有限元网格划分

合集下载

有限元分析网格划分

有限元分析网格划分
2020/10/8
4.2.4壳单元
壳单元可以模拟平板和曲壳一类结构。壳单元比梁 单元和实体单元要复杂的多,因此,壳类单元中各种 单元的选项很多,如节点与自由度、材料、特性、退 化、协调与非协调,完全积分与减缩积分、面内刚度 选择、剪切变形、节点偏置等,应详细了解各种单元 的使用说明。
2020/10/8
2020/10/8
3.定义材料特性 定义材料特性的命令及其对应的菜单操作如下: 命令:MP、TB
GUI:Main Menu>Preprocessor>Material
Props>Material Models
4.建立梁截面 建立梁截面的命令及其对应菜单操作如下: 命令:ECTYPE、SECDATA
2020/10/8
2020/10/8
Thanks
2020/10/8
粱单元分为多种单元,分别具有不同的特性,是一 类轴向拉压、弯曲、扭转的3D单元。
2020/10/8
4.2.3二维实体单元
2D实体单元是一类平面单元,可用于平面应力、 平面应变的分析,此类单元均位于XY平面内。单元 由不同的节点组成,但每个节点的自由度均为2个(谐 结构实体单元除外),即Ux和Uy。
4.2.5三维实体单元
3D实体单元用于模拟三维实体结构,此类单元每 个节点均具有三个自由度,即Ux,Uy,Uz三个平动 自由度。
2020/10/8
目 录
4.1 网格划分的概述 4.2 单元类型 4.3 网格划分流程
4.3.1单元划分基本过程
1.选择单元类型 选择单元类型的命令及其对应的菜单操作如下: 命令:ET GUI:Main Menu>Preprocessor>Element Type>Add/Edit/Delete 用户可在单元属性数据库中选择所需的单元。 2.定义实常数组 定义实常数组的命令及其对应菜单操作如下: 命令:R GUI:Main Menu>Preprocessor>Real Constants>Add/Edit/Delete 实常数组不是必须的,其定义与否与选用的单元有关该类单 元只承受杆轴向的拉压,不承受弯矩,节点只有平动 自由度。不同的单元具有弹性、塑性、蠕变、膨胀、 大转动、大挠度(也称大变形)、大应变(也称有限 应变),应力刚化(也称几何刚度、初始应力刚度) 等功能。

第07讲-有限元网格划分的基本原则及技巧

第07讲-有限元网格划分的基本原则及技巧

7-6
网格疏密
• • 网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分 布特点。 在计算数据变化梯度较大的部位(如应力集中处、几何形状、材料、厚度变化的 位置),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数 据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整 个结构便表现出疏密不同的网格划分形式。—— 网格数量应增加在结构的关键 部位,在次要部位增加网格是不必要的,也是不经济的。 边界上最好要在8个单元以上,至少不少于4个; 分析结果完成后,需要检查以下各项,误差较大的位置要进行细分: 单元应力的连续性,比较相邻单元应力值的差值; 应力偏差:结点上的单元结点应力和结点平均应力的差值的较大值; 当以上差值与其中的最大应力的比值较大时,该位置的网格需要细分。
精度 计算时间 精确解 1 2 O
7-4


P
网格数量
网格数量(续)
在决定网格数量时应考虑分析数据的类型。 实体单元:
• •
1、在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。如 果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。 2、在响应计算中,计算应力响应所取的网格数应比计算位移响应多。 3、在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较 少的网格,如果计算的模态阶次较高,则应选择较多的网格。
左图中(a)、(b)改 变了结构质量的对称分 布,应避免。 (c)是 比较理想的结果。
(a)
7-8
(b)
(c)
单元的形状及评价
• 形状比(长边与短边距离之比) 一般实体单元的长宽比越大,分析误差也越大。 对于板壳单元,评价应力为主时不宜超过1:3,评价位移为主时不宜超过1:5; 对于块体单元,评价应力为主时不宜超过1:2,评价位移为主时不宜超过1:3; 在应力分布几乎没有变化的区域里使用的单元,适当放大也没问题。 倾角(表示单元偏离直角四边形的程度(Angular Deviation)) 四边形的内倾角最好是在45度~135度之间,不要超过15度~165度。 锥度(限于四边形) 用几何偏离(Geometric Deviation)表示四边形单元的变形程度。

第4章 有限元网格划分与模型

第4章  有限元网格划分与模型

4.5.3 单元属性分配设置
1.为实体模型图元分配单元属性 . 2.修改单元属性 .
4.5.4 单元尺寸控制
针对网格单元的尺寸控制, 针对网格单元的尺寸控制,可以通过指定所有线上的份数决定单 元的尺寸,它可以考虑线的曲率,孔洞的接近程度和其它特征, 元的尺寸,它可以考虑线的曲率,孔洞的接近程度和其它特征,以及单 元阶次。单击MeshTool菜单条(Preprocessor | MeshTool),打开智能 菜单条( ),打开智能 元阶次。单击 菜单条 ), 网格划分,设置需要的尺寸级别,或使用SMRT,Level命令。尺寸级 命令。 网格划分,设置需要的尺寸级别,或使用 , 命令 别的范围从1(精细) ),默认级别为 别的范围从 (精细)到10(粗糙),默认级别为 。对所有体(或所有 (粗糙),默认级别为6。对所有体( 一次划分网格,将优越于逐个地划分网格。 面)一次划分网格,将优越于逐个地划分网格。
4.4.2 单元设置
对应于特定单元类型,每组实常数有一个参考号, 对应于特定单元类型,每组实常数有一个参考号,与每组 实常数对应的参考号组成的表称为实常数表。在创建单元时, 实常数对应的参考号组成的表称为实常数表。在创建单元时, 可以为要创建的单元分配实常数号。在分配实常数号时, 可以为要创建的单元分配实常数号。在分配实常数号时,要注 意实常数参考号和要创建单元的单元类型参考号的对应性, 意实常数参考号和要创建单元的单元类型参考号的对应性,这 种对应性是由用户保证的, 种对应性是由用户保证的,否则在划分网格时将会报错或出现 不可预知的错误。单元设置可以采用如下命令: 不可预知的错误。单元设置可以采用如下命令: 命令: 命令:R GUI:Main Menu|Preprocessor|Real : Constants|Add/Edit/Delete

有限元分析网格划分的关键技巧

有限元分析网格划分的关键技巧

网格规模和分辨率的选择是有限元分析网格划分中的重要环节。以下是选择 合理的网格规模和分辨率时需要考虑的几个因素:
1、分析精度:网格规模和分辨率越大,分析精度越高,但同时也会增加计 算成本。因此,需要在精度和成本之间找到平衡点。
2、计算资源:网格规模和分辨率越大,需要的计算资源越多,需要考虑计 算机硬件的性能和应用场景的需求。
4、三角形单元:适用于不规则区域和复杂结构的模拟,如表面模型等。
5、四边形单元:适用于规则区域和简单结构的模拟,如立方体、圆柱等。
6、高阶单元:高阶单元具有更高的计算精度,但同时也需要更多的计算资 源。
在选择合适的单元类型和阶次时,需要考虑以下因素:
1、分析精度:根据分析目标和实际需求,选择能够满足精度要求的单元类 型和阶次。
4、施加边界条件和载荷:对计算域的边界和加载条件进行定义,以模拟实 际工况。
5、进行有限元分析和求解:利用有限元分析软件进行计算,得到各节点处 的响应和位移等结果。
6、结果后处理:对分析结果进行可视化处理,如云图、动画等,以便更好 地理解和评估仿真结果。
技巧2:如何选择合适的单元类 型和阶次
5、经验准则:根据类似问题的经验和网格划分准则,可以指导网格规模和 分辨率的选择。例如,对于结构分析,通常建议最大单元尺寸不大于最小特征尺 寸的1/10。
技巧4:如何使用有限元分析软件自动划分网格
随着有限元分析软件的发展,越来越多的软件提供了自动划分网格的功能。 使用这些功能可以大大简化网格划分的过程,提高分析效率。下面介绍两种常见 的自动划分网格方法:
2、计算效率:在保证精度的前提下,尽量选择计算效率较高的单元类型和 阶次。
3、单元特性:了解各种单元类型的适用范围和局限性,以便在分析过程中 更好地满足实际需求。

有限元的网格划分技术

有限元的网格划分技术

有限元的网格划分技术对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。

网格化有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。

定义网格的属性主要是定义单元的外形、大小。

单元大小基本上在线段上定义,可以用线段数目或长度大小来划分,可以在线段建立后立即声明,或整个实体模型完成后逐一声明。

采纳BottOm-UP方式建立模型时,采纳线段建立后立即声明比较便利且不易出错。

例如声明线段数目和大小后,叁制对象时其属性将会一•起夏制,完成上述操作后便可进行网格化命令。

网格化过程也可以逐步进行,即实体模型对象完成到某个阶段就进行网格话,如所得结果满足,则连续建立其他对象并网格化。

网格的划分可以分为自由网格(free meshing)、映射网格(mapped meshing)和扫略网格(SWeeP meshing)等。

一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上可以自动生成三角形或四边形网格,在体上自动生成四周体网格。

通常状况下,可采用ANSYS的智能尺寸掌握技术(SMARTSIZE命令)来自动掌握网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并掌握疏密分布以及选择分网算法等( MOPT 命令)。

对于简单几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。

同时,由于这种方法对于三维简单模型只能生成四周体单元,为了获得较好的计算精度,建议采纳二次四周体单元(92号单元)。

假如选用的是六面体单元,则此方法自动将六面体单元退化为阶次全都的四周体单元,因此,最好不要选用线性(•阶次)的六面体单元(没有中间节点,比如45号单元),由于该单元退化后为线性的四周体单元,具有过大的刚度,计算精度较差;假如选用二次的六面体单元(比如95 号单元),由于其是退化形式,节点数与其六面体原型单元全都,只是有多个节点在同一位置而己,因此,可以采用TCHG命令将模型中的退化形式的四周体单元变化为非退化的四周体单元(如92号单元),削减每个单元的节点数量,提高求解效率。

有限元网格剖分

有限元网格剖分

有限元网格剖分有限元计算的本质在于可以将连续的场域问题转变为离散的场域问题进行求解,而在这个由连续场域向离散场域转变的过程的核心在于有限元模型的网格划分。

进行有限元计算的主要过程体现在:首先确定出能和边值问题相对应的泛函数及可以相互等价的变分问题,进行有限元网格划分,将连续的场域离散成离散场域,在有限单元上利用一个已知的函数,例如线性的或者二次的,将有限单元上的未知连续函数近似的表示出来,求解泛函数的极值,得到一系列的方程组,进行方程组的求解,求解结束后将计算的结果进行显示,如果需要其它的一些场量时需要进行后处理等。

在上述的有限元求解的过程中,有限元模型的网格划分其中最为关键的一个环节,有限元模型的网格划分直接决定了有限元法在解决实际问题中所体现的能力,更是直接决定了有限元计算软件的计算精度。

一个有限元计算软件如果前处理的程序性能不够强大,则它的通用性就不会太强。

有限元模型的网格划分模块时有限元计算软件的前处理部分的主要模块。

有限元模型单元的大小和疏密度的合理设置,是保证计算精确性的重要保障,而有限元网格的合理性是建立在网格自动剖分程序所形成的初步网格的基础之上的,需要进一步的细分网格环节来实现合理的网格划分。

而有限元软件的自适应网格细分不需要依靠计算机用户的网格划分经验,仅仅凭借着有限元软件自带的功能就可以实现有限元网格的合理细化。

当前随着计算机的快速发展,网格剖分的算法已经得到了更大程度上的完善和发展,一些更为发展的求解域都可以进行网格的合理剖分。

有限元网格的自适应剖分软件能够利用软件自身的功能属性自动决定出网格在哪一个地方需要进行网格的进一步细化,细化的具体程度是多少,进而得到一个较为合理的网格划分,并且在该模型上可以获得较为准确的计算结果。

有限元网格的进一步细分的目的在于能够使得软件根据计算场域的特征和计算场量的分布情况合理的设置网格,使得模型中的每一个单元的计算精确性基本相同。

网格剖分的自适应软件彻底的改变了以往网格划分计算人员剖分经验的依赖性,而且还能够在数量较小的节点单元的情况下获取较高的计算求解精度。

机械零件有限元分析-5-第四讲-网格划

机械零件有限元分析-5-第四讲-网格划

THANKS
感谢观看
理现象。
均匀性
网格的分布应尽量均匀,以提 高计算精度和稳定性。
局部细化
对于关键区域或需要更高精度 的地方,应进行局部网格细化

边界条件处理
在边界区域,应根据实际情况 处理网格,以避免出现奇异性
和不合理的解。
03
网格划分的方法和技术
结构化网格划分
01
02
03
结构化网格
按照一定的规则和顺序对 有限元模型进行网格划分, 每个网格单元具有相同或 相似的形状和尺寸。
详细描述
对于形状不规则、结构复杂的机械零件,网格划分变得困难,需要采用特殊的有 限元网格划分方法,如自适应网格、非结构化网格等。
实例三:多物理场耦合的网格划分
总结词
多物理场、耦合、复杂度增加
详细描述
对于涉及多个物理场耦合的机械系统,如热-力耦合、流-固耦合等,网格划分变得更加复杂。需要采用多物理场 耦合的有限元网格划分方法,如分区耦合、全局耦合等。
网格划分的重要性和意义
网格划分是有限元分析的关键 环节,它决定了模型的离散精 度和计算规模。
合适的网格划分能够提高计算 精度,降低模型的自由度,从 而减少计算时间和资源消耗。
不合理的网格划分可能导致计 算精度降低,甚至出现数值不 稳定或计算失败的情况。
02
网格划分的基本概念
网格划分的定义
网格划分是将连续的物理模型离散化 为有限个小的单元,每个单元称为网 格或节点。
自适应移动节点
03
根据计算结果动态移动网格节点,以保持网格质量。
05
实例分析
实例一:简单零件的网格划分
总结词
规则、简单、容易划分
详细描述

有限元网格剖分与网格质量判定指标

有限元网格剖分与网格质量判定指标

有限元网格剖分与网格质量判定指标有限元网格剖分与网格质量判定指标一、引言有限元法是一种常用的数值分析方法,广泛应用于工程、力学等领域。

在有限元方法中,对于复杂的几何体,需要将其分割成多个简单的几何单元,称为有限元。

而有限元的形状和尺寸对计算结果的精度和稳定性有重要影响。

因此,有限元网格剖分和网格质量判定指标的选择和优化是提高有限元方法计算精度和效率的关键。

二、有限元网格剖分的基本原则和方法有限元网格剖分的基本原则是要确保网格足够细密,以捕捉几何体的细节和特征。

一般来说,有限元网格剖分可以分为以下几个步骤:1. 几何体建模:根据实际问题建立几何体模型,可以使用CAD软件进行建模。

2. 离散化:将几何体分割成简单的几何单元,如三角形、四边形或六面体等。

3. 网格生成:根据几何单元的尺寸和形状要求生成网格。

一般可采用三角形剖分算法或四边形剖分算法进行网格生成。

4. 网格平滑:对生成的网格进行平滑处理,以提高网格的质量。

三、网格质量判定指标网格质量判定指标是用来评价和衡量网格质量好坏的指标。

一个好的网格是指网格单元形状较正、网格单元之间大小相近、网格单元的边界规则等。

常用的网格质量判定指标包括:1. 网格单元形状度:用于评价网格单元的形状正交性和变形。

常用的形状度指标有内角度、调和平均内角度和狄利克雷三角形剖分等。

2. 网格单元尺寸误差:用于评价网格单元尺寸与理想尺寸之间的差异。

常用的尺寸误差指标有网格单元长度标准差、最大和最小网格单元尺寸比等。

3. 网格单元的四边形度:用于评价四边形网格的形状规则性。

常用的四边形度指标有圆度、直角度和Skewness等。

四、网格质量优化方法为了改善有限元网格质量,可以采用以下方法:1. 网格加密:通过将大尺寸网格单元划分为小尺寸网格单元,提高网格的细密度。

2. 网格平滑:通过对矩阵约束或拉普拉斯平滑等方法对网格进行平滑处理,改善网格单元的形状。

3. 网格优化:通过对网格单元的拓扑结构和形状进行优化,提高网格的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1网格数量
网格数量的多少将影响计算结果的精度和计算规模的大小。

一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。

网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。

当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。

所以应注意增加网格的经济性。

实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。

在决定网格数量时应考虑分析数据的类型。

在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。

如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。

同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。

在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。

在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密
网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。

在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。

而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。

这样,整个结构便表现出疏密不同的网格划分形式。

采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数量减小。

因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。

划分疏密不同的网格主要用于应力分析(包括静应力和动应力),而计算固有特性时则趋于采用较均匀的钢格形式。

这是因为固有频率和振型主要取决于结构质量分布和刚度分布,不存在类似应力集中的现象,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差太大,可减小数值计算误差。

同样,在结构温度场计算中也趋于采用均匀网格。

3单元阶次
许多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。

选用高阶单元可提高计算精度,因为高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时可以选用高阶单元。

但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。

但网格数量较少时,两种单元的计算精度相差很大,这时采用低阶单元是不合适的。

当网格数量较多时,两种单元的精度相差并不很大,这时采用高阶单元并不经济。

例如在离散细节时,由于细节尺寸限制,要求细节附近的网格划分很密,这时采用线性单元更合适。

增加网格数量和单元阶次都可以提高计算精度。

因此在精度一定的情况下,用高阶单元离散结构时应选择适当的网格数量,太多的网格并不能明显提高计算精度,反而会使计算时间大大增加。

为了兼顾计算精度和计算量,同一结构可以采用不同阶次的单元,即精度要求高的重要部位用高阶单元,精度要求低的次要部位用低阶单元。

不同阶次单元之间或采用特殊的过渡单元连接,或采用多点约束等式连接。

4网格质量
网格质量是指网格几何形状的合理性。

质量好坏将影响计算精度。

质量太差的网格甚至会中止计算。

直观上看,网格各边或各个内角相差不大、网格面不过分扭曲、边节点位于边界等份点附近的网格质量较好。

网格质量可用细长比、锥度比、内角、翘曲量、拉伸值、边节点位置偏差等指标度量。

划分网格时一般要求网格质量能达到某些指标要求。

在重点研究的结构关键部位,应保证划分高质量网格,即使是个别质量很差的网格也会引起很大的局部误差。

而在结构次要部位,网格质量可适当降低。

当模型中存在质量很差的网格(称为畸形网格)时,计算过程将无法进行。

5网格分界面和分界点
结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件。

即应使网格形式满足边界条件特点,而不应让边界条件来适应网格。

常见的特殊界面和特殊点有材料分界面、几何尺寸突变面、分布载荷分界线(点)、集中载荷作用点和位移约束作用点等。

6位移协调性
位移协调是指单元上的力和力矩能够通过节点传递相邻单元。

为保证位移协调,一个单元的节点必须同时也是相邻单元的节点,而不应是内点或边界点。

相邻单元的共有节点具有相同的自由度性质。

否则,单元之间须用多点约束等式或约束单元进行约束处理。

7网格布局
当结构形状对称时,其网格也应划分对称网格,以使模型表现出相应的对称特性(如集中质矩阵对称)。

不对称布局会引起一定误差
8节点和单元编号
节点和单元的编号影响结构总刚矩阵的带宽和波前数,因而影响计算时间和存储容量的大小,因此合理的编号有利于提高计算速度。

但对复杂模型和自动分网而言,人为确定合理的编号很困难,目前许多有限元分析软件自带有优化器,网格划分后可进行带宽和波前优化,从而减轻人的劳动强度。

相关文档
最新文档