等于零 C .大于零D .不能确定解析:选B ⎠⎛a bf (x )d x 和⎠⎛a bf (t )d t 都表示曲线y =f (x )与x =a ,x =b 及y =0围成的曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.2.(陕西高考)如图所示,图中曲线方程为y =x 2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.⎠⎛02(x 2-1)d x B.⎠⎛01(x 2-1)d x C.⎠⎛02|x 2-1|d xD.⎠⎛01(x 2-1)d x +⎠⎛12(x 2-1)d x解析:选C 由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.3.设a =⎠⎛01x 13d x ,b =⎠⎛01x 2d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系是( ) A .c >a >b B .a >b >c C .a =b >cD .a >c >b解析:选B 根据定积分的几何意义,易知⎠⎛01x 3d x <⎠⎛01x 2d x <⎠⎛01x 13d x ,即a >b >c ,故选B.4.已知t >0,若⎠⎛0t(2x -2)d x =8,则t =( ) A .1 B .-2 C .-2或4D .4解析:选D 作出函数f (x )=2x -2的图象与x 轴交于点A (1,0),与y 轴交于点B (0,-2),易求得S △OAB =1,∵⎠⎛0t (2x -2)d x =8,且⎠⎛01(2x -2)d x =-1,∴t >1,∴S △AEF =12|AE ||EF |=12×(t -1)(2t -2)=(t -1)2=9,∴t =4,故选D. 5.定积分⎠⎛01(2+1-x 2)d x =________.解析:原式=⎠⎛012d x +⎠⎛011-x 2d x .因为⎠⎛012d x =2,⎠⎛011-x 2d x =π4,所以⎠⎛01(2+1-x 2)d x =2+π4.答案:2+π46.已知f (x )是一次函数,其图象过点(3,4)且⎠⎛01f (x )d x =1,则f (x )的解析式为______.解析:设f (x )=ax +b (a ≠0),∵f (x )图象过(3,4)点,∴3a +b =4.又⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =a ⎠⎛01x d x +⎠⎛01b d x =12a +b =1. 解方程组⎩⎪⎨⎪⎧ 3a +b =4,12a +b =1,得⎩⎨⎧ a =65,b =25.∴f (x )=65x +25. 答案:f (x )=65x +25 7.一辆汽车的速度—时间曲线如图所示,用定积分法求汽车在这一分钟内行驶的路程. 解:依题意,汽车的速度v 与时间t 的函数关系式为v (t )=⎩⎪⎨⎪⎧ 32t ,0≤t <20,50-t ,20≤t <40,10,40≤t ≤60.所以该汽车在这一分钟内所行驶的路程为 s =∫600v (t )d t =∫20032t d t +⎠⎛2040(50-t )d t +⎠⎛406010d t =300+400+200=900(米).8.求证:12<⎠⎛01x d x <1.证明:如图,⎠⎛01x d x 表示阴影部分面积,△OAB 的面积是12,正方形OABC 的面积是1,显然,△OAB 的面积<阴影部分面积<正方形OABC 的面积,即12<⎠⎛01x d x <1.。

推荐高中数学第一章导数及其应用1.7定积分的简单应用学案含解析新人教A版选修2_2

推荐高中数学第一章导数及其应用1.7定积分的简单应用学案含解析新人教A版选修2_2

1.7定积分的简单应用积为S 1.由直线x =a ,x =b ,曲线y =g(x )和x 轴围成的曲边梯形的面积为S 2.问题1:如何求S 1? 提示:S 1=⎠⎛a b f(x)d x.问题2:如何求S 2? 提示:S 2=⎠⎛ab g(x)d x.问题3:如何求阴影部分的面积S? 提示:S =S 1-S 2.平面图形的面积由两条曲线y =f (x ),y =g (x )和直线x =a ,x =b (b >a )所围图形的面积.(1)如图①所示,f (x )>g (x )>0,所以所求面积S =⎠⎛ab d x .(2)如图②所示,f (x )>0,g (x )<0,所以所求面积S =⎠⎛a b f (x )d x +⎪⎪⎪⎪⎠⎛a b=⎠⎛ab d x .相交曲线所围图形的面积求法如下图,在区间上,若曲线y =f (x ),y =g (x )相交,则所求面积S =S 1+S 2=⎠⎛ac d x +⎠⎛c b-=⎠⎛ab |f (x )-g (x )|d x .问题:在《1.5.2 汽车行驶的路程》中,我们学会了利用积分求物理中物体做变速直线运动的路程问题,利用积分还可以解决物理中的哪些问题?提示:变力做功.1.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间上的定积分,即s =⎠⎛ab2.变力做功如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b(a<b),那么变力F(x)所做的功为W =⎠⎛ab F(x )d x.求变速直线运动的路程的注意点对于给出速度-时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意的是分段解析式要分段求路程,然后求和.计算曲线由⎩⎪⎨⎪⎧y =x +3,y =x2-2x +3,解得x =0或x =3.如图.因此所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03d x =⎠⎛03(-x 2+3x )d x =⎝ ⎛⎭⎪⎫-13x3+32x23=92.求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数图象上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积.求曲线y =e x,y =e -x及x =1所围成的图形面积.解:作图,并由⎩⎪⎨⎪⎧y =ex ,y =e -x ,解得交点(0,1). 所求面积为⎠⎛01(e x-e -x)d x =(e x +e -x)1=e +1e-2.先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为,将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022xd x +⎠⎛28(2x -x +4)d x=423x322+⎝ ⎛⎭⎪⎫223x -12x2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为,如图得所求的面积为 S =⎠⎛-42⎝ ⎛⎭⎪⎫4-y -y22d y =⎝ ⎛⎭⎪⎫4y -12y2-16y324-=18.需分割的图形的面积的求法由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间上位于上方和下方的曲线不同.求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间上曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如下图).解方程组⎩⎪⎨⎪⎧y =x2+1,y =-x +7,得⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =-3,y =10(舍去),即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x=⎝ ⎛⎭⎪⎫13x3+x 20+⎝⎛⎭⎪⎫7x -12x272=143+252 =1036.A ,BC 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,速度为(24-1.2t ) m/s ,经t s 后,在B 点恰好停车.试求:(1)A ,C 间的距离; (2)B ,D 间的距离. (1)设A 到C 的时间为t 1, 则1.2t 1=24,t 1=20 s ,则AC =⎠⎛0201.2t d t =0.6t220=240(m).(2)设D 到B 的时间为t 2, 则24-1.2t 2=0,t 2=20 s , 则DB =⎠⎛020 (24-1.2t )d t求变速直线运动的路程、位移应关注三点(1)分清运动过程中的变化情况;(2)如果速度方程是分段函数,那么要用分段的定积分表示;(3)明确是求位移还是求路程,求位移可以正负抵消,求路程不能正负抵消.一点在直线上从时刻t =0(单位:s )开始以速度v =t 2-4t +3(单位:m /s )运动,求: (1)在t =4 s 时的位置; (2)在t =4 s 时运动的路程. 解:(1)在t =4 s 时该点的位移为⎠⎛04(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 40=43(m ), 即在t =4 s 时该点距出发点43m .(2)∵v(t)=t 2-4t +3=(t -1)(t -3), ∴在区间及上v(t)≥0, 在区间上,v(t)≤0. ∴在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 10-⎝ ⎛⎭⎪⎫13t3-2t2+3t 31+13t 3-2t 2+3t43=4(m ), 即在t =4 s 时运动的路程为4 m .一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力­位移曲线如图所示.求该物体从x =0 m 处运动到x =4 m 处力F (x )做的功.由力­位移曲线可知F (x )=⎩⎪⎨⎪⎧10,0≤x≤2,3x +4,2<x≤4,因此该物体从x =0处运动到x =4处力F (x )做的功为W =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x 2+⎝ ⎛⎭⎪⎫32x2+4x 42=46(J).解决变力做功应关注两点(1)首先将变力用其方向上的位移表示出来,这是关键的一步; (2)根据变力做功的公式将其转化为求定积分的问题.设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N).由题意F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,解得即0.05k =100,∴k =2 000, ∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =⎠⎛00.152 000x d x =1 000x 2.015=22.5(J).4.利用定积分求面积的策略由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积为( ) A .16-3223B .16+3223C.403D.403+3223由题意,作图形如图所示,由⎩⎪⎨⎪⎧y2=>,x +y -6=0,得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4).法一:(选y 为积分变量)S =⎠⎛04⎝ ⎛⎭⎪⎫6-y -18y2d y=⎝⎛⎭⎪⎫6y -12y2-124y340=24-8-124×64=403.法二:(选x 为积分变量)S =⎠⎛02(8x)d x +⎠⎛26(6-x )d x=8×23x 322+⎝⎛⎭⎪⎫6x -12x262=163+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫6×6-12×62-⎝ ⎛⎭⎪⎫6×2-12×22=403.C1.本题易搞错被积函数及积分上、下限,误认为S =⎠⎛04-x -8x)d x ,从而得出S =16-3223的错误答案.2.求平面图形面积时,应首先求出交点坐标,确定积分上、下限,然后确定被积函数,判定积分的正负,用公式求解面积.如本例法一中的被积函数为f(y)=6-y -18y 2,y ∈(0,4],法二中的被积函数为f(x)=⎩⎨⎧8x ,,2],6-x ,,6].3.利用定积分求面积时,应根据具体问题选择不同的方法求解,常见类型有以下几种: (1)换元积分:当两区域所围成图形纵坐标一致时,换元变成对y 积分可简化运算.如本例中的法一. (2)分割求和:当两曲线处于不同区间时,可分割成几块,分别求出面积再相加,如本节例2的求解法.事实上,本例中的法二就是分割求和.(3)上正下负:若a ≤x ≤c 时,f(x)<0,则⎠⎛a c f(x)d x <0;若c ≤x ≤b 时,f(x)≥0,则⎠⎛cb f(x)d x ≥0.此时曲线y =f(x)和直线x =a ,x =b(a <b)及y =0所围图形的面积是 S =⎪⎪⎪⎪⎠⎛ac +⎠⎛c b f(x)d x =-⎠⎛ac f(x)d x +⎠⎛c bd x.例:求正弦曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,3π2和直线x =0,x =3π2及y =0所围图形的面积S .解:作出曲线y =sin x 和直线x =0,x =3π2,y =0的草图,如图所示,所求面积为图中阴影部分的面积.由图可知,当x ∈时,曲线y =sin x 位于x 轴的上方; 当x ∈⎣⎢⎡⎦⎥⎤π,3π2时,曲线位于x 轴下方. 因此,所求面积应为两部分的和,即S =π⎰32|sin x |d x =⎠⎛0πsin x d x -ππ⎰32sin x d x =-cos xπ+cos xππ32=3.(4)上下之差:若在区间上f (x )>g (x ),则曲线f (x )与g (x )所围成的图形的面积S =⎠⎛a b d x .例:求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y2=x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01xd x -⎠⎛01x 3d x =23x 321-14x 41=512.1.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .22B .4 2 C .2 D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02-=⎝⎛⎭⎪⎫2x2-14x42=4.2.一物体沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在3 s ~6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m解析:选B s =⎠⎛36 (3t +2)d t =⎝ ⎛⎭⎪⎫32t2+2t 63=(54+12)-⎝ ⎛⎭⎪⎫272+6=46.5(m).3.(天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x2,y =x 得A(1,1).故所求面积为S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x2-13x3⎪⎪⎪10=16. 答案:164.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0a xd x =23x 32a=23a 32=a 2,所以a 12=23,所以a =49. 答案:495.一物体在变力F (x )=36x2(x 的单位:m ,F 的单位:N)的作用下沿坐标平面内x 轴的正方向由x =8处运动到x =18处,求力F (x )在这一过程中所做的功.解:由题意得力F (x )在这一过程中所做的功为F (x )在上的定积分,从而W =⎠⎛818F (x )d x =-36x -1188=(-36×18-1)-(-36×8-1)=(-2)-⎝ ⎛⎭⎪⎫-92=52(J).从而可得力F (x )在这一过程中所做的功为52 J.一、选择题1.用S 表示下图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB.⎪⎪⎪⎪⎠⎛acC.⎠⎛a b f(x)d x +⎠⎛bc f(x)d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x解析:选D 由图可知,x 轴上方阴影部分的面积为⎠⎛b c ,x 轴下方阴影部分的面积为-⎠⎛ab f (x )d x ,故D 正确. 2.曲线y =x 3与直线y =x 所围图形的面积等于( ) A.⎠⎛-11(x -x 3)d x B.⎠⎛-11(x 3-x )d x C .2⎠⎛01(x -x 3)d xD .2⎠⎛-10(x -x 3)d x解析:选C 由⎩⎪⎨⎪⎧y =x ,y =x3,求得直线y =x 与曲线y =x 3的交点分别为(-1,-1),(1,1),(0,0),由于两函数都是奇函数,根据对称性得S =2⎠⎛01(x -x 3)d x .3.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 解析:选D 结合函数图象可得所求的面积是定积分∫π3-π3cos x d x =sin x π3-π3= 3. 4.一质点运动的速度与时间的关系为v (t )=t 2-t +2,质点做直线运动,则它在时间内的位移为( )A.176B.143C.136 D.116解析:选A 质点在时间内的位移为⎠⎛12(t 2-t +2)d t =⎝ ⎛⎭⎪⎫13t3-12t2+2t 21=176. 5.由抛物线y =x 2-x ,直线x =-1及x 轴围成的图形的面积为( ) A.23 B .1 C.43 D.53解析:选B S =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x=⎝ ⎛⎭⎪⎫13x3-12x20-1+⎝ ⎛⎭⎪⎫12x2-13x310=1.二、填空题6.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为________.解析:由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为∫5π6π6sin x -12d x =-cos x -12x 5π6π6=3-π3.答案:3-π37.物体A 以速度v =3t 2+1(t 的单位:s ;v 的单位:m/s)在一直线上运动,在此直线上,物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,则两物体相遇时物体A 运动的距离为________m.解析:设t =a 时两物体相遇,依题意有⎠⎛0a (3t 2+1)d t -⎠⎛0a 10t d t =(t 3+t )a 0-5t 2a 0=5,即a 3+a -5a 2=5,(a -5)(a 2+1)=0,解得a =5,所以⎠⎛05(3t 2+1)d t =53+5=130.答案:1308.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6),则t =0到t =6这段时间内流出的水量为________.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛6(6t -t 2)d t =4⎝⎛⎭⎪⎫3t2-13t360=144(cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 答案:144 cm 3三、解答题9.求由曲线y =x 2和直线y =x 及y =2x 所围图形的面积S .解:由⎩⎪⎨⎪⎧y =x2,y =x 得A (1,1),由⎩⎪⎨⎪⎧y =x2,y =2x 得B (2,4).如图所示,所求面积(即图中阴影部分的面积)为S =⎠⎛01(2x -x )d x +⎠⎛12-x 2)d x =⎠⎛01x d x +⎠⎛12-x 2)d x =12x 210+⎝⎛⎭⎪⎫x2-13x321=76.10.有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).(1)点P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)求点P 从原点出发,经过时间t 后又返回原点时的t 值. 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4, 即当0≤t ≤4时,P 点向x 轴正方向运动; 当t >4时,P 点向x 轴负方向运动.最新中小学教案、试题、试卷故t =6时,点P 离开原点的路程为s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝⎛⎭⎪⎫4t2-23t340-⎝ ⎛⎭⎪⎫4t2-23t364=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t2-23t360=0. (2)依题意⎠⎛0t (8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,而t =0对应于P 点刚开始从原点出发的情况, ∴t =6是所求的值.。

全国通用版版高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程学案新人

全国通用版版高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程学案新人

1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程学习目标 1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.知识点一曲边梯形的面积思考1 如何计算下列两图形的面积?答案①直接利用梯形面积公式求解.②转化为三角形和梯形求解.思考2 如图所示的图形与我们熟悉的“直边图形”有什么区别?答案已知图形是由直线x=1,y=0和曲线y=x2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段.梳理曲边梯形的概念及面积求法(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①所示).(2)求曲边梯形面积的方法把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形.对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).(3)求曲边梯形面积的步骤:①分割;②近似代替;③求和;④取极限.知识点二 求变速直线运动的(位移)路程一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s .1.求汽车行驶的路程时,分割的区间表示汽车行驶的路程.( × ) 2.当n 很大时,函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值,只能用⎝ ⎛⎭⎪⎫i n 2近似代替.( × )3.利用求和符号计算∑i =14i (i +1)=40.( √ )类型一 求曲边梯形的面积例1 求由直线x =0,x =2,y =0与曲线y =x 2+1所围成的曲边梯形的面积.⎣⎢⎡⎦⎥⎤参考公式12+22+…+n 2=16n (n +1)(2n +1)考点 求曲边梯形的面积问题 题点 求曲线梯形的面积问题 解 令f (x )=x 2+1. (1)分割将区间[0,2]n 等分,分点依次为x 0=0,x 1=2n ,x 2=4n,…,x n -1=2(n -1)n,x n =2.第i 个区间为⎣⎢⎡⎦⎥⎤2i -2n ,2i n (i =1,2,…,n ),每个区间长度为Δx =2i n -2i -2n =2n .(2)近似代替、求和取ξi =2in(i =1,2,…,n ),S n =∑i =1nf ⎝ ⎛⎭⎪⎫2i n ·Δx =∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2i n 2+1·2n =8n 3∑i =1ni 2+2=8n3(12+22+…+n 2)+2=8n 3·n (n +1)(2n +1)6+2 =43⎝ ⎛⎭⎪⎫2+3n +1n 2+2.(3)取极限S =lim n →∞S n =lim n →∞ ⎣⎢⎡⎦⎥⎤43⎝ ⎛⎭⎪⎫2+3n +1n 2+2=143,即所求曲边梯形的面积为143.反思与感悟 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用一些常见的求和公式,如 1+2+3+…+n =n (n +1)2,12+22+32+…+n 2=n (n +1)(2n +1)6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22.跟踪训练1 求由直线x =0,x =1,y =0和曲线y =x 2所围成的图形的面积. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 解 (1)分割将区间[0,1]等分为n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,⎣⎢⎡⎦⎥⎤2n ,3n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,其中i =1,2,…,n ,每个小区间的长度为 Δx =i n -i -1n =1n.过各分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)近似代替 在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,以i -1n 处的函数值⎝ ⎛⎭⎪⎫i -1n 2为高,小区间的长度Δx =1n 为底边的小矩形的面积作为第i 个小曲边梯形的面积,即ΔS i ≈⎝⎛⎭⎪⎫i -1n 2·1n.(3)求和∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫i -1n 2·1n =0·1n +⎝ ⎛⎭⎪⎫1n 2·1n +⎝ ⎛⎭⎪⎫2n 2·1n +…+⎝ ⎛⎭⎪⎫n -1n 2·1n =1n 3[12+22+…+(n -1)2]=13-12n +16n 2. (4)取极限曲边梯形的面积S =lim n →∞ ⎝ ⎛⎭⎪⎫13-12n +16n 2=13.类型二 求变速运动的路程例2 当汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程s =vt .如果汽车做变速直线运动,在时刻t 的速度为v (t )=t 2+2(单位:km/h),那么它在1≤t ≤2(单位:h)这段时间行驶的路程是多少? 考点 变速运动的路程问题 题点 变速运动的路程问题解 将区间[1,2]等分成n 个小区间, 第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i -1n ·1n. s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i -1n 1n =1n ∑n i =1 ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i -1n 2+2 =1n ∑ni =1 ⎣⎢⎡⎦⎥⎤(i -1)2n 2+2(i -1)n +3 =1n ⎩⎨⎧ 3n +1n2[02+12+22+…+(n -1)2]+⎭⎬⎫1n[0+2+4+6+…+2(n -1)]=3+(n -1)(2n -1)6n 2+n -1n. s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤3+(n -1)(2n -1)6n 2+n -1n =133. 所以这段时间行驶的路程为133km. 引申探究本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶路程,比较两次求出的结果是否一样?解 将区间[1,2]等分成n 个小区间,第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i n ·1n.s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i n 1n=3+1n 3[12+22+…+(n -1)2+n 2]+1n2[2+4+6+…+2(n -1)+2n ]=3+(n +1)(2n +1)6n 2+n +1n. s =lim n →∞ s n =lim n →∞⎣⎢⎡⎦⎥⎤3+(n +1)(2n +1)6n 2+(n +1)n =133. 所以这段时间行驶的路程为133km. 所以分别用小区间的两个端点求出的行驶路程是相同的.反思与感悟 求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.跟踪训练2 一辆汽车在直线形公路上做变速行驶,汽车在时刻t 的速度为v (t )=-t 2+5(单位:km/h),试计算这辆汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km). 考点 变速运动的路程问题 题点 变速运动的路程问题解 (1)分割:在区间[0,2]上等间隔插入n -1个点,将区间分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),Δt =2n .则汽车在时间段⎣⎢⎡⎦⎥⎤0,2n ,⎣⎢⎡⎦⎥⎤2n ,4n ,⎣⎢⎡⎦⎥⎤2(n -1)n ,2n n 上行驶的路程分别记为:Δs 1,Δs 2,…,Δs i ,…,Δs n ,有s n =∑i =1nΔs i .(2)近似代替:取ξi =2in(i =1,2,…,n ),Δs i ≈v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2i n2+5·2n=-4i 2n 2·2n+10n(i =1,2,…,n ).(3)求和:s n =∑i =1nΔs i =∑i =1n⎝⎛⎭⎪⎫-4i 2n 2·2n +10n=-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10.(4)取极限:s =lim n →∞s n =lim n →∞ ⎣⎢⎡⎦⎥⎤-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10=223.1.把区间[1,3] n 等分,所得n 个小区间的长度均为( ) A.1n B.2n C.3n D.12n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 区间[1,3]的长度为2,故n 等分后,每个小区间的长度均为2n.2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C3.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12 C .1 D.32 考点 变速运动的路程问题 题点 变速运动的路程问题 答案 B4.∑i =1ni n=________.考点 求曲边梯形的面积问题 题点 求和符号的表示答案n +12解析∑i =1ni n =1n (1+2+…+n )=1n ·n (n +1)2=n +12. 5.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是________. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 1.02解析 将区间5等分所得的小区间为⎣⎢⎡⎦⎥⎤1,65,⎣⎢⎡⎦⎥⎤65,75,⎣⎢⎡⎦⎥⎤75,85,⎣⎢⎡⎦⎥⎤85,95,⎣⎢⎡⎦⎥⎤95,2, 于是所求平面图形的面积近似等于110⎝ ⎛⎭⎪⎫1+3625+4925+6425+8125=110×25525=1.02.求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n 等分区间[a ,b ]; (2)近似代替:取点ξi ∈[x i -1,x i ];(3)求和:∑i =1nf (ξi )·b -an; (4)取极限:s =lim n →∞∑i =1nf (ξi )·b -an. “近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).一、选择题1.和式∑i =15(x i +1)可表示为( )A .(x 1+1)+(x 5+1)B .x 1+x 2+x 3+x 4+x 5+1C .x 1+x 2+x 3+x 4+x 5+5D .(x 1+1)(x 2+1)…(x 5+1) 考点 求曲边梯形的面积问题 题点 求和符号的表示 答案 C解析∑i =15(x i +1)=(x 1+1)+(x 2+1)+(x 3+1)+(x 4+1)+(x 5+1)=x 1+x 2+x 3+x 4+x 5+5.2.在求由x =a ,x =b (a <b ),y =f (x ) (f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入(n -1)个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定. A .1 B .2 C .3D .4考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S . ∴①正确,②③④错误.3.在求由直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间[0,2]等分成n 个小区间,则第i 个小区间是( ) A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n D.⎣⎢⎡⎦⎥⎤2i n,2(i +1)n考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 将区间[0,2]等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n .4.在求由曲线y =1x与直线x =1,x =3,y =0所围成图形的面积时,若将区间n 等分,并用每个区间的右端点的函数值近似代替每个小曲边梯形的高,则第i 个小曲边梯形的面积ΔS i 约等于( ) A.2n +2i B.2n +2i -2C.2n (n +2i )D.1n +2i考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 每个小区间的长度为2n,第i 个小曲边梯形的高为11+2i n, ∴第i 个小曲边梯形的面积为2n ×11+2i n=2n +2i .5.在等分区间的情况下f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是( )A.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·2n B.lim n →∞ ∑n i =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n C.lim n →∞ ∑ni =1⎝ ⎛⎭⎪⎫11+i 2·1nD.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 ∵Δx =2-0n =2n,∴和式为∑ni =1⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n .故选B.6.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( ) A.130 B.125 C.127D.19考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 D解析 将区间[0,1]三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为S =03×13+⎝ ⎛⎭⎪⎫133×13+⎝ ⎛⎭⎪⎫233×13=19. 7.设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf(ξi )Δx (其中Δx 为小区间的长度),那么S n 的大小( ) A .与f (x )和区间[a ,b ]有关,与分点的个数n 和ξi 的取法无关 B .与f (x )和区间[a ,b ]的分点的个数n 有关,与ξi 的取法无关 C .与f (x )和区间[a ,b ]的分点的个数n ,ξi 的取法都有关 D .与f (x )和区间[a ,b ]的ξi 的取法有关,与分点的个数n 无关 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf (ξi )·Δx .若对和式求极限,则可以得到函数y =f (x )的图象与直线x =a ,x =b ,y =0围成的区域的面积,在求极限之前,和式的大小与函数式、分点的个数和变量的取法都有关.8.lim n →∞∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 的含义可以是( )A .求由直线x =1,x =5,y =0,y =3x 围成的图形的面积B .求由直线x =0,x =1,y =0,y =15x 围成的图形的面积C .求由直线x =0,x =5,y =0,y =3x 围成的图形的面积D .求由直线x =0,x =5,y =0及曲线y =5x围成的图形的面积 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 C解析 将区间[0,5]n 等分,则每一区间的长度为5n ,各区间右端点对应函数值为y =15i n, 因此∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 可以表示由直线x =0,x =5,y =0和y =3x 围成的图形的面积的近似值.9.若直线y =2x +1与直线x =0,x =m ,y =0围成图形的面积为6,则正数m 等于( )A .1B .3C .2D .4 考点 求曲边梯形的面积问题题点 由曲边梯形的面积求参数答案 C解析 将区间[0,m ]n 等分,每个区间长为m n ,区间左端点函数值y =2·mi n +1=2mi +n n, 作和S n =∑i =1n ⎝⎛⎭⎪⎫2mi +n n ·m n=m +m n ·2m n(1+2+3+…+n ) =m +2m 2n 2·n (n +1)2 =m +m 2(n +1)n, ∵S =lim n →∞ ⎣⎢⎡⎦⎥⎤m +m 2(n +1)n =6, ∴m =2.故选C.二、填空题10.在区间[0,8]上插入9个等分点后,则所分的小区间长度为________,第5个小区间是________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 45 ⎣⎢⎡⎦⎥⎤165,4 解析 在区间[0,8]上插入9个等分点后,把区间[0,8]10等分,每个小区间的长度为810=45,第5个小区间为⎣⎢⎡⎦⎥⎤165,4. 11.已知某物体运动的速度v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.考点 变速运动的路程问题题点 变速运动的路程问题答案 55解析 ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.12.当n 很大时,下列可以代替函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值有________个. ①f ⎝ ⎛⎭⎪⎫1n ;②f ⎝ ⎛⎭⎪⎫i n ;③f ⎝ ⎛⎭⎪⎫i -1n ;④f ⎝ ⎛⎭⎪⎫i n -12n . 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 3解析 因为当n 很大时,区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的任意的取值都可以代替,又因为1n ∉⎣⎢⎡⎦⎥⎤i -1n ,i n ,i -1n ∈⎣⎢⎡⎦⎥⎤i -1n,i n ,i n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,i n -12n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,故能代替的有②③④. 三、解答题13.求由直线x =0,x =1,y =0和曲线y =x 2+2x 围成的图形的面积.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题解 将区间[0,1]n 等分,每个区间长度为1n ,区间右端点函数值y =⎝ ⎛⎭⎪⎫i n 2+2·i n =i 2n 2+2i n. 作和S n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 2+2i n 1n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 3+2i n 2 =1n 3∑i =1n i 2+2n 2∑i =1n i =1n 3·16n (n +1)(2n +1)+2n 2·n (n +1)2=(n +1)(2n +1)6n 2+n +1n =8n 2+9n +16n 2,∴所求面积S =lim n →∞ 8n 2+9n +16n 2 =lim n →∞ ⎝ ⎛⎭⎪⎫43+32n +16n 2=43. 四、探究与拓展14.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n ,则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 43解析 由于y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n, 则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,π3上的面积为23. 而y =sin 3x 的周期为2π3, 所以y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为23×2=43. 15.有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?考点 变速运动的路程问题题点 变速运动的路程问题解 (1)分割在时间区间[0,2]上等间隔地插入n -1个分点,将它分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),其长度为Δt =2i n -2(i -1)n =2n .每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ),用小矩形的面积Δs ′i 近似地代替Δs i ,于是 Δs i ≈Δs ′i =v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n 3+4n (i =1,2,…,n ).(3)求和s n =∑i =1n Δs ′i =∑i =1n ⎝ ⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4=24n 3·n (n +1)(2n +1)6+4=8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4.(4)取极限s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12. 所以这段时间内行驶的路程为12 km.。

人教版高中数学选修2-2学案:第一章1.51.5.1-1.5.2曲边梯形的面积汽车行驶的路程

人教版高中数学选修2-2学案:第一章1.51.5.1-1.5.2曲边梯形的面积汽车行驶的路程

1.曲边梯形的面积汽车行驶的行程预习课本P38~ 44,思虑并达成以下问题(1)连续函数与曲边梯形的观点分别是什么?(2)曲边梯形的面积和汽车行驶行程的求解步骤是什么?[新知初探 ]1.连续函数假如函数y= f (x)在某个区间I 上的图象是一条连续不停的曲线,那么就把它称为区间I 上的连续函数.2.曲边梯形的面积(1)曲边梯形:由直线 x= a, x=b( a≠b), y= 0 和曲线 y= f (x)所围成的图形称为曲边梯形 (如图① ).(2)求曲边梯形面积的方法与步骤:①切割:把区间[a,b]分红很多小区间,从而把曲边梯形拆分为一些小曲边梯形(如图②);②近似取代:对每个小曲边梯形“以直代曲”,即用矩形的面积近似取代小曲边梯形的面积,获得每个小曲边梯形面积的近似值(如图② );③乞降:把以近似取代获得的每个小曲边梯形面积的近似值乞降;④取极限:当小曲边梯形的个数趋势无量时,各小曲边梯形的面积之和趋势一个定值,即为曲边梯形的面积.3.求变速直线运动的位移(行程 )假如物体作变速直线运动,速度函数为v= v(t),那么也能够采纳切割、近似取代、求和、取极限的方法,求出它在 a ≤t ≤b 内所作的位移 s.[点睛 ] 当 n →+ ∞ ,所得梯形的面 不是近似 ,而是真 .[小 身手 ]1.判断 (正确的打 “√”, 的打 “×”)(1) 求汽 行 的行程 ,切割的区 表示汽 行 的行程. () (2) 当 n 很大 ,函数2i - 1 i上的 ,只好用i2近似取代. ()f(x)= x 在区 , n nn4(3) m i = i 2, m i = 30.()i =1答案:(1) × (2) × (3) √2.将区 [1,3] 行 10 平分需插入 ________个分点,第三个区 是________.答案: 9 [1.4,1.6]3.做直 运 的物体的速度v = 2t(m/s), 物体在前 3 s 行家 的行程 ________ m.答案: 9求曲 梯形的面[典例 ] 求直 x = 0,x = 2,y = 0 与曲 y = x 2+1 所 成的曲 梯形的面[参照公式12+ 22+⋯ + n 2=16n(n + 1)(2n + 1)].[解 ] 令 f (x)= x 2+ 1.(1) 切割:将区 [0,2]n 平分,分点挨次x 0= 0, x 1= 2, x 2= 4, ⋯ , x n - 1=n - , x n = 2.nn n第 i 个区 2i - 2 2in,n (i = 1,2, ⋯ , n),每个区 度x =2i -2i - 2= 2.nnn(2) 近似取代、乞降:取 = 2iξi n (i = 1,2, ⋯ ,n),S n = n f 2i ·Δx = n 2i 2 2n n + 1 ·i = 1 i = 1n8ni 28222= 3+ 2=3 (1 + 2 + ⋯ + n )+ 2 nni = 18 n n +n ++ 2= 4 3 + 1= 3 ·+ 2 + 2. n 6 n n3= 4 3 1(3) 取极限: =S n 2+ + 2 + 2S3 n n1414 = 3,即所求曲 梯形的面 3.求曲 梯形面(1) 思想:以直代曲.(2) 步 :切割 →近似取代 → 乞降 → 取极限. (3) 关 :近似取代.(4) 果:切割越 ,面 越精准.[活学活用 ]求由直x = 1, x = 2, y = 0 及曲 y = x 3 所 成的 形的面 .33312提示: 1 +2 + ⋯ + n = 2nn +解: ①切割.n + 1 n + 2 n + n -,把区 [1,2]平分如 所示,用分点n,n , ⋯ ,n成 n 个小区1, n +1 , n + 1, n + 2 ,nnn⋯ ,n + i -1, n + i , ⋯ ,nnn +n - , 2 ,每个小区 的 度x = n + i - n + i - 1=1 (i = 1,2,3,⋯ , n).nnnn各分点作 x 的垂 ,把曲 梯形 ABCD 切割成 n 个小曲 梯形, 它 的面 分 作 S 1,S 2, ⋯ , S n.②近似取代.31各小区 的左端点ξi ,取以点 ξi 的 坐 ξi 一 , 以小区x = n 其 的小矩形面 , 近似取代小曲 梯形面 .3第 i 个小曲 梯形面 , 能够近似地表示 S i ≈ξi ·Δx=n + i - 1 3·1(i = 1,2,3, ⋯ ,n).n n③乞降.因 每一个小矩形的面 都能够作 相 的小曲 梯形面 的近似 ,所以n 个小矩形面 的和就是曲 梯形ABCD 面 S 的近似 ,nnn + i -1 3 1即 S =S i ≈n · .i =1i =1n④取极限.当分点数量越多, 即x 越小 ,和式的 就越靠近曲 梯形ABCD 的面 S.所以 n →∞,即 x → 0 ,和式的极限,就是所求的曲 梯形ABCD 的面 .nn + i - 1 3 1因n·i =1n1 n(n + i - 1) 3= 4n i = 1= 14 n [(n - 1)3+ 3(n - 1)2i + 3(n - 1)i 2+ i 3] n i = 113- 1)2nn + - 1) n12 2= 4[n(n - 1) + 3(n·+ 3(n··(n + 1)·(2n + 1)+ n (n + 1)],n26 4所以 S =nn + i -1 3 1n·i = 1n31 15= 1+2+1+4= 4 .求 速运 的行程6[典例 ] 一 汽 作 速直 运 , 汽 在t 的速度 v(t)= t 2 ,求汽 在 t = 1到 t= 2 段 内运 的行程 s.[解 ] (1)切割:把区 [1,2]平分红 n 个小区n + i - 1 , n + i (i = 1,2,⋯ ,n),每个区n n 的 度t = 1,每个 段行 的行程s i (i = 1,2, ⋯ , n).nn故行程和 s n = s i .i = 1n + i -1(2) 近似取代: ξi =n(i = 1,2, ⋯ , n),+ - 1n21 n i·Δt = 6·s i ≈v·nn + i - 1n=6n2n + i -≈n + i -6nn + i (i = 1,2,3, ⋯ , n).(3) 乞降: s n =n6nn + i -n + ii = 11 - 1 + 1 - 1 + ⋯ + 1 - 1 = 6n n n + + + - 2n1 n 1 n2 2n 11 1= 6n n-2n .(4) 取极限: s = li n →∞m s n = li n →∞m 6n 1- 1=3. n 2n求 速直 运 行程的方法求 速直 运 行程的 ,方法和步 似于求曲 梯形的面 ,用“以直代曲 ”“逼近 ”的思想求解.求解 程 :切割、近似取代、乞降、取极限. 特 注意 速直 运的 区 .[活学活用 ]已知一 点的运 速度 v(t)= 6t 2+ 4( 位: m/s),求 点开始运 后5 s 内通 的路程.解: (1)切割在 区[0,5] 上等 隔地插入n - 1 个点,将区 平分红n 个小区, 5,0 n5, 10,⋯,i - ,5i, ⋯ ,5n - 5, 5 ,n nnnn 此中,第 i(1≤i ≤n)个小区i -, 5i,nn其区 度5i - i - = 5,nnn每个小 段内的行程s 1, s 2, ⋯ , s n .(2) 近似取代依据 意可得第i(1 ≤i ≤n)个小 段内的行程i - 25i -220+ .s i = 6+ 4 ·=3n nnn(3) 乞降每个小 段内的行程之和ni -220S n =+ 3i =1nn=750[02+ 12+ 22+ ⋯+ (n - 1)2]+ 203n750 1= 3 ·(n - 1)n(2n - 1)+ 20 n 61252= n 2 (2n - 3n + 1)+ 20.(4) 取极限当 n →∞ , S n 的极限 就是所求 点运 的行程,→∞ =n →∞ 1252+20 =,= li 2n- 3n +lim270sm Sn即 点运 的行程270 m.一 学 水平达51.和式(x i + 1)可表示 ()i =1A . (x 1+ 1)+ (x 5+ 1)B . x 1+ x 2+ x 3+x 4+ x 5+ 1C . x 1 + x 2 +x 3+ x 4+ x 5+ 5D . (x 1+ 1)(x 2+ 1) ⋯(x 5+ 1)5分析: C(x i + 1)= (x 1+ 1)+ (x 2+1)+ (x 3+ 1)+ (x 4+ 1)+ (x 5+ 1)= x 1+ x 2+ x 3+ x 4i =1+ x 5+ 5.2.在求由 x = a ,x = b(a<b),y = f(x)( f(x) ≥ 0)及 y = 0 成的曲 梯形的面S ,在区[a , b]上等 隔地插入 n - 1 个分点,分 些分点作 x 的垂 ,把曲 梯形分红n个小曲 梯形,以下 法中正确的个数是()① n 个小曲 梯形的面 和等于 S ;② n 个小曲 梯形的面 和小于 S ;③ n 个小曲 梯形的面 和大于 S ;④ n 个小曲 梯形的面 和与 S 之 的大小关系没法确立A .1个B .2 个C .3个D .4 个分析:An 个小曲 梯形是所 曲 梯形等距离切割获得的,所以其面 和S.∴①正确,②③④ ,故A.3.在 “近似取代 ”中,函数 f( x)在区 [x i , x i + 1] 上的近似 等于 () A .只好是左端点的函数 f(x i )B .只好是右端点的函数 f(x i +1 )C .能够是 区 内任一点的函数 ∈ [x , x +1])f(ξi )( ξi i iD .以上答案均不正确分析:选C 由求曲边梯形面积的 “近似取代 ”知, C 正确,故应选 C.4.在求由函数 1与直线 x = 1,x = 2,y = 0 所围成的平面图形的面积时,把区间 [1,2]y = x平分红 n 个小区间,则第 i 个小区间为 ()A. i - 1, iB. n + i - 1, n + in nn nC . [i - 1, i]i ,i + 1D. nn分析:选B把区间 [1,2]平分红 n 个小区间后,每个小区间的长度为1,且第 i 个小区n间的左端点不小于1,清除 A 、D ; C 明显错误;应选 B.5.函数 f(x)= x 2在区间 i - 1 , i 上 ( )n nA . f(x)的值变化很小B . f(x)的值变化很大C . f(x)的值不变化D .当 n 很大时, f(x)的值变化很小分析:选D当 n 很大时,区间i - 1, i 的长度 1 愈来愈小, f(x)的值变化很小,应选n n nD.6.求由抛物线 f(x)= x 2,直线 x = 0, x = 1 以及 x 轴所围成的平面图形的面积时,若将区间[0,1] 5 平分,如下图,以小区间中点的纵坐标为高,则全部矩形的面积之和为__________ .分析: S =15×1 2 3 2527292= 0.33. 10 + 10 + 10 + 10 + 10答案: 0.337.由直线 x = 0,x = 1,y = 0 和曲线 y = x 2+ 2x 围成的图形的面积为 ________________.分析:将区间 [0,1]n 平分,每个区间长度为1,区间右端点函数值 y =i 2i i 2 2in + 2·=2nnn + n .作 和 S n = ni22i 1= ni22i= 1 n2 2n1 11) +22+n n3+n 23i +2i =3 × n(n + 1)(2n +2i =1n i =1nn i = 1ni =1n 6nn n + =n +n +n +1=8n 2 + 9n + 1×26n 2 + n 6n 2 ,∴所求面积 S =8n 2 + 9n + 1 4 3 1 46n 2= 3+ 2n +6n 2 = 3.答案:438.汽 以 v = (3t + 2)m/s 做 速直 运 ,在第 1 s 到第 2 s 的行程是 ________.分析: 将 [1,2]n 平分,并取每个小区 的左端点的速度近似取代,t = 1,nv(ξi )= v + i - 1 = 3 1 + i - 1 + 2= 3 (i - 1) + 5.1 n n nn31所以 s n =i - 1n+ 5 ·i = 1n=3 [0+1+2+⋯ +n - 1 ]+ 5n 1n ·n 3 n n -1 3 1 = n2· 2+ 5= 2 1- n + 5,所以 s = s n =3+ 5= 6.5 (m) .2 答案: 6.5 m9. 求由抛物 y = x 2 与直 y = 4 所 成的 形的面 .解:如 ,∵ y = x 2 偶函数, 象对于 y称,∴所求 形的面y = x 2(x ≥0)与直x = 0, y = 4 所 成的 形面S 暗影的 2 倍,下边求 S 暗影.y = x 2,由 y = 4, 得交点 (2,4) .x ≥0,先求由直x = 0, x = 2, y = 0 和曲 y = x 2 成的 形的面 .(1) 切割将区 [0,2]n 平分,x =2,取 ξ=i - (i = 1,2, ⋯ , n).nin(2) 近似取代、乞降ni -22S n =n·i = 1n822222 = 3[0+ 1 + 2 + 3 + ⋯ + (n - 1)]n=81 13 1- n 1- 2n (3) 取极限8 1 1 8S =31-n 1- 2n = 3.∴ S 暗影= 2×4- 8 16 323=3 .∴2S暗影= 3 .即抛物 y = x 2 与直 y = 4 所 成的 形的面323.10.汽 做 速直 运 ,在 刻 t 的速度 ( 位:km/h)v(t)= t 2+ 2,那么它在 1≤t ≤2(位: h) 段 行 的行程 多少?解: 将区 [1,2] 平分红 n 个小区 ,第i 个小区1+ i - 1, 1+ i (i = 1,2, ⋯, n).n n 第 i 个 区 的行程的近似1= v 1+ i - 1 1Δξ≈Δξ′=v(t)nnn= 3+i -i - 2+,n 2n 3nnn3+ i -i -2于是 s n =Δξi ′=+n 2n 3i =1i =1n3 2·[0+ 1+ 2+ ⋯ + (n - 1)]+122 22= n ·+2 n3 [0 +1 + 2 + ⋯ + (n - 1)]nn2· n - n+ 1 n -nn -=3+ 223·6nn= 3+ 1- 1n + 13 1- 1n 1- 2n 1.11 1 1 13所以 s =s n =3+ 1-n + 3 1-n 1- 2n = 3.13故 段 行 的行程3km.二能力达1. 函数 f(x)在区 [a ,b]上 , 用分点 a = x 0< x 1< ⋯ < x i - 1< x i < ⋯ < x n = b ,把区[a , b]平分红 n 个小区 ,在每个小区 [x i - 1, x i ]上任取一点 ξi (i =1,2, ⋯ , n),作和式nS n =f(ξi ) x(此中 x 小区 的 度 ),那么 S n 的大小 ()i = 1A .与 f(x)和区 [a , b]相关,与分点的个数 n 和 ξi 的取法没关B .与 f(x)和区 [a ,b]的分点的个数 n 相关,与 ξi 的取法没关C .与 f(x)和区 [a , b]的分点的个数n , ξi 的取法都相关D .与 f(x)和区 [a , b]的 ξi 的取法相关,与分点的个数 n 没关分析:C用分点 a = x 0< x 1< ⋯< x i - 1< x i < ⋯ <x n = b 把区 [a , b]平分红 n 个小区 ,在每个小区[x i -1, x i ]上任取一点 ξi (i = 1,2, ⋯, n),作和式 S n =nf (ξi ) ·Δx.若 和i =1式求极限, 能够获得函数 y = f(x)的 象与直 x = a ,x = b ,y = 0 成的地区的面 ,在求极限以前,和式的大小与函数式、分点的个数和 量的取法都相关.2. 于由直 x = 1,y =0 和曲 y = x 3 所 成的曲 三角形,把区3 平分, 曲三角形面 的近似(取每个区 的左端点)是 ( )11 A. 9B.251 1C. 27D.30分析: A将区 [0,1]三平分 0, 1 ,1,2,2, 1 ,各小矩形的面 和s 1=33 333 1 1 3 12 3 1 10 ·+3·+3·= .333 9n15i 5 的含 能够是 ()3. li n →∞ mi =1n ·nA .求由直 x = 1, x = 5, y = 0, y = 3x 成的 形的面B .求由直 x = 0, x = 1, y =0, y = 15x 成的 形的面C .求由直 x = 0, x = 5, y = 0, y = 3x 成的 形的面D .求由直5成的 形的面x = 0, x = 5, y = 0 及曲 y = x分析:C将区 [0,5]n 平分, 每一区 的 度5,各区 右端点 函数n15i y = n ,所以 的近似 .ni =115i 5n ·n能够表示由直x = 0, x = 5, y = 0 和 y = 3x 成的 形的面4.若做 速直 运 的物体 v(t)= t 2,在 0≤t ≤a 内 的行程9, a 的 ()A . 1B . 2C . 3D . 4分析:C 将区 [0, a]分 等 的 n 个小区 ,第i - 1iai 个区(i =n a ,naia 2n,s n=i = 11,2,⋯ ,n),取每个小区 的右端点的速度近似取代,t =n ,所以 v(t i )= nia 2 a 33a 22 a n n +n·= 3 (1+ 2+ ⋯+ n ) =n na311 a 361+n 2+ n = 3 = 9,得 a = 3.故n +3 1 16n 3 =a1+ 2+ ,于是 s = s n =6 n nC.5.已知某物体运 的速度 v = t ,t ∈ [0,10],若把区10 平分,取每个小区 右端点的函数 近似小矩形的高, 物体运 的行程近似________.分析: ∵把区 [0,10]10 平分后,每个小区 右端点 的函数n(n = 1,2.⋯ , 10),每个小区 的 度1.∴物体运 的行程近似S = 1×(1+ 2+ ⋯ + 10)= 55.答案: 556.如 ,曲C : y = 2x (0 ≤x ≤ 2)两头分M , N ,且 NA ⊥ x于点 A ,把 段 OA 分红 n 等份,以每一段 作矩形,使其与x平行的 的一个端点在曲C 上,另一端点在曲C 的下方,n个矩形的面 之和S n ,[(2n - 3)(n4- 1)S n ]= __________.分析: 依 意可知从原点开始,矩形的高成等比数列,首1,公比 22, S n = 2n n1- 22n- 32 + 2 4+ ⋯ + 22n - 22n = 2n →∞n+ = · · 所以 --n =(12nnn)n2n1-n.lim [(2n3)( 41)S ]1- 2n4n -n 4-2- 3n ·= 12.1- n4答案: 127.汽 行 的速度 v = t 2,求汽 在 0≤t ≤1 段 行家 的行程s.解: (1)切割将区 [0,1]平分 n 个小区0,1, 1, 2 , ⋯ ,i - 1, i, ⋯ ,n - 1, 1 ,n n nnnn每个小区 的 度t =i- i - 1= 1.nnn(2) 近似取代- 1 i i - 1-1-i的速度 v ii 1在区 n , n (i = 1,2,⋯ ,n)上,汽 近似地看作以 刻n n =n2 作匀速行 ,i - 1 2 1在此区 上汽 行 的行程·.nn(3) 乞降在全部小区 上,汽 行 的行程和s n = 0 2 1+12 12 2 1 + ⋯ + n - 1 2 1 = 1 [12 2 + ⋯ + (n - 1) 2] = 1 ×n × + n × n × n 3 + 2 3nnn nn n -nn -=111- 1×631-n 2n.(4) 取极限s =s n =11 1 1汽 行 的行程3 1- n 1- 2n = 3.8. 簧在拉伸的 程中,力与伸 量成正比,即力F (x)= kx(k 常数, x 是伸 量 ),求将 簧从均衡地点拉b 所做的功.解: 将物体用常力 F 沿力的方向拖 距离x , 所做的功 W = F ·x.(1) 切割在区 [0, b]上等 隔地插入n - 1 个点,将区 [0, b]平分红 n 个小区 :bb 2bn -b 0, n , n , n ⋯ , n, b 第 i 个区i -b·n ,i b= 1,2, ⋯ , n),n (i 其 度·i -bx =i b-= b.n n n把在分段 0, b , b , 2b,⋯ ,n -b, b 上所做的功分 作:W 1, W 2,⋯ ,n n nnW n .(2) 近似取代取各小区 的左端点函数 作 小矩形的高,由条件知:W ≈i -b ·Δi Fxni -b b= k ·n·(i = 1,2, ⋯, n).n(3) 乞降nni - b bW n =W i ≈ k ·n ·i =1i =1nkb 2= n 2 [0+ 1+ 2+⋯ + (n - 1)]kb 2 n n -kb 2 1=n 2 ×2=2 1-n .W 的近似 W ≈W n = kb21从而获得 2 1-n .(4) 取极限n22 kb1kbW=W n=i= 1W i=21-n= 2.所以将弹簧从均衡地点拉长 b 所做的功为kb22.。

1.5.2汽车行驶的路程

1.5.2汽车行驶的路程

思考
考 结 求 边 形 积 过 , 认 思 : 合 曲 梯 面 的 程 你 为 车 驶 路 S 与 直 t =0, t =1,v =0 汽 行 的 程 由 线 和 线v =−t2 +2所 成 曲 梯 的 积 什 曲 围 的 边 形 面 有 么 系 关 ?
结合上述求解过程可知, 结合上述求解过程可知 ,汽车行驶的路程 S = limSn 在数据上等于 由直线 t =0, t =1,v =0 在数据上等于由直线
2
作业
课本: 课本:P 50 练习:1,2. 练习: ,
分析:与求曲边梯形面积类似,采取“ 分析:与求曲边梯形面积类似,采取“以不变代 变”的方法,把求匀变速直线运动的路程问题,化归 的方法,把求匀变速直线运动的路程问题,
] 为匀速直线运动的路程问题. 为匀速直线运动的路程问题.把区间 [0,1 分成 n个小
区间,在每个小区间上, 的变化很小, 区间,在每个小区间上,由于 v(t) 的变化很小,可以 近似的看作汽车作于速直线运动,从而求得汽车在每 近似的看作汽车作于速直线运动, 个小区间上行驶路程的近似值, 单位: 个小区间上行驶路程的近似值,在求和得 S (单位: km)的近似值, km)的近似值,最后让 n趋紧于无穷大就得到 S (单 km)的精确值. 思想: 位: km)的精确值. 思想: 用化归为各个小区间上 ( 匀速直线运动路程和无限逼近的思想方法求出匀变 速直线运动的路程) . 速直线运动的路程)
n→ ∞
所围成的曲边梯形的面积. 和曲线 v =−t2 +2所围成的曲边梯形的面积.
结论
一般地,如果物体做变速直线运动, 一般地,如果物体做变速直线运动,速度函 那么我们也可以采用分割、 数为 v = v ( t ) , 那么我们也可以采用分割、 近似代 替、求和、取极限的方法,利用“以不变代变” 求和、取极限的方法,利用“以不变代变” 的方法及无限逼近的思想,求出它在 a≤ t ≤b 内 的方法及无限逼近的思想, 所作的位移 n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章导数及其应用
1.5 定积分的概念
1.5.2 汽车行驶的路程
A级基础巩固
一、选择题1.运动物体行驶的路程s与由直线t=0,t=1和运动物体的速度v=-t2+2
表示的曲线所围成的曲边梯形的面积的关系是( )
A.相等B.不相等C.大于D.小于
解析:由直线t=0,t=1和运动物体的速度v=-t2+2表示的曲线所围成的
曲边梯形的面积就是运动物体行驶的路程s.
答案:A 2.已知某物体运动的速度为v=t,t∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高
,则物体运动的路程近似值为( )
A.45 B.55 C.60 D.65
解析:因为把区间[0,10]10等分后,每个小区间右端点处的函数值为n(n=
1,2,…,10),每个小区间的长度为1.所以物体运动的路程近似值s=1×(1+
2+…+10)=55.故选B.
答案:B 3.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一
过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )
解析:汽车刚启动时,行驶的路程较短,汽车加速行驶时,路程增加的较快,
曲线的切线斜率较大,减速行驶时,路程增加的速度较慢,曲线的切线斜率较
小.故选A.
答案:A 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v甲和v乙(如图所示).那么对于图中给定的t0和t1
,下列判断中一定正确的是( )
A.在t1时刻,甲车在乙车前面
B.t1时刻后,甲车在乙车后面
C.在t0时刻,两车的位置相同
D.t0时刻后,乙车在甲车前面
解析:由题图可知,曲线v甲比v乙在0~t0、0~t1与x轴所围成图形面积大,
则在t0、t1时刻,甲车均在乙车前面.
答案:A 5.汽车以10米/秒的速度行驶,在某处需要减速停车,设汽车以加速度-2
米/秒2刹车,若把刹车时间5等分,则从开始刹车到停车,汽车刹车距离的过剩
估计值(取每个小区间的左端点对应的函数值)为( )
A.80米B.60米C.40米D.30米
解析:由题意知,v(t)=v0+at=10-2t.令v(t)=0,
得t=5,即t=5秒时,汽车将停车.将区间[0,5] 5等分,用每个小区间的
左端点的函数值近似替代每个小区间上的平均速度,可得汽车刹车距离的过剩近似值为s=(10+10-2×1+10-2×2+10-2×3+10-2×4)×1=30(米).
答案:D
二、填空题6.已知某物体运动的速度v=2t-1,t∈
[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高
,则物体运动的路程的近似值为________.解析:由题意知,物体运动的路程即为这10个小矩形的面积和,即s=1+
3+5+…+19=1+19
2×10=100.答案:100
7.一辆汽车在司机猛踩刹车后,5
s内停下,在这一刹车过程中,下面各速度值被记录了下来:
i
与过剩近
似值(每个ξi取小区间的左端点)分别为________m,________m.解析:不足近似值为14+9+5+2+0=30;过剩近似值为21+14+9+5+
2=51.
答案:30 51 8.已知自由落体的物体速率为v=gt(g为常数),则物体从t=0到t=4所走
的路程为________.解析:物体从t=0到t=4所走的路程就是“速率—时间”曲线与时间轴所
围成图形的面积,因为t=0时,v=0;t=4时,v=4g,所以所走路程s=1
2×4
×4g=8g.
答案:8g
三、解答题9.设力F作用在质点m上使m沿x轴正向从x=1运动到x=10,已知F=x2+
1且力的方向和x轴正向相同,求F对质点m所做的功.
解:将区间[1,10]n等分,则各小区间的长度为9
n,在⎣⎢




1+
9
n
(i-1),1+
9
n i
上取ξi=1+
9
n i.
所以F i =ξ2i +1=⎝ ⎛⎭
⎪⎫
1+9n i 2
+1,
所以W i =F i 9n =9n ⎝ ⎛
⎭⎪⎫1+9n i 2
+9n
(i =1,2,…,n ). 所以W =∑i =1
n ⎣⎢⎡⎦⎥
⎤9n (1+9n i )2+9n =∑i =1
n ⎝ ⎛⎭⎪

18n +162n2i +729n3i2 =⎣⎢⎡⎦
⎥⎤
18+162n2·n (n +1)2+729n3·
n (n +1)(2n +1)6 =18+81+243=342. 故F 对质点所做的功为342.
10.有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:k
m)是多少?
解:在时间区间[0,2]上等间隔地插入n -1个分点,将它分成n 个小区间,
记第i 个小区间为⎣⎢⎡⎦
⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),其长度为Δt =2i n -2(i -1)n =2
n
.每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),
B 级 能力提升
1.若做变速直线运动的物体v (t )=t 2,在0≤t ≤a 内经过的路程为9,则a 的
值为( )
A .1
B .2
C .3
D .4
解析:将区间[0,a ]分为等长的n 个小区间,第i 个区间记为⎣⎢⎡⎦


(i -1)a n ,ia n (i =1,2,…,n ),取每个小区间的右端点的速度近似代替,则Δt =a
n
,所以v (t i )
=⎝ ⎛⎭
⎪⎫ia n 2

s n =∑i =1n ⎝ ⎛⎭⎪⎫ia n 2·a n =a3
n3(1+22+…+n 2)=
a3n (n +1)(2n +1)6n3=a36⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫
2+1n ,
于是s =S n =
a36⎝

⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n =a33=9,
得a =3. 答案:C
2.已知某正电荷在某电场中做匀变速直线运动,在时刻t 的速度为v (t )=t 2(
单位:m/s),求它在0≤t ≤1这段时间运动的路程是________.
解析:将区间[0,1]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦
⎥⎤
i -1n ,i n ,第i 个
小区间的面积为Δs i =v ⎝ ⎛⎭⎪⎫i n ·1n =⎝ ⎛⎭⎪⎫i n 2·1
n ,所以s n =∑i =1n Δs i =∑i =1
n ⎝ ⎛⎭⎪⎫i n 2·1n =1n3
(12+
22+…+n 2)=
1n3·n (n +1)(2n +1)
6
=⎝
⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪

2+1n 6,
所以s =lim s n =lim

⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪
⎫2+1n 6=13
. 答案:
1
3
3.一质点在做直线运动时,其速度(单位:m/s)
v (t )=⎩⎨⎧2t2(0≤t≤3),18(3<t <7),
-3t +39(7≤t≤13).
(1)请根据速度函数描述质点的三种运动状态;
(2)试求这一质点在3 s 内的运动路程.
解:(1)v (t )=2t 2(0≤t ≤3),说明质点在前3 s 内做变加速直线运动;
v (t )=18(3<t <7),说明质点在第3 s ~7 s 之间做匀速直线运动;
v (t )=-3t +39(7≤t ≤13),说明质点在第7 s ~13 s 之间做匀减速直线运动.
(2)当0≤t ≤3时,对[0,3]n 等分,并以每个小区间⎣
⎢⎡⎦⎥⎤
3(i -1)n ,3i n 的左端点的速度作近似代替,则Δt =3
n

v (ξi )=2⎣⎢
⎡⎦
⎥⎤3(i -1)n 2
.
54n3[]12+22+…+(n -1)2=54n3·1
6n (n -1)(2n -1)=9⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭
⎪⎫2-1n .
所以s =s n =9⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭
⎪⎫
2-1n =18(m).。

相关文档
最新文档