数学列代数式、代数的值练习试卷及答案
七年级数学上册代数式的值配套练习及答案

3.3代数式的值(一)一、基础训练1.用__________代替代数式中的________,按照代数式中的运算关系计算,所得的结果是代数式的值.2.当x=_______时,代数式53x的值为0.3.当a=4,b=12时,代数式a2-ba的值是___________.4.小张在计算31+a的值时,误将“+”号看成“-”号,结果得12,那么31+a的值应为_____________.5.三角形的底边为a ,底边上的高为h ,则它的面积s=_______,若s=6cm2,h=5cm,则a=_______cm.二、典型例题例1 已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值.分析首先将原代数式变形成(a2+5ab)+3(3b2+2ab),然后将整体代入.例2当m=2,n=1时,(1)求代数式(m+2)2和m2+2mn+n2的值;(2)写出这两个代数式值的关系.(3)当m=5,n=-2时,上述的结论是否仍成立?(4)根据(1)(2),你能用简便方法算出:当m=0.125,n=0.875时,m2+2mn+n2的值吗?分析通过代入具体数值,得知(m+2)2=m2+2mn+n2,再运用此等式求值.三、拓展提升例小明读一本共m页的书,第一天读了该书的13,第二天读了剩下的15.(1)用代数式表示小明两天共读了多少页;(2)求当m=120时,小明两天读的页数.四、课后作业1.当a =2,b =1,c =-3时,代数式2c b a b-+的值为___________. 2.若x =4时,代数式x 2-2x +a 的值为0,则a 的值为________.3.若5a b +=,6ab =,则ab a b --=________.4.当7x =时,代数式357ax bx +-=.则当7x =时,35ax bx ++=_____.5.如果某船行驶第1千米的运费是25元,以后每增加1千米,运费增加5元.现在某人租船要行驶s 千米(s 为整数,s ≥1),所需运费表示为___________________.当s =6千米时,运费为________元.6.若代数式2a 2+3a +1的值为5,求代数式4a 2+6a +8的值.7.已知2a b a b+=-,求224()a b a b a b a b +---+的值.8.从2开始,连续的偶数相加,和的情况如下表:n .并由此计算下列各题:(1) 2+4+6+8+…+202(2) 126+128+130+…+3003.3代数式的值(一)一、基础训练1.具体数值字母2. 53. 134. 505. 12ah125二、典型例题例1a2+11a+9b2=(a2+5ab)+3(3b2+2ab)=76+3×51=229 例2 (1)99(2)相等(3)成立(4)1三、拓展提升例3(1)715m(2)56四、课后作业1.4 32.-83. 14. 175. 20+5s50元6. 167.7 3 88.S=n(n+1)(1)101×(101+1)=10302;(2)150×(150+1)-62(62+1)=18744.3.3代数式的值(二)一、基础训练1.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)-3cd的值为______.2.填表:÷2+2x( )+1( )2输出( )输入y 输入x.3.右图是一个数值转换机,写出图中的输出结果:输入2- 0 0.5 输出4.当x .5.当x y x y -+=2时,代数式x y x y -+-22x y x y+-的值是___________. 二、典型例题 例1根据右边的数值转换器,按要求填写下表. x 1- 0 1 2- y 1 12- 0 12 输出 例2 填写下表,并观察下列两个代数式的值的变化情况: n 1 2 3 4 5 6 7 8 …5n +6 …n 2 …(1)(2)估计一下,哪个代数式的值先超过100?三、拓展提升例 已知311=-y x ,求代数式yxy x y xy x ---+2232的值. 分析 变形后运用整体的思想带入,可使分子分母同除以“xy ”.四、课后作业1.当x =1,y =32,z =53时,代数式y (x -y +z )的值为_______. 2.若23250x y -+=,那么23(321)x y -+=______.2x 2 14 2x +1 9 3 12x 1163.定义a*b =ab b a+,则2*(2*2)= . 4.如图所示,某计算装置有一数据入口和计算结果出口,根据图中的程序, 计算函数值,若输入的x 值为75,则输出的结果是________.5.在下列计算程序中填写适当的数或转换步骤:6.若7:4:3::=z y x ,且182=+-z y x ,求代数式z y x -+2的值.3.3代数式的值(二)一、基础训练1.-3 y =x 2 -1≤x y =5x -2≤x ≤-1 y =-x +2 1≤x ≤2输出y 值 输入x 值2.3 1281816 17 2125443.-15 -3 0 4.45.17 5二、典型例题:例1 2 0 1 3例2 (1)6或-1 (2)n2三、拓展提升:例3 3 5四、课后作业:1.4 32.-123.3 24.3 55.略6.8。
代数式练习题及答案

代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究数和运算的关系。
代数式是代数中的基本概念之一,它由数、字母和运算符号组成。
通过解答代数式练习题,我们可以提高我们的代数运算能力,培养我们的逻辑思维和解决问题的能力。
下面我将给大家提供一些代数式练习题及答案,希望能对大家的学习有所帮助。
一、简单代数式练习题1. 计算下列代数式的值:(1) 2x + 3y,当x = 4,y = 5时;(2) 3a - 2b,当a = 7,b = 2时;(3) 5m^2 + 2mn,当m = 3,n = 2时。
答案:(1) 2x + 3y = 2 * 4 + 3 * 5 = 8 + 15 = 23;(2) 3a - 2b = 3 * 7 - 2 * 2 = 21 - 4 = 17;(3) 5m^2 + 2mn = 5 * 3^2 + 2 * 3 * 2 = 5 * 9 + 12 = 45 + 12 = 57。
2. 化简下列代数式:(1) 2x + 3x;(2) 4y - 2y;(3) 5a^2 - 3a^2。
答案:(1) 2x + 3x = 5x;(2) 4y - 2y = 2y;(3) 5a^2 - 3a^2 = 2a^2。
二、复杂代数式练习题1. 计算下列代数式的值:(1) 3(x + 2) - 2(3x - 4),当x = 2时;(2) 2(3a + 4b) - 5(2a - 3b),当a = 1,b = 2时;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn),当m = 2,n = 1时。
答案:(1) 3(x + 2) - 2(3x - 4) = 3(2 + 2) - 2(3 * 2 - 4) = 3 * 4 - 2(6 - 4) = 12 - 2(2) = 12 - 4 = 8;(2) 2(3a + 4b) - 5(2a - 3b) = 2(3 * 1 + 4 * 2) - 5(2 * 1 - 3 * 2) = 2(3 + 8) - 5(2 - 6) = 2 * 11 - 5(-4) = 22 + 20 = 42;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn) = 4(2 * 2^2 + 3 * 2 * 1) - 3(4 * 2^2 - 5 * 2 * 1) = 4(2 * 4 + 6) - 3(4 * 4 - 10) = 4(8 + 6) - 3(16 - 10) = 4 * 14 - 3 * 6 = 56 - 18 = 38。
初中数学代数式专项训练及解析答案

初中数学代数式专项训练及解析答案一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.2.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.3.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个()A.400 B.401 C.402 D.403【答案】D【解析】【分析】由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.【详解】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.4.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)【答案】A【解析】试题分析:根据排列规律可知从1开始,第N排排N个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.考点:坐标确定位置.5.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.6.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【解析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.7.下列计算正确的是( )A .2x 2•2xy =4x 3y 4B .3x 2y ﹣5xy 2=﹣2x 2yC .x ﹣1÷x ﹣2=x ﹣1D .(﹣3a ﹣2)(﹣3a +2)=9a 2﹣4【答案】D【解析】A 选项:2x 2·2xy =4x 3y ,故是错误的;B 选项:3x 2y 和5xy 2不是同类项,不可直接相加减,故是错误的;C.选项:x -1÷x -2=x ,故是错误的;D 选项:(-3a -2)(-3a +2)=9a 2-4,计算正确,故是正确的.故选D.8.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .9.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y =【答案】D【解析】【分析】 直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.10.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【答案】A【解析】【分析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.7 B.12 C.13 D.25【答案】C【解析】【分析】设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.13.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C【解析】分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.14.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .15.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.16.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为( )A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.17.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.18.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.19.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.20.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2 【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.。
七年级数学第2章代数式2.3代数式的值练习

代数式的值(30分钟50分)一、选择题(每小题4分,共12分)1。
如果a与1互为相反数,则|a+2|等于()A.2B.-2 C。
1 D。
—1【解析】选C。
如果a与1互为相反数,则a=—1,则|a+2|=|-1+2|=1。
2.(2013·济南中考)已知x2—2x—8=0,则3x2-6x-18的值为()A。
54 B。
6 C.—10 D。
—18【解析】选B。
因为x2—2x—8=0,即x2-2x=8,所以3x2—6x-18=3(x2—2x)-18=24—18=6。
3.若a=—,b=2,c,d互为倒数,则代数式2(a+b)—3cd的值为()A.2B.-1 C。
-3 D。
0【解析】选D.c,d互为倒数,所以cd=1.当a=-,b=2时,2(a+b)-3cd=2×—3×1=2×—3=3—3=0.【互动探究】如果本题中a,b的关系是互为相反数,c,d互为倒数,那么结果是多少?【解析】因为a,b互为相反数,c,d互为倒数,所以a+b=0,cd=1,所以2(a+b)-3cd=2×0—3×1=—3.二、填空题(每小题4分,共12分)4.x=—1时,下列代数式①1-x;②1-x2;③-2x;④1+x3中,值为0的是(填序号)。
【解析】因为1-x=1-(—1)=2;1—x2=1-(—1)2=0;—2x=—2×(-1)=2;1+x3=1+(-1)3=0,所以值为0的是②④.答案:②④5。
(2013·泉州中考)有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是,依次继续下去……第2013次输出的结果是.【解题指南】解答本题的三个关键(1)确定每次应代入的代数式。
(2)确定输出的结果的变化规律。
(3)根据变化规律确定输出的结果.【解析】第1次,x=7,输出12;第2次,x=12,输出6;第3次,x=6,输出3;第4次,x=3,输出8;第5次,x=8,输出4;第6次,x=4,输出2;第7次,x=2,输出1;第8次,x=1,输出6;第9次,x=6,输出3;第10次,x=3,输出8;第11次,x=8,输出4;第12次,x=4,输出2;第13次,x=2,输出1……我们可以发现,从第2个数开始,输出的数是6,3,8,4,2,1进行了循环,2013÷6=335……3,所以第2013次输出的结果是3.答案:336。
人教版初中数学代数式知识点训练附答案

人教版初中数学代数式知识点训练附答案一、选择题1.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-,23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.11.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n ,∴55×5=52n ,则56=52n ,解得:n =3.故选D .【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.13.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2222+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、2+2,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.14.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.15.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.16.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.17.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .18.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2 =(1.25×45)2012×(45)2 =1625. 故选B .【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.19.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.20.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.。
苏科版-数学-七年级上册-3.3代数式的值 同步练习(含答案)

3.3代数式的值姓名_____________班级____________学号____________分数_____________一、填空题(每空5分,共40分)1.如图所示:(1)AB 的长度为_______;(2)阴影部分的周长为______;(3)阴影部分的面积为_______;(4)当x=0.5,y=0.8时,阴影部分的周长为_______,•面积为_______. 2.当a=2,b=12时,2a b a b+-的值为______. 3.当a=-3,b=1时,│ab│-│b│-│a│=_______.4.当a=4时,比较2a+3与a 2-2中,________比较大.(填代数式) 二、解答题(每题20分,共60分)5.下图是一个数值转换机的示意图,请先写出输出结果(代数式),再完成下表:6.当x=2,y=3时,分别计算下列代数式的值,并比较这些值中,哪些是相等的?(1)(x+y )2; (2)(x -y )2; (3)x 2+2xy+y 2;(4)x 2+y 2; (5)x 2-2xy+y 2; (6)x 2-y 2.a 1 1 2 4b -1 -3 02 c-2312 0 输出7.当a=-4,-3,-2,-1,0,1,2,3,4时,分别求出1-a2的值,通过这些值,•你发现了什么?你能求出代数式1-a2的最大值吗?8.已知:m-n=3,求代数式:-(m-n)2+4(m-n)的值.9.已知:│a+5│+│b+3│=0,求代数式-a2+3ab2-2b3的值.答案:一、1.(1)3x (2)10y+10x (3)13xy (4)13 5.2分析:(1)AB=5x-x-x=3x,(2)3y×2+2y×2+5x×2=6y+4y+10x=10y+10x,(3)•面积可看成大长方形中挖去一个小长方形,∴5x·3y-2y·x=15xy-2xy=13xy.(4)当x=0.5,y=0.8时,10x+10y=0.5×10+0.8×10=5+8=13,13xy=13×0.5×0.8=5.2.点拨:此题在求周长、面积的代数式时,要适当的化简,既为合并同类项做准备,又简化运算量.2.212分析:112222121222a ba b+++==--⨯=212.点拨:将a,b值代入求值.3.-1 分析:将a,b的值代入得│ab│-│b│-│a│=│-3×1│-│1│-│-3│=3-1-3=-1.点拨:此题考查了代数式求值和绝对值的化简.4.a2-2 分析:把a=4分别代入这两个代数式中,2a+3=2×4+3=11,a2-2=16-2=14,•∵11<14,∴a2-2比较大.点拨:代数式本身是无法比较大小的,但若已知了代数式中字母的值,就可以求出代数式的值,也就可以比较代数式的值的大小了.二、5.分析:先分析数值转换机的运算步骤来写出输出结果,再根据此结果进入代入求值.解:输出结果:+(2b-3c).填表得:点拨:此题关键在于如何写出输出结果,对此一定要分析清楚数值的运算关系.6.分析:先代入求值,再比较结果.解:把x=2,y=3分别代入题中代数式中,(1)(x+y)2=(2+3)2=25;(2)(x-y)2=(2-3)2=1;(3)x2+2xy+y2=22+2×2×3+32=25;(4)x2+y2=22+32=4+9=13;(5)x2-2xy+y2=22-2×2×3+32=1;(6)x2-y2=22-32=-5,∴当x=2,y=3时,代数式(x+y)2=x2+2xy+y2,(x-y)2=x2-2xy+y2.点拨:此题在代入求值过程中,要细心运算.7.分析:先求值,再根据值探究规律.解:当a=-4时,1-a2=1-(-4)2=1-16=-15;•当a=-3时,1-a2=1-(-3)2=1-9=-8;当a=-2时,1-a2=1-(-2)2=1-4=-3;当a=-1时,1-a2=1-(-1)2=1-1=0;当a=0时,1-a2=1-02=1;当a=1时,1-a2=1-1=0;当a=2时,1-a2=1-22=-3;当a=3时,1-a2=1-32=-8;当a=4时,1-a2=1-42=-15.通过上述求值运算,发现a取互为相反数的值时,代数式1-a2的值是相等的;当a<0时,随着a增大,代数式1-a2的值增大,当a>0时,•随着a增大,代数式1-a2的值减小.比较上述结果:代数式1-a2的最大值是1.点拨:在考虑值的变化趋势时,要整体分析,此题不能单纯地说增大或减小.另外,在求最值时,先根据值的变化猜想,然后进行数值推导.8.39.106。
中考数学代数式综合测试卷(1)及答案

中考代数式综合测试卷(一)及答案一、选择题(本题共10 小题,每小题3 分,满分30分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得3分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.一个代数式减去22x y -等于222x y +,则这个代数式是( )。
A.23y -B.222x y + C.2232y x -D.23y2.下列各组代数式中,属于同类项的是( )。
A .b a 221 与221ab B .b a 2 与c a 2 C .22与43 D . p 与q 3.下列计算正确的是( )。
A.2233x x -=B.22321a a -= C.235358x x x +=D.22232a a a -=4.a = 255, b = 344, c = 433, 则 a 、b 、c 的大小关系是( )。
A . a>c>b B . b>a>c C . b>c>a D . c>b>a 解:a = 255=(25)11=3211b = 344=(34)11=8111c = 433=(23)11=8115.一个两位数,十位数字是x ,个位数字是y ,如果把它们的位置颠倒一下,得到的数是( )。
A.y x +B.yxC.10y x +D.10x y +6.若26(3)(2)x kx x x +-=+-,则k 的值为( )。
A . 2B . -2 C. 1 D. –1 7.若x 2+mx +25 是一个完全平方式,则m 的值是( )。
A .20B .10 C. ± 20 D.±108.若代数式2231y y +=,那么代数式2469y y +-的值是( )。
A.2B.17C.7- D.79.如果(2-x)2+(x -3)2=(x -2)+(3-x ),那么x 的取值范围是( )。
七年级数学代数式的值同步训练试题与答案

七年级数学代数式的值同步训练试题与答案七年级数学代数式的值同步训练试题与答案一、填空:1、设甲数为x,乙数比甲数的3倍多2,则乙数为2、设甲数为a,乙数为b,则它们的倒数和为3、能被3和4整除的自然数可表示为4、a是一个两位数,b是一位数,如果把a放在b的左边,则所在的三位数是5、一项工程甲独做需x天完成,乙独做需y天完成,甲先做2天,乙再加入做a天,这时完成的工程为6、一辆汽车从甲地出发,先以a千米/时速度走了m小时,又以b千米/时的速度走了n小时到达乙地,则汽车由甲地到乙地的平均速度为千米/时7、一件商品,每件成本a元,将成本增加25%定出价格,后因仓库积压调作,按价格的92%出售,每件还能盈利8、有一列数:1,2,3,4,5,6,…,当按顺序从第2个数数到第6个数时共数了个数;当按顺序从第m个数数到第n个数(n>m)时共数了个数。
9、某项工程,甲单独做需a天完成,乙单独做需b天完成,则(1)甲每天完成工程的(2)乙每天完成工程的(3)甲、乙合做4天完成工程的`(4)甲做3天,乙做5天完成工程的(5)甲、乙合做天,才能完成全部工程。
二、选择题:1、下列代数式中符号代数式书写要求的有()①②ab÷c2③④⑤2×(a+b)⑥ah2A、1个B、2个C、3个D、4个2、a、b两数的平方差除以a与b的差的平方的商用代数式表示为()A、B、C、D、3、矩形的周长为s,若它的长为a,则宽为()A、s-aB、s-2aC、D、4、当a=8,b=4,代数式的值是()A、62B、63C、126D、10225、若代数式2y+3y+7的值为8,则代数式4y2+6y-9的值是()A、13B、-2C、17D、-76、若a、b互为相反数,p、q互为倒数,m的绝对值为5,则代数式的值是()A、-6B、-5C、-4D、0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列代数式、求代数式的值
姓名:成绩
一、填空题:(每题2 分,共24 分)
1、一支圆珠笔a 元,5 支圆珠笔共_____元。
2、“a 的3 倍与b 的的和”用代数式表示为__________。
3、比a 的 2 倍小3 的数是_____。
4、某商品原价为a 元,打7 折后的价格为______元。
5、一个圆的半径为r,则这个圆的面积为_______。
6、当x=-2 时,代数式x2+1 的值是_______。
7、代数式x2-y 的意义是_______________。
8、一个两位数,个位上的数字是为a,十位上的数字为b,则这个两位数是_______。
9、若n 为整数,则奇数可表示为_____。
10、设某数为a,则比某数大30%的数是_____。
11、被3 除商为n 余1 的数是_____。
12、校园里刚栽下一棵1.8m 的高的小树苗,以后每年长0.3m。
则n 年后的树高是____m。
二、选择题:(每题3 分,共18分)
1、在式子x-2,2a2b,a,c=πd ,,a+1>b中,代数式有()
A、6个
B、5个
C、4个
D、3个
2、下列代数式中符合书写要求的是()
A 、B、1a C、a÷b D、a×2
3、用代数式表示“x 与y 的 2 倍的和”是()
A、2(x+y)
B、x+2y
C、2x+y
D、2x+2y
4、代数式a2-的正确解释是()
A、a 与b 的倒数的差的平方
B、a 与b 的差的平方的倒数
C、a 的平方与b 的差的倒数
D、a 的平方与b 的倒数的差
5、代数式5x+y 的值是由()确定的。
A、x 的值
B、y 的值
C、x 和y 的值
D、x 或y 的值
6、一个矩形的长是8m,宽是acm,则矩形的周长是()
A、(8+a)m
B、2 (8+a) m
C、8acm
D、8acm2
三、用代数式表示:(每题 5 分,共15 分)
1、x与y的平方的和是多少。
2、一张贺卡的价格为 2 元,元旦前,小明用
自已的零花钱买了m 张贺卡送给同学,则小明
一共花了多少钱?
3、一个长方形的周长是 30cm ,若长方形的一边长为 acm ,则该长方形的面积是多少?
四、求代数式的值:(每题 5 分,共20分)
1已知:ab a =≠-11,,求111
1+++a b
的值。
。
2、当 x =-,y =-,求 4x 2
-y 的值。
3、已知:a +b =4,ab =1,求 2a +3ab +2b 的值。
(4)若代数式22+-x x 的值为5,则2222+-x x
的值是多少?
五、(6分)如图:正方形的边长为 a 。
(1)用代数式表示阴影的面积。
(2)若 a =2cm 时,求阴影的面积(结果保留π)。
六、(8分)甲乙两人从学校出发沿同一条路去书店,甲走出
甲快 a 米/秒。
(1)试用代数式表示乙需要多少时间才能追上甲。
(2)当 a =0.8 时,求乙赶上甲所用的时间。
七、(9分)某工厂一月份的生产量是 a ,以后平均每月增长 10%,问二月份、三月份的产量各是多少?该工厂第一季度的产量呢?。