2017学年湖南省长沙市岳麓区麓山国际实验学校八年级(下)期中数学试卷(含答案)
长沙市岳麓区麓山国际实验学校2019-2020学年八年级(下)期中数学试卷(含解析)

长沙市岳麓区麓山国际实验学校2019-2020学年八年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分)(4)y=22−3x(5)y=x2−1中,是一次函数的有1.下列函数(1)y=πx(2)y=2x−1(3)y=1x()A. 4个B. 3个C. 2个D. 1个2.已知一组数据:18,12,5,10,5,16,这组数据的中位数和众数分别是()A. 11,5B. 7.5,5C. 7.5,18D. 11,183.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()A. 中位数是1B. 众数是1C. 平均数是1.5D. 方差是1.64.在我校刚结束的“实中最强音”的活动中,有5位选手最后得分分别为9.5,9.6,9.5,9.3,9.4,则这五个数据的中位数为A. 9.3B. 9.4C. 9.5D. 9.65.点(a,−1)在一次函数y=−2x+1的图象上,则a的值为()A. a=−3B. a=−1C. a=1D. a=26.▱ABCD中,若AB=4,AD=m,∠A=60°,将▱ABCD沿某直线翻折,使得点A与CD的中点重合,若折痕与直线AD交于点E,DE=1,则m的值为()A. √7+1或√3−1B. √7−1或√3+1C. √7−1或√3−1D. √7+1或√3+17.已知k1<0<k2,则函数y=k1x−3和y=k2的图象大致为()xA. B. C. D.8.如图1,在平面直角坐标系中,长方形ABCD的边AD、AB分别在x轴,y轴上,AB=3,AD=5.现长方形以每秒2个单位长度沿x轴正方向匀速运动如图2,同时点P从A点出发以每秒1个单位长度沿A−B−C−D的路线作匀速运动,当点P运动9秒时,△OAP的面积为()A. 9B. 18C. 27D. 369.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A. B.C. D.10.如图,在菱形ABCD中.CD长为半径作弧,两弧分别交于点E,(1)分别以C,D为圆心,大于12F;(2)作直线EF交边CD于点M,且直线EF恰好经过点A;(3)连接BM.根据以上作图过程及所作图形,判断下列结论中错误的是()A. ∠ABC=60°B. BC=2CMC. S△ABM=2S△ADMD. 如果AB=2,那么BM=411.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=66°,那么∠EHF的度数等于()A. 48°B. 52°C. 68°D. 以上答案都不对12.如图,AD,AE分别是△ABC的角平分线和中线,CG⊥AD于F,交AB于G,若AB=8,AC=6,则EF的长为()A. 2B. 32C. 1D. 12二、填空题(本大题共6小题,共18.0分)13.某班甲、乙、丙三名同学20天的平均体温都是36.45℃,方差分别如下:S甲2=0.625,S乙2=0.0745,2=0.0645,则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是______.S丙14.已知函数是正比例函数,则a=_________ ,b=________.15.如图,四边形AOBC为平行四边形,点A的坐标为(2,3),点B的坐标为(4,1),则点C坐标为______.16.如图所示:在一边长为46cm的正方形纸片上剪下一块圆形和一个扇形纸片,使之恰好做成一个圆锥形模型,它的底面半径是cm.17.一次函数y=kx+b的图象如图所示,则当kx+b>0时,x的取值范围为______.18.如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为______ .三、解答题(本大题共9小题,共66.0分)19.定义新运算:对于任意实数a,b(其中a≠0),都有a∗b=1a +a−ba,等式右边是通常的加法、减法及除法运算,比如:2∗1=12+2−12=1(1)求5∗4的值;(2)若x∗2=1(其中x≠0),求x的值.20.服务质量相同的甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用3000元;绿化面积超过1000平方米时,每月在收取3000元的基础上,超过的部分每平方米收取2.5元.(1)求如图所示的y与x的函数解析式:(不要求写出x的取值范围);(2)如果某学校计划投入4000元资金绿化校园,试通过计算说明:选择哪家公司的服务更合算.21.在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.22.某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把结果绘制成两幅不完整的统计图请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图补充完整;(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?23.如图,如果四边形ABCD和BEFC都是平行四边形,那么四边形AEFD是平行四边形吗?小明认为四边形AEFD是平行四边形,并且给出了证明.证明:∵四边形ABCD是平行四边形,∴AD=BC,①AB=DC.②又∵四边形BEFC也是平行四边形,∴BC=EF,③BE=CF.④由①③,得AD=EF.⑤由②④,得AB+BE=DC+CF,⑥即AE=DF.∴四边形AEFD是平行四边形.小明的考虑全面吗?为什么?你是怎样想的?把你的想法写出来.24.已知:如图,E、C两点在线段BF上,BE=CF,AB=DE,AC=DF.求证:△ABC≌△DEF.25.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,(1)甲步行的速度为______米/分;(2)乙走完全程用了______分钟;(3)求乙到达终点时,甲离终点的距离是多少米?26.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如下数据:轿车行驶的路程s(km)010203040…油箱剩余油量w(L)5049.248.447.646.8…(1)该轿车油箱的容量为______L,行驶100km时,油箱剩余油量为______L;(2)根据上表的数据,写出油箱剩余油量w(L)与轿车行驶的路程s(km)之间的表达式______;(3)某人将油箱加满后,驾驶该轿车从A地前往B地,到达B地时邮箱剩余油量为26L,求A,B两地之间的距离.27.写出下列各题中x与y之间的关系式,并判断y是否为x的一次函数?是否为正比列函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系;(2)圆的面积y(平方厘米)与它的半径x(厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米).【答案与解析】1.答案:B解析:解:根据一次函数的定义可知:(1)y=πx、(2)y=2x−1、(4)y=22−3x是一次函数,∴是一次函数的有3个.故选:B.根据一次函数的定义确定五个函数中哪个为一次函数,此题得解.本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.2.答案:A解析:本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.根据众数和中位数的概念求解.解:这组数据按照从小到大的顺序排列为:5,5,10,12,16,18,=11,则中位数为:10+122众数为5.故选A.3.答案:C解析:解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;=2,C选项错误;平均数为1+1+1+3+45×[(1−2)2×3+(3−2)2+(4−2)2]=1.6,D选项正确;方差为15故选:C.将数据从小到大(或从大到小)排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.本题主要考查方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.4.答案:C解析:将这5个数从小到大排列为9.3,9.4,9.5,9.5,9.6,则处在中间位置的数为9.5,即中位数是9.5.故选C.5.答案:C解析:解:∵点A(a,−1)在一次函数y=−2x+1的图象上,∴−1=−2a+1,解得a=1,故选:C.把点A(a,−1)代入y=−2x+1,解关于a的方程即可.此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.6.答案:A解析:解:如图1中,当点E在线段AD上时,过等F作FH⊥AD交AD的延长线于H.∵四边形ABCD是平行四边形,∴AB=CD=4,AB//CD,∴∠FDH=∠BAD=60°,∴DF=CF=1CD=2,2∴DH=DF⋅cos60°=1,FH=DF⋅sin3=60°=√3,∵DE=1,∴EH=DE+DH=2,∴AE=EF=√FH2+EH2=√(√3)2+22=√7,∴m=AD=AE+DE=√7+1.如图2中,当点E在线段AD的延长线上时,同法可得DH=1,此时点E与H重合,AE=FH=√3,AD=AE−DE=√3−1.综上所述,满足条件的AD的值为√7+1或√3−1.故选:A.分两种情形:如图1中,当点E在线段AD上时,过等F作FH⊥AD交AD的延长线于H.如图2中,当点E在线段AD的延长线上时,分别求解即可.本题考查平行四边形的性质,翻折变换,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.7.答案:D解析:解:∵k1<0<k2,函数y=k1x−3和y=k2x在同一坐标系中,∴反比例函数的图象分布在一三象限,一次函数图象经过二四象限,且过(0,−3)点,∴只有选项D符合题意,故选:D.直接利用反比例函数以及一次函数图象的性质分别分析得出答案.此题主要考查了反比例函数图象以及一次函数图象,正确掌握各函数图象分布规律是解题关键.8.答案:B解析:解:如图所示,当t=9时,OA=18,点P在CD上,且CP=1,则DP=2,∵四边形ABCD是矩形,∴∠ADP=90°,则S△OAP=12⋅OA⋅DP=12×18×2=18,故选:B.结合题意画出平移后的图形及点P的位置,再根据三角形的面积公式计算可得.本题主要考查矩形的性质,解题的关键是根据题意画出运动后矩形的位置及点P在矩形中的位置.9.答案:B解析:解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.根据乌龟比兔子早出发,而早到终点逐一判断即可得.本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.10.答案:D解析:解:如图,连接AC.由作图可知,EF存在平分线段CD,∴AC=BD,∵四边形ABCD是菱形,∴AD=CD=AB=BC=AC,∴△ABC,△ACD都是等边三角形,∴∠ABC=60°,故A正确,∵BC=CD=2CM,故B正确,∵AB=CD=2DM,AB//CD,∴AB=2DM,∴S△ABM=2S△ADM,故C正确,故选:D.如图,连接AC,证明△ABC,△ACD都是等边三角形即可解决问题.本题考查作图−复杂作图,等边三角形的判定和性质,菱形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.答案:A解析:解:由翻折的性质可知,∠GFP=∠CFP=66°,∴∠GFH=180°−66°−66°=48°,∵EH//FG,∴∠EHF=∠HFG=48°,故选:A.求出∠GFH,再利用平行线的性质可得结论.本题考查翻折变换,矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 12.答案:C解析:解:∵AD 为△ABC 的角平分线,CG ⊥AD ,∴△ACG 是等腰三角形,∴AG =AC ,∵AC =6,∴AG =AC =6,FG =CF ,∵AE 为△ABC 的中线,∴EF 是△BCG 的中位线,∴EF =12BG ,∵AB =8,∴BG =AB −AG =8−6=2.∴EF =1.故选C .首先证明△ACG 是等腰三角形,则AG =AC =6,FG =CF ,则EF 是△BCG 的中位线,利用三角形的中位线定理即可求解.本题考查了等腰三角形的判定以及三角形的中位线定理,正确证明FG =CF 是关键. 13.答案:丙解析:解:∵S 甲2=0.625,S 乙2=0.0745,S 丙2=0.0645,∴S 丙2<S 乙2<S 甲2,∴甲、乙、丙三名同学的体温情况最稳定的是丙,故答案为:丙.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.答案:,解析:本题解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.解:由正比例函数的定义可得2a+b=1,a+2b=0,解得,a=,b=,故答案为,.15.答案:(6,4)解析:解:∵四边形AOBC为平行四边形,∴AC//OB且AC=OB.设C(a,b),∵点A的坐标为(2,3),点B的坐标为(4,1),点O的坐标为(0,0),∴b−3=1−0,a−2=4−0,∴b=4,a=6.∴点C坐标为(6,4).故答案是:(6,4).根据平行四边形的对边相互平行且相等的性质求得点C的坐标.本题考查了坐标与图形性质,平行四边形的性质等知识点,主要考查学生的计算能力和观察图形的能力,注意:数形结合思想的运用.16.答案:(10√2−4)解析:设小圆的半径为r,可求得小圆的周长,利用扇形的弧长公式可得大扇形的半径,根据大扇形的半径+小扇形的半径+小扇形的半径的√2倍=正方形的对角线长可得小扇形的半径,也就是圆锥的底面半径.17.答案:x>1解析:解:根据图象和数据可知,当kx+b>0时,即y>0,图象在x轴上面,此时x>1.故答案为:x>1.根据图象的性质,当y>0即图象在x轴上面,x>1.本题考查一次函数的图象,考查学生的分析能力和读图能力.18.答案:6.25解析:解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=12AD=12×12=6,设⊙O的半径为x,则OF=EF−OE=8−x,在Rt△OAF中,OF2+AF2=OA2,则(8−x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.故答案为:6.25.首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O与BC 边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O的半径为x,则OE=EF−OE=8−x,利用勾股定理即可得:(8−x)2+36=x2,继而求得答案.此题考查了切线的性质、垂径定理、矩形的性质以及勾股定理.注意准确作出辅助线是解此题的关键.19.答案:解:(1)根据题意得:5∗4=15+5−45=25;(2)∵x ∗2=1,∴1x +x−2x =1,在方程两边同乘x 得:1+(x −2)=x ,方程无解.解析:本题考查了解分式方程,解决本题的关键是熟记解分式方程的步骤.(1)根据新定义的新运算,即可解答;(2)根据新定义运算得到分式方程,解分式方程即可.20.答案:解:(1)设的y 与x 的函数解析式为y =kx +b ,则{b =100100k +b =400, 解得{k =3b =100, ∴y =3x +100;(2)当y =4000时,3x +100=4000,解得x =1300,4000−3000=1000,1000÷25=400,1000+400=1400(平方米),∵1400>1300,∴选择乙公司的服务更合算.解析:(1)观察函数图象,找出点的坐标,利用待定系数法即可求出y 与x 的函数表达式;(2)分别求出当y =4000时,甲、乙两公司方案的绿化面积,比较后即可得出结论.本题考查了一次函数的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数表达式;(2)分别求出当y =4000时,甲、乙两公司方案的绿化面积.21.答案:解:(1)如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵AE=DE,∴△AEB≌△DEC(SAS),∴EB=EC,∵∠BEC=90°,∴∠EBC=45°.(2)①结论:四边形BMEN的面积不变.理由:由(1)可知:∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△MEB≌△NEC(ASA),∴S△MEB=S△ENC,∴S四边形EMBN =S△EBC=12×4×2=4.②如图当E,B,O共线时,OB的值最小,作GH⊥OE于H.∵OF =OG ,∠FEG =90°,∴OE =OF =OG =4,∵∠F =30°,∴∠EGF =60°,∴△EOG 是等边三角形,∵GH ⊥OE ,∴GH =2√3,OH =EH =2, ∵BE =2√2,∴OB =4−2√2,∴BH =2−(4−2√2)=2√2−2,∴tan∠EBG =HGBH =√32√2−2=√6+√3.解析:本题属于四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,等边三角形的判定和性质,锐角三角函数等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.(1)证明△AEB≌△DEC(SAS),可得EB =EC ,根据等腰直角三角形的性质即可解决问题.(2)①四边形BMEN 的面积不变.证明△MEB≌△NEC(ASA),推出S △MEB =S △ENC ,可得S 四边形EMBN =S △EBC .②如图当E ,B ,O 共线时,OB 的值最小,作GH ⊥OE 于H ,想办法求出BH ,GH 即可解决问题.22.答案:解:(1)15÷30%=50人,答:这次被调查的学生有50人.(2)50−4−15−18−3=10人,补全条形统计图如图所示:(3)1500×1850=540人,答:该校1500名学生中喜欢娱乐节目的有540人.解析:(1)从两个统计图中可以得到喜欢动画的有15人,占调查人数的30%,可求出调查人数,(2)求出喜欢体育的人数即可补全条形统计图,(3)样本估计总体,样本中喜欢娱乐节目的占1850,估计总体人数的1825是喜欢娱乐节目的.考查条形统计图、扇形统计图的特点及制作方法,从两个统计图中,获取数量和数量关系是解决问题的关键,样本估计总体是统计中常用的方法.23.答案:解:小明的考虑不全面.因为这种证明方法不适合于当A、B、E三点不在一直线上时,题中的已知条件和结论同样成立,但利用小明的证明就不能论证了.证明:当A、B、E三点不在一直线上时,如图,连接AE、DF,∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∵四边形BEFC也是平行四边形,∴BC=EF,BC//EF,∴AD=EF,AD//EF,∴四边形AEFD是平行四边形.解析:小明的考虑不全面,当A、B、E三点不在一直线上时,题中的已知条件和结论同样成立,但利用小明的证明就不能论证了.还可以根据一组对边平行且相等的四边形是平行四边形证明.本题考查了平行四边形的判定与性质,解决本题的关键是掌握平行四边形的判定与性质.24.答案:略解析:证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF.∴在△ABC与△DEF中,,∴△ABC≌△DEF.25.答案:60 30解析:解:(1)由图可得,甲步行的速度为:240÷4=60(米/分),故答案为:60;(2)乙的速度为:60+240÷(16−4)=80(米/分),即乙走完全程的时间:2400÷80=30(分钟),故答案为:30;(3)2400−(30+4)×60=2400−34×60=2400−2040=360(米),答:乙到达终点时,甲离终点的距离是360米.(1)根据函数图象中的数据,可以计算出甲步行的速度;(2)根据(1)中的结果和图象中的数据,可以计算出乙步行的速度,然后即可得到乙走完全程用的时间;(3)根据图象中的数据和题意,可以计算出乙到达终点时,甲离终点的距离是多少米.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.答案:50 42 w=50−0.08s解析:解:(1)由表格中的数据可知,该轿车油箱的容量为50L,行驶100km时,油箱剩余油量为:×0.8=42(L).、50−10010故答案是:50;42;(2)由表格可知,开始油箱中的油为50L,每行驶10km,油量减少0.8L,据此可得w与s的关系式为w=50−0.08s;故答案是:w=50−0.08s;(3)令w=26,得s=300.答:A,B两地之间的距离为300km.(1)由表格可知,开始油箱中的油为50L,每行驶10km,油量减少0.8L,由此填空;(2)由表格可知,开始油箱中的油为50L,每行驶10km,油量减少0.8L,据此可得w与s的关系式;(3)把w=26代入函数关系式求得相应的s值即可.本题考查了一次函数的应用,关键是求函数关系式.行驶路程为0时,即为油箱最大容积.27.答案:解:(1)行驶路程y(千米)与行驶时间x(时)之间的关系为:y=60x,是x的一次函数,是正比例函数;(2)圆的面积y(平方厘米)与它的半径r(厘米)之间的关系为:y=πx2,不是x的一次函数,不是正比例函数;(3)x月后这棵树的高度为y(厘米)之间的关系为:y=50+2x,是x的一次函数,不是正比例函数.解析:试题分析:(1)根据路程=速度×时间可得相关函数关系式;(2)根据圆的面积可得相关函数关系式;(3)x月后这棵树的高度=现在高+每个月长的高×月数.。
【湘教版】八年级数学下期中试卷(及答案)

② 是等边三角形;
③ ;
④ .
其中正确的是______________(填写序号)
三、解答题
21.如图,平面直角坐标系的原点在边长为1个单位长度的小正方形组成的网格的格点上, 为格点三角形(三角形的顶点在网格的格点上)
(1)直接写出下列点的坐标: (______,______), (______,______), (______,______).
1.B
解析:B
【分析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、不是中心对称图形,故本选项不符合题意;
B、是中心对称图形,故本选项符合题意;
C、不是中心对称图形,故本选项不符合题意;
D、不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
14.在平面直角坐标系xoy中,已知点A(2,3),若将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是____________.
15.某次知识竞赛共有 题,答对一题得 分,答错或不答扣 分,小华得分要超过 分,他至少要答对__________题
16.如图,直线y=ax+b和y=kx+2与x铀分别交于点A(﹣2,0),点B(2.8,0).则 的解集为_____.
(1)完成下列步骤,画出函数y=|x|的图像;
①列表、填空:
x
…
﹣2
﹣1
0
1
2
…
y
…
1
0
2
…
②描点,
③连线
(2)观察函数图像,写出该函数图像的一条性质.
湖南省长沙市八年级下学期数学期中考试试卷

湖南省长沙市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2015八下·绍兴期中) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (2分) (2020七上·德江期末) 下列调查中,最适合用普查的是()A . 调查全县七年级学生本学期期中考试数学成绩情况B . 为订做校服,了解七年级某班学生的校服尺码C . 调查全市中学生的视力情况D . 调查某品牌圆珠笔笔芯的使用寿命3. (2分) (2017·桂林模拟) 下列说法正确的是()A . 了解飞行员视力的达标标率应使用抽样调查B . 从2000名学生中选出200名学生进行抽样调查,样本容量为2000C . 一组数据3,6,6,7,9的中位数是6D . 一组数据1,2,3,4,5的方差是104. (2分)有一个样本有100个数据,落在某一组内的频率是0.3,那么落在这一组内的频数是()A . 50B . 30C . 15D . 35. (2分)(2018·肇源模拟) 下列说法正确的是()A . 对角线相等且互相垂直的四边形是菱形B . 有一个角是直角的四边形是矩形C . 对角线互相垂直的四边形是平行四边形D . 对角线相等且互相平分的四边形是矩形6. (2分) (2017九上·平舆期末) 如图,在△ABC中,AD、BE是两条中线,则S△ABP:S△EDP=()A . 1:2B . 1:3C . 1:4D . 2:3二、填空题 (共10题;共10分)7. (1分) (2017九上·西湖期中) 有四张背面完全相同的纸质卡片,其正面分别有数:,,,.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比小的概率是________.8. (1分)(2018·兴化模拟) 若某种彩票的中奖率为5%,则“小明选中一张彩票一定中奖”这一事件是________(填“必然事件”、“不可能事件”或“随机事件”).9. (1分)(2019·容县模拟) 计算: ________.10. (1分) (2019七上·大东期末) 下表是对某地生活垃圾处理情况的分析,可以选择________统计图进行分析比较.11. (1分) (2016七上·昌邑期末) 漳州市某校在开展庆“六•一”活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:你最喜欢的活动猜谜唱歌投篮跳绳其它人数681682请你估计该校七年级学生中,最喜欢“投篮”这项活动的约有________人.12. (1分) (2018九上·和平期末) 如图,在平行四边形ABCD中,已知AD=12cm,AB=8m,AE平分∠BAD 交BC边于点E,则CE的长等于________厘米.13. (1分)(2017·唐河模拟) 如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为________.14. (1分)如图,DE∥AC交AB于点E,DF∥AB交AC于F,∠1=∠2,四边形AEDF的形状是________.15. (1分)(2016·南通) 如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C 顺时针旋转90°得到△DCF,若CE=1cm,则BF=________cm.16. (1分)(2016·黔南) 如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为________.三、解答题 (共10题;共80分)17. (6分) (2019八下·锦江期中) 在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.若将△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是________.(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.18. (11分) (2017八下·兴化月考) 王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组部分统计数据.摸球的次数1001502005008001000摸到黑球的次数2331601272032510.230.210.300.2540.253摸到黑球的频率(1)根据上表数据计算 =________.估计从袋中摸出一个球是黑球的概率是________.(精确到0. 01)(2)估算袋中白球的个数.19. (6分) (2018九上·梁子湖期末) “品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.频数分布统计表组别成绩x(分)人数百分比A60≤x<70820%B70≤x<8016m%C80≤x<90a30%D90≤<x≤100410%请观察图表,解答下列问题:(1)表中a=________,m=________;(2)补全频数分布直方图;(3) D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率是?20. (12分)(2018·福建) 甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.21. (5分) (2017八下·普陀期中) 已知:如图,在△ABC中,M是边AB的中点,D是边BC延长线上的一点,且CD= BC,作D N∥CM交AC于点N.求证:四边形MCDN是平行四边形.22. (6分)(2018·吉林模拟) 如图,在平面直角坐标系中,O(0,0),A(0,-6),B(8,0)三点在⊙P上.(1)求⊙P的半径及圆心P的坐标;(2) M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.23. (2分) (2018八上·合浦期中) 已知:如图,点A,D,C,B在同一条直线上,AD=BCAE=BF,CE=DF求证:(1)AE∥FB(2) DE=CF24. (10分)(2019·凤翔模拟) 如图,已知△ABC,利用尺规在BC上找一点P,使得△ABP与△ACP均为直角三角形(不写作法,保留作图痕迹)25. (11分) (2015八上·重庆期中) 如图,在四边形ABCD中,AD∥BC,F在CD上,且AF垂直平分CD,FG 平分∠AFD,交AD于G,连接GB,交AF于N,且FN=FD.(1)求证:△GFN≌△GFD;(2)如图,连接ND,若BC=ND,∠ADC=75°,求证:AN=AB;(3)如图2,延长AF、BC交于点E,过B作BK⊥AE于K,若∠BAF=2∠E,猜想,AB与KF之间有何数量关系?请说明理由.26. (11分) (2020八下·栖霞期中) 定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);(2)下列说法正确的有________;(填写所有正确结论的序号)①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF 交于点D.①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共80分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、26-1、26-2、26-3、。
2015-2016年湖南省长沙市麓山国际实验学校八年级(下)期中数学模拟试卷(解析版)

2015-2016学年湖南省长沙市麓山国际实验学校八年级(下)期中数学模拟试卷一、选择题:1.(3分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1D.3x2﹣2xy﹣5y2=02.(3分)已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1B.0C.1D.23.(3分)三角形两边的长分别是8和4,第三边的长是方程x2﹣11x+24=0的一个实数根,则三角形的周长是()A.15B.20C.23D.15或20 4.(3分)下面说法正确的是()A.如果数据x 1,x2,…,x n的平均数是,则B.样本7,7,6,5,4的众数是2.C.样本1,2,3,4,5,6的中位数是3.D.样本50,50,39,41,41不存在众数.5.(3分)已知点M(1,a)和点N(2,b)是一次函数y=(k﹣2)x﹣3图象上的两点,若a>b,则k的取值范围是()A.k>2B.k<0C.k<2D.k≤26.(3分)某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加1分钟加收1元(不足1分钟按1分钟收费),则表示电话费y(元)与通话时间x(分)之间的函数关系的图象如图所示,正确的是()A.B.C.D.7.(3分)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如下面图所示,则函数y=nx+m的图象可能正确的是()A.B.C.D.8.(3分)设max{a,b}表示a,b两个数中的最大值,例如max{0,2}=2,max{12,8}=12,则关于x的函数y=max{2x,x+2}可以是()A.B.C.y=2x D.y=x+29.(3分)下列说法中正确的是()A.方程x2﹣8=0有两个相等的实数根B.方程5x2=﹣2x没有实数根C.如果一元二次方程ax2+bx+c=0有两个实数根,那么△=0D.如果a、c异号,那么方程ax2+bx+c=0有两个不相等的实数根10.(3分)已知关于x的一次函数y=mx+2m﹣7在﹣1≤x≤5上的函数值总是正的,则m的取值范围()A.m>7B.m>1C.1≤m≤7D.以上都不对11.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥312.(3分)小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米二、填空题13.(3分)方程是一元二次方程,则m=.14.(3分)如果样本x1,x2,…,x n的平均数是9,方差为3,那么样本x1+1,x2+1,…,x n+1的平均数是,方差是.15.(3分)抛物线y=m(x+n)2向左平移2个单位后,得到的函数解析式是y =﹣4(x﹣4)2,则m=,n=.16.(3分)已知抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,且过(3,0)点,则a+b+c值为.17.(3分)如果一条抛物线的形状与y=﹣x2+2的形状相同,且顶点坐标是(4,﹣2),则它的函数关系式是.18.(3分)已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是.(填上你认为正确结论的所有序号)三、解答题19.解方程(1)x2﹣2x﹣1=0(2)x(2x﹣5)=4x﹣1020.小华是某校八年(1)班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为:;(2)小明班上男生身高的极差是多少?(3)身高的中位数落在哪个分组?(4)若身高165cm(含165cm)以上的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?21.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?22.某商场将进价为30元的洗发水先标价40元出售,为了搞促销活动经过两次降价调至每件32.4元.(1)若这两次降价的降价率相同,求这个降价率;(2)经过调查,该洗发水每降价0.2元,每月可多销售10件,若该洗发水原来每月可销售200件,那么销售价定为多少元,可以使商场在销售该洗发水中获得利润2450元?23.如图,直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.24.已知:关于x的方程x2+kx﹣2=0(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.25.已知关于x的一元二次方程x2=(2k+1)x﹣k2+2有两个实数根为x1,x2.(1)求k的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应k的值,并求出最小值.26.根据下列条件,求出二次函数的解析式.(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(﹣1,1)三点.(2)抛物线顶点P(﹣1,﹣8),且过点A(0,﹣6).(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,﹣3)两点,并且以x =1为对称轴.(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=﹣3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x﹣h)2+k的形式.27.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.28.已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.29.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(﹣2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.2015-2016学年湖南省长沙市麓山国际实验学校八年级(下)期中数学模拟试卷参考答案与试题解析一、选择题:1.(3分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1D.3x2﹣2xy﹣5y2=0【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.2.(3分)已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1B.0C.1D.2【解答】解:∵关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),∴x1•(﹣a)=a,即x1=﹣1,∴1﹣b+a=0,∴a﹣b=﹣1.故选:A.3.(3分)三角形两边的长分别是8和4,第三边的长是方程x2﹣11x+24=0的一个实数根,则三角形的周长是()A.15B.20C.23D.15或20【解答】解:∵x2﹣11x+24=0,∴(x﹣3)(x﹣8)=0,解得x1=3,x2=8,∵三角形两边的长分别是8和4,第三边的长是方程x2﹣11x+24=0的一个实数根,4+3<8,∴x=3不合题意舍去,则三角形的周长是:8+4+8=20.故选:B.4.(3分)下面说法正确的是()A.如果数据x 1,x2,…,x n的平均数是,则B.样本7,7,6,5,4的众数是2.C.样本1,2,3,4,5,6的中位数是3.D.样本50,50,39,41,41不存在众数.【解答】解:A、如果数据x1,x2,…,x n的平均数是,则x1+x2+…+x n=n,所以,此选项正确;B、样本7,7,6,5,4的众数是7,此选项错误;C、样本1,2,3,4,5,6的中位数是3.5,此选项错误;D、样本50,50,39,41,41的众数为50、41,此选项错误;故选:A.5.(3分)已知点M(1,a)和点N(2,b)是一次函数y=(k﹣2)x﹣3图象上的两点,若a>b,则k的取值范围是()A.k>2B.k<0C.k<2D.k≤2【解答】解:∵点M(1,a)和点N(2,b)是一次函数y=(k﹣2)x﹣3图象上的两点,a>b,∴k﹣2<0,解得k<2.故选:C.6.(3分)某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加1分钟加收1元(不足1分钟按1分钟收费),则表示电话费y(元)与通话时间x(分)之间的函数关系的图象如图所示,正确的是()A.B.C.D.【解答】解:根据题意:因为不足1分钟按1分钟计算,电话费y与通话时间x 之间的函数关系是间断的分段函数,由于通话时间不超过6分钟,图象分为4段.故选:C.7.(3分)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如下面图所示,则函数y=nx+m的图象可能正确的是()A.B.C.D.【解答】解:如图,∵函数y=(x﹣m)(x﹣n)(其中m<n),∴抛物线与x轴的两个交点横坐标分别是m,n,且m<0<n.∴y=nx+m的图象经过第一、三象限,且与y轴交于负半轴.故选:D.8.(3分)设max{a,b}表示a,b两个数中的最大值,例如max{0,2}=2,max{12,8}=12,则关于x的函数y=max{2x,x+2}可以是()A.B.C.y=2x D.y=x+2【解答】解:当2x≥x+2时,得x≥2,当x+2>2x时,得x<2,故关于x的函数y=max{2x,x+2}可以是y=,故选:A.9.(3分)下列说法中正确的是()A.方程x2﹣8=0有两个相等的实数根B.方程5x2=﹣2x没有实数根C.如果一元二次方程ax2+bx+c=0有两个实数根,那么△=0D.如果a、c异号,那么方程ax2+bx+c=0有两个不相等的实数根【解答】解:在方程x2﹣8=0中可解得x=±2,故A不正确;在方程5x2=﹣2x中,可解得x=0或x=﹣,即该方程有两个不相等的实数根,故B不正确;由根的判别式可知若一元二次方程ax2+bx+c=0有两个实数根,那么△≥0,故C 不正确;当a、c异号时,则ac<0,∴△=b2﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根,故D正确;故选:D.10.(3分)已知关于x的一次函数y=mx+2m﹣7在﹣1≤x≤5上的函数值总是正的,则m的取值范围()A.m>7B.m>1C.1≤m≤7D.以上都不对【解答】解:根据题意,得:当x=﹣1时,y=﹣m+2m﹣7=m﹣7>0,∴m>7;当x=5时,y=5m+2m﹣7=7m﹣7>0,∴m>1,∴m的取值范围是m>7.故选:A.11.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3C.x≤D.x≥3【解答】解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选:A.12.(3分)小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是()A.1.65米是该班学生身高的平均水平B.班上比小华高的学生人数不会超过25人C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米【解答】解:A、1.65米是该班学生身高的平均水平,故A正确;B、因为小华的身高是1.66米,不是中位数,不能判断班上比小华高的学生人数不会超过25人,故B错误;C、这组身高数据的中位数不一定是1.65米,故C正确;D、这组身高数据的众数不一定是1.65米,故D正确.故选:B.二、填空题13.(3分)方程是一元二次方程,则m=﹣2.【解答】解:∵关于x的方程是一元二次方,∴,解得:m=﹣2.故答案为:﹣2.14.(3分)如果样本x1,x2,…,x n的平均数是9,方差为3,那么样本x1+1,x2+1,…,x n+1的平均数是10,方差是3.【解答】解:∵样本x1,x2,…,x n的平均数是9,∴样本x1+1,x2+1,…,x n+1的平均数是9+1=10;∵样本x1,x2,…,x n的方差为3,∴样本x1+1,x2+1,…,x n+1的方差是3;故答案为:10,3.15.(3分)抛物线y=m(x+n)2向左平移2个单位后,得到的函数解析式是y =﹣4(x﹣4)2,则m=﹣4,n=﹣6.【解答】解:∵将抛物线y=m(x+n)2向左平移2个单位后的函数解析式为y =m(x+n+2)2,∴m(x+n+2)2=﹣4(x﹣4)2,∴m=﹣4,n+2=﹣4,∴m=﹣4,n=﹣6.故答案为:﹣4,﹣6.16.(3分)已知抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,且过(3,0)点,则a+b+c值为0.【解答】解:∵抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(1,0),即x=1时,y=0,所以a+b+c=0.故答案为0.17.(3分)如果一条抛物线的形状与y=﹣x2+2的形状相同,且顶点坐标是(4,﹣2),则它的函数关系式是y=(x﹣4)2﹣2,y=﹣(x﹣4)2﹣2.【解答】解:∵一条抛物线的形状与y=﹣x2+2的形状相同,∴a=±,设抛物线的顶点式为y=±(x﹣h)2+k,∵顶点坐标是(4,﹣2),∴抛物线的顶点式为y=±(x﹣4)2﹣2.故答案为:y=(x﹣4)2﹣2,y=﹣(x﹣4)2﹣2.18.(3分)已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是①②.(填上你认为正确结论的所有序号)【解答】解:①∵方程x2﹣(a+b)x+ab﹣1=0中,△=(a+b)2﹣4(ab﹣1)=(a﹣b)2+4>0,∴x1≠x2故①正确;②∵x1x2=ab﹣1<ab,故②正确;③∵x1+x2=a+b,即(x1+x2)2=(a+b)2,∴x12+x22=(x1+x2)2﹣2x1x2=(a+b)2﹣2ab+2=a2+b2+2>a2+b2,即x12+x22>a2+b2.故③错误;综上所述,正确的结论序号是:①②.故答案是:①②.三、解答题19.解方程(1)x2﹣2x﹣1=0(2)x(2x﹣5)=4x﹣10【解答】解:(1)∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+2=1+2,即(x﹣)2=3,则x﹣=±,∴x=±;(2)∵x(2x﹣5)=4x﹣10,∴x(2x﹣5)﹣2(2x﹣5)=0,则(2x﹣5)(x﹣2)=0,∴2x﹣5=0或x﹣2=0,解得:x=2.5或x=2.20.小华是某校八年(1)班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为:6,0.1;(2)小明班上男生身高的极差是多少?(3)身高的中位数落在哪个分组?(4)若身高165cm(含165cm)以上的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?【解答】(1)解:根据所有各组频率之和为1,可得出:b=1﹣(0.03+0.4+0.27+0.20)=0.1,∵小华对班上30名男生的身高进行统计,∴a=30﹣(1+12+8+3)=6;(2)根据极差的定义,最大值减去最小值,∴小明班上男生身高的极差是:174﹣150=24cm;(3)∵30个数据的中间是第15,16两数,∴中位数是第15,16两数的平均数,∵第15,16两数在160﹣﹣165范围内,∴身高的中位数落在160﹣﹣165这一组;(4)∵身高165cm(含165cm)以上的男生有:6+3=9人,小华对班上30名男生的身高(单位:cm)进行了统计∴符合条件的男生与全班男生的:9÷30×100%=30%,∴符合条件的男生占全班男生的百分之三十.21.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.22.某商场将进价为30元的洗发水先标价40元出售,为了搞促销活动经过两次降价调至每件32.4元.(1)若这两次降价的降价率相同,求这个降价率;(2)经过调查,该洗发水每降价0.2元,每月可多销售10件,若该洗发水原来每月可销售200件,那么销售价定为多少元,可以使商场在销售该洗发水中获得利润2450元?【解答】解:(1)设这个降价率为x,根据题意得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(不合题意,舍去)答:这个降价率为10%,(2)设销售价定为y元,可以使商场在销售该洗发水中获得利润2450元,根据题意得:(y﹣30)(200+×10)=2450,解得y=37.答:销售价定为37元,可以使商场在销售该洗发水中获得利润2450元.23.如图,直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.【解答】解:(1)令y=0,得x=﹣,∴A点坐标为(﹣,0),令x=0,得y=3,∴B点坐标为(0,3);(2)设P点坐标为(x,0),∵OP=2OA,A(﹣,0),∴x=±3,∴P点坐标分别为P1(3,0)或P2(﹣3,0).∴S△ABP1=×(+3)×3=,S△ABP2=×(3﹣)×3=,∴△ABP的面积为或24.已知:关于x的方程x2+kx﹣2=0(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【解答】(1)证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4×1×(﹣2)=k2+8>0,∴方程有两个不相等的实数根;(2)解:当x=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,∴另一个根为2.25.已知关于x的一元二次方程x2=(2k+1)x﹣k2+2有两个实数根为x1,x2.(1)求k的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应k的值,并求出最小值.【解答】解:(1)将原方程整理为x2﹣(2k+1)x+k2﹣2=0(1分)∵原方程有两个实数根,∴(4分)解得;(6分)(2)∵x1,x2为x2﹣(2k+1)x+k2﹣2=0的两根,∴y=x1+x2=2k+1,且(8分)因而y随k的增大而增大,故当k=时,y有最小值.(10分)故答案为:,﹣.26.根据下列条件,求出二次函数的解析式.(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(﹣1,1)三点.(2)抛物线顶点P(﹣1,﹣8),且过点A(0,﹣6).(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,﹣3)两点,并且以x =1为对称轴.(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=﹣3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x﹣h)2+k的形式.【解答】解:(1)根据题意得,解得,所以抛物线解析式为y=x2+x+1;(2)设抛物线解析式为y=a(x+1)2﹣8,把(0,﹣6)代入得a(0+1)2﹣8=﹣6,解得a=2,所以抛物线解析式为y=2(x+1)2﹣8;(3)抛物线的对称轴为直线x=1,抛物线与x轴的另一个交点坐标为(﹣1,0),设抛物线解析式为y=a(x﹣3)(x+1),把(2,﹣3)代入得a(2﹣3)(2+1)=﹣3,解得a=1,所以抛物线解析式为y=(x﹣3)(x+1),即y=x2﹣2x﹣3;(4)当x=0时,y=﹣x+3=3,则直线与y轴的交点坐标为(0,3),当y=0时,﹣x+3=0,解得x=2,则直线与x轴的交点坐标为(2,0),设抛物线解析式为y=ax2+bx+c,把(0,3),(2,0),(1,1)代入得,解得,所以抛物线解析式为y=x2﹣x+3.27.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.28.已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.【解答】解:(1)令x=0,则y=c,故C(0,c),∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,﹣3);(2)∵x1x2<0,∴x1,x2异号,①若C(0,3),即c=3,把C(0,3)代入y2=﹣3x+t,则0+t=3,即t=3,∴y2=﹣3x+3,把A(x1,0)代入y2=﹣3x+3,则﹣3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1﹣x2=4,解得:x2=﹣3,则B(﹣3,0),代入y1=ax2+bx+3得,,解得:,∴y1=﹣x2﹣2x+3=﹣(x+1)2+4,则当x≤﹣1时,y随x增大而增大.②若C(0,﹣3),即c=﹣3,把C(0,﹣3)代入y2=﹣3x+t,则0+t=﹣3,即t=﹣3,∴y2=﹣3x﹣3,把A(x1,0),代入y2=﹣3x﹣3,则﹣3x1﹣3=0,即x1=﹣1,∴A(﹣1,0),∵x1,x2异号,x1=﹣1<0,∴x2>0∵|x1|+|x2|=4,∴1+x2=4,解得:x2=3,则B(3,0),代入y1=ax2+bx﹣3得,,解得:,∴y1=x2﹣2x﹣3=(x﹣1)2﹣4,则当x≥1时,y随x增大而增大,综上所述,若c=3,当y随x增大而增大时,x≤﹣1;若c=﹣3,当y随x增大而增大时,x≥1;(3)①若c=3,则y1=﹣x2﹣2x+3=﹣(x+1)2+4,y2=﹣3x+3,y1向左平移n个单位后,则解析式为:y3=﹣(x+1+n)2+4,则当x≤﹣1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x+3﹣n,要使平移后直线与P有公共点,则当x=﹣1﹣n,y3≥y4,即﹣(﹣1﹣n+1+n)2+4≥﹣3(﹣1﹣n)+3﹣n,解得:n≤﹣1,∵n>0,∴n≤﹣1不符合条件,应舍去;②若c=﹣3,则y1=x2﹣2x﹣3=(x﹣1)2﹣4,y2=﹣3x﹣3,y1向左平移n个单位后,则解析式为:y3=(x﹣1+n)2﹣4,则当x≥1﹣n时,y随x增大而增大,y2向下平移n个单位后,则解析式为:y4=﹣3x﹣3﹣n,要使平移后直线与P有公共点,则当x=1﹣n,y3≤y4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,2n2﹣5n=2(n﹣)2﹣,∴当n=时,2n2﹣5n的最小值为:﹣.29.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(﹣2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+4交x轴于A(﹣2,0),∴0=4a﹣2b+4,∵对称轴是x=3,∴﹣=3,即6a+b=0,两关于a、b的方程联立解得a=﹣,b=,∴抛物线为y=﹣x2+x+4.(2)如图1所示,∵四边形为平行四边形,且BC∥MN,∴BC=MN.①N点在M点下方,即M向下平移4个单位,向右平移3个单位与N重合.设M1(x,﹣x2+x+4),则N1(x+3,﹣x2+x),∵N1在x轴上,∴﹣x2+x=0,解得x=0(M与C重合,舍去),或x=6,∴x M=6,∴M1(6,4).②M点在N点右下方,即N向下平移4个单位,向右平移3个单位与M重合.设M(x,﹣x2+x+4),则N(x﹣3,﹣x2+x+8),∵N在x轴上,∴﹣x2+x+8=0,解得x=3﹣,或x=3+,∴x M=3﹣,或3+.∴M2(3﹣,﹣4)或M3(3+,﹣4)综上所述,M的坐标为(6,4)或(3﹣,﹣4)或(3+,﹣4).(3)∵OC=4,OB=3,∴BC=5.如果△PBD≌△PBC,那么BD=BC=5,∵D在x轴上,∴D为(﹣2,0)或(8,0).①当D为(﹣2,0)时,连接CD,过B作直线BE平分∠DBC交CD于E,交抛物线于P1,P2,连接P2C、P2D,如图2所示,此时△P1BC≌△P1BD,△P2BC≌△P2BD,∵BC=BD,∴E为CD的中点,即E(﹣1,2),设过E(﹣1,2),B(3,0)的直线为y=kx+b,则,解得,∴BE:y=﹣x+.设P(x,y),则有,解得,或,则P1(4+,),P2(4﹣,).②当D为(8,0)时,连接CD,过B作直线BF平分∠DBC交CD于F,交抛物线于P3,P4,如图3所示,此时△P3BC≌△P3BD,△P4BC≌△P4BD,∵BC=BD,∴F为CD的中点,即F(4,2),设过F(4,2),B(3,0)的直线为y=kx+b,则,解得,∴BF:y=2x﹣6.设P(x,y),则有,解得或,则P3(﹣1+,﹣8+2),P4(﹣1﹣,﹣8﹣2).综上所述,点P的坐标为(4+,)或(4﹣,)或(﹣1+,﹣8+2)或(﹣1﹣,﹣8﹣2).。
【三套打包】长沙市八年级下学期期中数学试卷含答案

八年级下册数学期中考试题【答案】一、选择题(共10小题:共20分)1.如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作P E A B ⊥于点E ,若3PE =,则点P 到AD 与BC 的距离之和为( ).A .3B .4C .5D .6【答案】6【解析】过P 作PM AD ⊥,PN BC ⊥,由题意知AP 平分BAD ∠,∴3PM PE ==,同理3PN PE ==,∴6PM PN +=.2.若正比例函数21(1)my m x -=-的图象经过第二、四象限,则m 的值为( ). A.1B .1-CD .【答案】D【解析】21(1)my m x -=-,若为正比例函数,则211m -=,且10m -<,计算可得m =3.下列函数中,y 随x 着的增大而减小的是( ).A .1x y =+B .21y x =--C .2y x =D .32y x =-【答案】B【解析】A .1y x =-,10k =>y 随x 的增大而增大. B .21y x =--,20k =-<,y 随x 的增大而减小.C .2y x =,20k =>,y 随x 的增大而增大.D .32y x =-,30k =>,y 随x 的增大而增大.4.若x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ). A .1k -≥B .1k >-C .k ≥-1且0k ≠D .1k >-且0k ≠【答案】D【解析】若方程有两个不相等的实数根,则满足①二次项系数不为0.②240b ac ∆=->,即①0k ≠②224(2)4(1)0b ac k ∆=-=--⋅⋅->,解得1k >-且0k ≠.5.如图,在四边形ABCD 中,E ,F 分别为DC ,AB 的中点,G 是AC 的中点,则EF 与AD CB +的关系是( ).A .2EF AD BC =+B .2EF AD BC >+C .2EF AD BC <+D .不确定【答案】C【解析】∵E 为DC 中点,G 是AC 中点,∴12EG AD ∥. 同理.12FG BC ∥,在EGF △中,EG FG EF +>, ∴2()2EG FG EF +>,即AD BC EF +>.7.无论m 为何实数,直线2y x m =+与4y x =-+的交点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】2y x m =+与4y x =-+的交点一定4y x =-+在上,而4y x =-+不经过第三象限.8.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为( ).A .8%B .18% 八年级下学期期中考试数学试题及答案一.选择题(共10小题,满分30分,每小题3分)1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y km与已用时间x h之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h3.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7B.2:2:7:7C.2:7:7:2D.2:3:4:5 4.下列各组线段中,能构成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.4,6,75.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>06.如图,在菱形ABCD中,AB=2,∠B=60°,E、F分别是边BC、CD中点,则△AEF 周长等于()A.B.C.D.37.如图,矩形ABCD中,∠AOB=60°,AB=2,则AC的长为()A.2B.4C.2D.48.将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则∠EDP的大小为()A.80°B.100°C.120°D.不能确定9.已知一次函数y=﹣mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2B.m<0,n<2C.m<0,n>2D.m>0,n>2 10.如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④二.填空题(共8小题,满分16分,每小题2分)11.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=.12.已知点P(﹣2,a)在一次函数y=3x+1的图象上,则a=.13.如图,在边长为4的正方形ABCD中,点E是BC上的一定点,且BE=3,点P是BD 上的一动点,则△PEC周长的最小值是.14.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.15.如图,把△ABC沿EF翻折,叠合后的图形如图.若∠A=60°,∠1=95°,则∠2的度数为.16.将直线y=2x+4沿y轴向下平移3个单位,则得到的新直线所对应的函数表达式为.17.在菱形ABCD中,AB=5cm,BC边上的高AH=3cm,那么对角线AC的长为cm.18.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.2元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.1元计算(不足1分钟按1分钟计算).在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分钟)之间的函数关系式为.三.解答题(共6小题,满分42分,每小题7分)19.设一次函数y=kx+b的图象过点A(2,﹣1)和点B,其中点B是直线y=x+3与y 轴的交点,求这个一次函数的解析式.20.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为.21.如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.22.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A 品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?23.如图,在△ABC 中,∠A =135°,AB =20,AC =30,求△ABC 的面积.24.阅读材料,回答问题:(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.”. 上述记载表明了:在Rt △ABC 中,如果∠C =90°,BC =a ,AC =b ,AB =c ,那么a ,b ,c 三者之间的数量关系是: .(2)对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如图,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:∵S △ABC =ab ,S 正方形ABDE =c 2,S 正方形MNPQ = .又∵ = ,∴(a +b )2=4×,整理得a 2+2ab +b 2=2ab +c 2,∴ .四.解答题(共2小题,满分12分,每小题6分)25.如图:在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线交BC 于点E (尺规作图的痕迹保留在图中了),连接EF .(1)求证:四边形ABEF 为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.26.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足(a+3)2+=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP =S△AOB,请求出点P的坐标;(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.2018-2019学年北京市第八十五中学八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.2.【分析】观察函数图象得到小敏、小聪相遇时,小聪走了4.8千米,接着小敏再用2.8小时﹣1.6小时=1.2小时到达B点,然后根据速度公式计算他们的速度.【解答】解:小敏从相遇到B点用了2.8﹣1.6=1.2小时,所以小敏的速度==4(千米/时),小聪从B点到相遇用了1.6小时,所以小聪的速度==3(千米/时).故选:D.【点评】本题考查了函数的图象:对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.函数图形上的任意点(x,y)都满足其函数的解析式;满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P (x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上.3.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:7:2:7.故选:A.【点评】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.4.【分析】判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32=13≠42,故A选项构成不是直角三角形;B、32+42=25≠62,故B选项构成不是直角三角形;C、52+122=169=132,故C选项构成是直角三角形;D、42+62=52≠72,故D选项构成不是直角三角形.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.【分析】根据逆命题与原命题的关系,先写出四个命题的逆命题,然后依次利用对顶角的定义、平行线的性质、有理数的性质进行判断.【解答】解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故A选项错误;B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故B选项正确;C、若a=b,则a2=b2的逆命题为若a2=b2,则a=b,此逆命题为假命题,故C选项错误;D、若a>0,b>0,则a2+b2>0的逆命题为若a2+b2>0,则a>0,b>0,此逆命题为假命题,故D选项错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.考查逆命题是否为真命题,关键先找出逆命题,再进行判断.6.【分析】连接AC,然后判定△ABC是等边三角形,根据等边三角形的性质求出AE,∠EAC=30°,同理可得AF,∠CAF=30°,然后判定△AEF是等边三角形,再根据等边三角形的周长求解即可.【解答】解:如图,连接AC,∵菱形ABCD,∠B=60°,∴△ABC是等边三角形,∵点E是BC的中点,∴AE=,∠EAC=30°,同理可得:AF=,∠FAC=30°,∴AE=AF,∠EAC=∠FAC,∴△AEF是等边三角形,∴△AEF的周长=3×=3.故选:B.【点评】本题考查了菱形的性质,等边三角形的判定与性质,作辅助线构造出等边三角形是解题的关键,也是本题的突破点.7.【分析】根据矩形对角线的性质可推出△ABO为等边三角形.已知AB=2,易求AC.【解答】解:∵四边形ABCD是矩形,∴AO=BO,∵∠AOB=60°,∴∠OAB=∠ABO=60°,∴△ABO是等边三角形,∵AB=2,∴AO=BO=AB=2.∴AC=2A0=4,故选:B.【点评】本题考查的是矩形的性质以及等边三角形的有关知识,题目难度不大.8.【分析】根据旋转的性质得到∠BAD=100°,AB=AD,根据三角形内角和定理得到∠B=∠ADB=40°,计算即可.【解答】解:由旋转的性质可知,∠BAD=100°,AB=AD,∴∠B=∠ADB=40°,∴∠ADE=∠B=40°,∴∠EDP=180°﹣∠ADB﹣∠ADE=100°,故选:B.【点评】本题考查的是旋转变换的性质,掌握旋转方向、旋转角以及旋转的性质是解题的关键.9.【分析】根据一次函数图象经过第一、二、三象限,即可得出﹣m>0、n﹣2>0,解之即可得出结论.【解答】解:∵一次函数y=﹣mx+n﹣2的图象经过第一、二、三象限,∴,∴m<0,n>2.故选:C.【点评】本题考查了一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.10.【分析】根据函数图象上特殊点的坐标和实际意义即可作出判断.【解答】解:根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;②甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选:B.【点评】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到随着自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二.填空题(共8小题,满分16分,每小题2分)11.【分析】直接利用关于原点对称点的性质得出a,b的值进而得出答案.【解答】解:∵点A(2,4)与点B(b﹣1,2a)关于原点对称,∴b﹣1=﹣2,2a=﹣4,解得:b=﹣1,a=﹣2,则ab=2.故答案为:2.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.12.【分析】把点P的坐标代入函数解析式,列出关于a的方程,通过解方程可以求得a 的值.【解答】解:∵点P(﹣2,a)在一次函数y=3x+1的图象上,∴a=3×(﹣2)+1=﹣5.故答案是:﹣5.【点评】本题考查了一次函数图象上点的坐标特征.此题利用代入法求得未知数a的值.13.【分析】根据正方形的性质可得点C、点A关于BD对称,从而连接AE,则AE与BD 交点P′即是点P的位置,利用勾股定理求解AE即可解决问题;【解答】解:∵点C、点A关于BD对称,∴AE与BD的交点P′即是点P的位置,此时满足PE+PC的值最小,又∵AB=BC=BE+EC=12,∴在RT△ABE中,AE=AP′+P′E=P′C+P′E==5,∴△PEC的周长的最小值=5+1=6.故答案为6.【点评】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用,利用轴对称的知识找出最短路径是解题关键,难度一般.14.【分析】因为菱形的面积为两条对角线积的一半,所以这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为24【点评】此题考查了菱形面积的求解方法:①底乘以高,②对角线积的一半.15.【分析】先根据折叠的性质得到∠BEF=∠B′EF,∠CFE=∠C′FE,再根据邻补角的定义得到180°﹣∠AEF=∠1+∠AEF,180°﹣∠AFE=∠2+∠AFE,则可计算出∠AEF=42.5°,再根据三角形内角和定理计算出∠AFE=77.5°,然后把∠AFE=77.5°代入180°﹣∠AFE=∠2+∠AFE即可得到∠2的度数.【解答】解:如图,∵△ABC沿EF翻折,∴∠BEF=∠B′EF,∠CFE=∠C′FE,∴180°﹣∠AEF=∠1+∠AEF,180°﹣∠AFE=∠2+∠AFE,∵∠1=95°,∴∠AEF=(180°﹣95°)=42.5°,∵∠A+∠AEF+∠AFE=180°,∴∠AFE=180°﹣60°﹣42.5°=77.5°,∴180°﹣77.5=∠2+77.5°,∴∠2=25°.故答案为25°.【点评】本题考查了折叠的性质:翻折变换(折叠问题)实质上就是轴对称变换;折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4﹣3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.17.【分析】分AH在菱形ABCD内部,若AH在菱形ABCD外部两种情况讨论,由勾股定理可求AC的长.【解答】解:如图,若AH在菱形ABCD内部,连接AC∵四边形ABCD是菱形∴AB=BC=5cm在Rt△ABH中,BH==4cm∴CH=BC﹣BH=1,∴AC==如图,若AH在菱形ABCD外部,连接AC∵四边形ABCD是菱形∴AB=BC=5在Rt△ABH中,BH==4∴CH=BC+BH=9,∴AC==3故答案为:或3【点评】本题考查了菱形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.18.【分析】话费=三分钟以内的基本话费0.2+超过3分钟的时间×0.1,把相关数值代入即可求解.【解答】解:超过3分钟的话费为0.1×(x﹣3),所以:通话时间超过3分钟,话费y(元)与通话时间x之间的函数关系式为y=0.2+0.1x (x﹣3)=0.1x﹣0.1.故答案为:y=0.1x﹣0.1.【点评】考查了函数关系式,解决本题的关键是理解话费分为规定时间的费用+超过规定时间的费用.三.解答题(共6小题,满分42分,每小题7分)19.【分析】先利用解析式y=x+3确定B点坐标,然后利用待定系数法求经过A、B两点的一次函数解析式.【解答】解:当x=0时,y=x+3=3,则B点坐标为(0,3),把A(2,﹣1),B(0,3)代入y=kx+b得,解得,所以一次函数解析式为y=﹣2x+3.【点评】本题考查了待定系数法求一次函数解析式:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.也考查了数形结合的思想.20.【分析】(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接可得;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得.【解答】解:(1)如图所示,△A′B′C即为所求;(2)①∵AC==5,∠ACA′=90°,∴点A经过的路径的长为=,故答案为:;②由图知点B′的坐标为(﹣1,3),故答案为:(﹣1,3).【点评】本题主要考查作图﹣旋转变换,解题的关键是根据旋转变换的定义作出对应点及弧长公式.21.【分析】可连接AE、DB、BE,BE交AD于点O,由线段之间的关系可得OF=OC,OB=OE,可证明其为平行四边形.【解答】证明:连接AE、DB、BE,BE交AD于点O,∵AB DE,∴四边形ABDE是平行四边形,∴OB=OE,OA=OD,∵AF=DC,∴OF=OC,∴四边形BCEF是平行四边形.【点评】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.22.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得,,解得.答:A、B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48;(3)当x=50时,y1=24x=1200,y2=22.4x+48=1168,∵1168<1200,∴买B品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.23.【分析】过点B 作BE ⊥AC ,根据勾股定理可求得BE ,再根据三角形的面积公式求出答案.【解答】解:过点B 作BE ⊥AC ,∵∠A =135°,∴∠BAE =180°﹣∠A =180°﹣135°=45°,∴∠ABE =90°﹣∠BAE =90°﹣45°=45°,在Rt △BAE 中,BE 2+AE 2=AB 2,∵AB =20,∴BE ==10,∵AC =30,∴S △ABC =AC •BE =×30×10=150.【点评】本题考查了解直角三角形,勾股定理以及三角形的面积公式,是基础知识比较简单.24.【分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可.【解答】解:(1)在Rt △ABC 中,∠C =90°,BC =a ,AC =b ,AB =c ,由勾股定理得,a 2+b 2=c 2,故答案为:a 2+b 2=c 2;(2)∵S △ABC =,S 正方形ABCD =c 2,S 正方形MNPQ =(a +b )2;又∵正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积, ∴(a +b )2=4×ab +c 2,整理得,a 2+2ab +b 2=2ab +c 2,∴a2+b2=c2,故答案为:(a+b)2;正方形的面积;四个全等直角三角形的面积的面积+正方形AEDB 的面积;a2+b2=c2.【点评】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.四.解答题(共2小题,满分12分,每小题6分)25.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO 的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.【点评】此题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.26.【分析】(1)根据非负数的性质,可得a,b,根据待定系数法,可得函数解析式;(2)根据平行线间的距离相等,可得Q到AO的距离等于B到AO的距离,根据等底等高的三角形的面积相等,可得S△AOP =S△AOB,根据解方程组,可得P点坐标;(3)根据等腰直角三角形的性质,可得关于a的方程,根据解方程,可得a,根据平行于x轴直线上点的纵坐标相等,可得答案.【解答】解:(1)由(a+3)2+=0,得a=﹣3,b=4,即A(﹣3,3),B(0,4),设l2的解析式为y=kx+b,将A,B点坐标代入函数解析式,得,解得,l2的解析式为y=x+4;(2)如图1,作PB∥AO,P到AO的距离等于B到AO的距离,S△AOP =S△AOB.∵PB∥AO,PB过B点(0,4),∴PB的解析式为y=﹣x+4或y=﹣x﹣4,又P在直线y=5上,联立PB及直线y=5,得﹣x+4=5或﹣x﹣4=5,解得x=﹣1或﹣9,∴P点坐标为(﹣1,5)或(﹣9,5);(3)设M点的坐标为(a,﹣a),N(a,a+4),∵点M在点N的下方,∴MN=a+4﹣(﹣a)=+4,如图2,当∠NMQ=90°时,即MQ∥x轴,NM=MQ,+4=﹣a,解得a=﹣,即M(﹣,),∴Q(0,);如图3,当∠MNQ=90°时,即NQ∥x轴,NM=NQ,+4=﹣a,解得a=﹣,即N(﹣,),∴Q(0,),如图4,当∠MQN=90°时,即NM∥y轴,MQ=NQ,a+2=﹣a,解得a=﹣,∴Q(0,).综上所述:Q点的坐标为(0,)或(0,)或(0,).【点评】本题考查了一次函数综合题,解(1)的关键是利用非负数的性质得出a ,b 的值,又利用了待定系数法;解(2)的关键是利用等底等高的三角形的面积相等得出P 在过B 点且平行AO 的直线上;解(3)的关键是利用等腰直角三角形的性质得出关于a 的方程,要分类讨论,以防遗漏.人教版八年级数学下册期中考试试题(含答案)人教版八年级下学期期中数学试卷命题范围:第16—18章一、选择题(本题共10小题,每小题4分,共10分)1.计算 的结果中( )A.9 B.-9 C.3 D.-32. 式子 在实数范围内有意义,则x 的取值是( ) A. B. C. D.3. 在以线段a ,b ,c 的长三边的三角形中,不能构成直角三角形的是( ) A.a=4,b=5,c=6 B.a:b:c=5:12:13 C. , , D.a=4,b=5,c=34.下列各式中,属于最简二次根式的是( )A. B. C. D.5. 如图,在矩形ABCD 中,AB 与BC 的长度比为3:4,若该矩形的周长为28,则BD 的长为( )A.5 B.6 C.8 D.106. 整数部分是( ) A.1 B.2 C.3 D.47. 如图,在菱形ABCD 中,AB=3,∠ABC=60 ,则对角线BD 的长是( ) A. B.C.6D.3第10题图第5题图ABBD8.已知一个直角三角形斜边为20,一条直角边长为16,那么它的面积是( ) A.160 B.48 C.60 D.969. 在四边形ABCD 中,有①AB ∥CD ;②AD ∥BC ;③AB=CD ;④AD=BC ,从以上条件选两个,使四边形ABCD 为平行四边形的选法共有( ) A.3种 B.4种 C.5种 D.6种 10.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC:∠EDA=1:3 ,且AC=12,则DE 的长度是( )A.3 B.6 C. D.二、填空题(本题共4小题,第小题5分,共20分) 11.计算:_________。
湖南初二初中数学期中考试带答案解析

湖南初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各有理式中,分式有(),,,,A.1个B.2个C.3个D.4个2.如图,在△中,点是延长线上一点=40°,=120°,则等于()A.60°B.70°C.80°D.90°3.下面四个图形中,线段BE是△ABC的高的图是()4.下列计算正确的是( )A.2-2= -4B.2-2= 4C.2-2=D.2-2=5.在下列长度的各组线段中,能组成三角形的是()A.1,2,4B.1,4,9C.3,4,5D.4,5,9 6.如图,在△中,=36°是边上的高,则的度数是()A.18°B.24°C.30°D.36°7.下列命题不是真命题的是()A.两直线平行同位角相等B.对顶角相等C.若,则D.若,则8.已知在△ABC中有两个角的大小分别为40°和70°,则这个三角形是A.直角三角形B.等边三角形C.钝角三角形D.等腰三角形9.解分式方程,去分母后所得的方程是()A.B.C.D.10.校运动会上,初二(3)班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为元,根据题意可列方程为()A.B.C.D.二、填空题1.写出“两直线平行,内错角相等.”的逆命题2.当x=时,分式无意义。
3.分式,,的最简公分母为。
4.某红外线遥控器发出的红外线波长为0.000 000 94 m,用科学记数法表示这个数是。
5.计算:=。
6.等边三角形是轴对称图形,它有___ ___条对称轴。
7.分式方程的根为8.在△ABC中,,则9.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E, AE=3cm,△ADC•的周长为9cm,则△ABC的周长是____ ___10.若解分式方程产生增根,则____ ___三、计算题1.(4分)计算:2.(4分)计算:3.(4分)先约分,再求值其中四、解答题1.(4分)解方程:2.(5分)等腰三角形的两边长分别为7和3,求这个等腰三角形的周长3.(5分)已知:如图∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC,求证:AB=AC4.(7分)同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市.求两车的速度.5.(7分)已知:在Rt△ABC中,∠C=90°,E为AB的中点,且DE⊥AB于E,若∠CAD :∠DAB=1﹕2,求∠B的度数.湖南初二初中数学期中考试答案及解析一、选择题1.下列各有理式中,分式有(),,,,A.1个B.2个C.3个D.4个【答案】B【解析】判断分式的根据是看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是分式因此是分式。
2017年湖南省长沙市岳麓区麓山国际实验学校中考数学一模试卷带答案解析

2017年湖南省长沙市岳麓区麓山国际实验学校中考数学一模试卷一、选择题(每小题3分,共36分)1.(3分)在下列选项中,具有相反意义的量是()A.收入20元与支出30元B.上升了6米和后退了7米C.卖出10斤米和盈利10元D.向东行30米和向北行30米2.(3分)x的2倍与y的和的平方用代数式表示为()A.(2x+y)2B.2x+y2C.2x2+y2D.2(x+y)23.(3分)人体中红细胞的直径约为0.0000077m,用科学记数法表示数的结果是()A.0.77×10﹣5m B.0.77×10﹣6m C.7.7×10﹣5m D.7.7×10﹣6m4.(3分)已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.(3分)下列函数表达式中,y不是x的反比例函数的是()A.y= B.y= C.y=D.xy=6.(3分)数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4 B.4.5 C.5 D.67.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.8.(3分)如图所示正三棱柱的主视图是()A.B.C.D.9.(3分)下列事件中是必然事件的是()A.﹣a是负数B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.平移后的图形与原来对应线段相等10.(3分)如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD变形为以A 为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()A.12 B.14 C.16 D.3611.(3分)下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的内心到三角形各边的距离都相等;④相等的弦所对的弧相等.其中正确的有()A.4个 B.3个 C.2个 D.1个12.如图,矩形ABCD中,AB=8,BC=6.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.D.二、填空题(每小题3分,共18分)13.(3分)的平方根是.14.(3分)如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB 交BC与E,若AB=6,那么GE=.15.(3分)若a+b=2,则代数式3﹣2a﹣2b=.16.(3分)P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.17.(3分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=度.18.(3分)如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=3,则BC=.三、解答题(共5小题,满分39分)19.(6分)计算:﹣(﹣)﹣1+(﹣)0﹣6sin60°.20.(6分)先化简,再求值:(x+y)2﹣2y(x+y),其中x=﹣1,y=.21.(8分)某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.22.(9分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.23.(10分)去冬今春,某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来.四、综合题(第25,26题每题10分,共20分)24.(10分)如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.25.(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C、D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.26.(10分)已知二次函数y=ax2+bx﹣2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.2017年湖南省长沙市岳麓区麓山国际实验学校中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)在下列选项中,具有相反意义的量是()A.收入20元与支出30元B.上升了6米和后退了7米C.卖出10斤米和盈利10元D.向东行30米和向北行30米【解答】解:A、收入20元与支出30元是相反意义的量,故A正确;故选:A.2.(3分)x的2倍与y的和的平方用代数式表示为()A.(2x+y)2B.2x+y2C.2x2+y2D.2(x+y)2【解答】解:“x的2倍与y的和的平方”可以表示为:(2x+y)2.故选A.3.(3分)人体中红细胞的直径约为0.0000077m,用科学记数法表示数的结果是()A.0.77×10﹣5m B.0.77×10﹣6m C.7.7×10﹣5m D.7.7×10﹣6m【解答】解:0.000 007 7=7.7×10﹣6m.故选D.4.(3分)已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.5.(3分)下列函数表达式中,y不是x的反比例函数的是()A.y= B.y= C.y=D.xy=【解答】解:A、y=是反比例函数,故A不符合题意;B、y=是正比例函数,故B符合题意;C、y=是反比例函数,故C不符合题意;D、xy=是反比例函数,故D不符合题意.故选B.6.(3分)数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4 B.4.5 C.5 D.6【解答】解:∵3,6,7,4,x的平均数是5,∴x=5×5﹣(3+6+7+4)=25﹣20=5,∴在数据3,6,7,4,5中按照从小到大是3,4,5,6,7,故这组数据的中位数5,故选C.7.(3分)下列图形中,不是轴对称图形的是()A.B. C.D.【解答】解:A、圆是轴对称图形,故本选项错误;B、等边三角形是轴对称图形,故本选项错误;C、平行四边形不是轴对称图形,故本选项正确;D、长方形是轴对称图形,故本选项错误.故选C.8.(3分)如图所示正三棱柱的主视图是()A.B.C.D.【解答】解:如图所示正三棱柱的主视图是平行排列的两个矩形,故选B.9.(3分)下列事件中是必然事件的是()A.﹣a是负数B.两个相似图形是位似图形C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.平移后的图形与原来对应线段相等【解答】解:A、﹣a是非正数,是随机事件,故A错误;B、两个相似图形是位似图形是随机事件,故B错误;C、随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C错误;D、平移后的图形与原来对应线段相等是必然事件,故D正确;故选:D.10.(3分)如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD变形为以A 为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()A.12 B.14 C.16 D.36【解答】解:∵正方形的边长为6,∴的长度=12,=lr=×12×6=36.∴S扇形DAB故选D.11.(3分)下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的内心到三角形各边的距离都相等;④相等的弦所对的弧相等.其中正确的有()A.4个 B.3个 C.2个 D.1个【解答】解:直径是圆中最长的弦,①故正确;经过不在同一直线上的三点可以作一个圆,②故错误;三角形的外心是三角形三边垂直平分线的交点,到三角形的三个顶点的距离相等,③故正确;同一条弦对着两条不同的弧,可能相等也可能不相等,④故错误;正确的有2个.故选C.12.如图,矩形ABCD中,AB=8,BC=6.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.D.【解答】解:如图,连接EF,交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC==10,∴AO=AC=5,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴=,∴=,∴AE=.故选:D.二、填空题(每小题3分,共18分)13.(3分)的平方根是±.【解答】解:∵2==(±)2,∴2的平方根是±.故答案为:±.14.(3分)如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB 交BC与E,若AB=6,那么GE=2.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,即=,∴EG=2,故答案为:2.15.(3分)若a+b=2,则代数式3﹣2a﹣2b=﹣1.【解答】解:∵a+b=2,∴3﹣2a﹣2b=3﹣2(a+b),=3﹣2×2,=3﹣4,=﹣1.故答案为:﹣1.16.(3分)P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=4.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4×…×(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∵1×2×3×4=24,∴m=4,故答案为:4.17.(3分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=36度.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.18.(3分)如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=3,则BC=3.【解答】解:连接CD;Rt△AOB中,∠A=30°,OB=3,则AB=6,OA=3;在Rt△ACD中,∠A=30°,AD=2OA=6,则AC=cos30°×6=×6=9,则BC=AC﹣AB=9﹣6=3.故答案是:3.三、解答题(共5小题,满分39分)19.(6分)计算:﹣(﹣)﹣1+(﹣)0﹣6sin60°.【解答】解:原式=3﹣(﹣3)+1﹣6×=4.20.(6分)先化简,再求值:(x+y)2﹣2y(x+y),其中x=﹣1,y=.【解答】解:(x+y)2﹣2y(x+y)=x2+2xy+y2﹣2xy﹣2y2=x2﹣y2,当x=﹣1,y=时,原式=(﹣1)2﹣()2=2+1﹣2﹣3=﹣2.21.(8分)某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为25人,扇形统计图中短跑项目所对应圆心角的度数为72°;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.【解答】解:(1)由扇形统计图和条形统计图可得:参加复选的学生总人数为:(5+3)÷32%=25(人);扇形统计图中短跑项目所对应圆心角的度数为:×360°=72°.故答案为:25,72;(2)长跑项目的男生人数为:25×12%﹣2=1,跳高项目的女生人数为:25﹣3﹣2﹣1﹣2﹣5﹣3﹣4=5.如下图:(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人,∴跳高项目中男生被选中的概率=.22.(9分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.【解答】(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,∵,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3.23.(10分)去冬今春,某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来.【解答】解:(1)设饮用水有x件,蔬菜有y件,根据题意得:,解得,答:饮用水和蔬菜各有200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆,根据得:,解这个不等式组,得2≤m≤4,∵m为正整数,∴m=2或3或4,则安排甲、乙两种货车时有3种方案,设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆.四、综合题(第25,26题每题10分,共20分)24.(10分)如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.【解答】解:(1)∵E为AB的中点,∴AB=2BE,∵AB=2AD,∴BE=AD,∵∠A=90°,AD∥BC,∴∠ABC=90°,在△ABD与△BCE中,,∴△ABD≌△BCE,∴CE=BD;(2)∵AB=4,∴AE=BE=2,BC=4,∵FE⊥CE,∴∠FEC=90°,∴∠AEF+∠AFE=∠AEF+∠BEC=90°,∴∠AFE=∠BEC,∴△AEF∽△BCE,∴,∴AF=1;(3)∵△AEF∽△BCE,∴,∴AF=AE,设AF=k,则AE=BE=2k,BC=4k,∴EF==k,CE==2k,∴CF==5k,∴sin∠EFC==.25.(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C、D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【解答】解:(1)(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a=,解得a=,此时正方形的边长为.∴所求“伴侣正方形”的边长为或;(2)如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=;(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣x2+;b、当点A在x 轴正半轴上,点B在y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在x 轴正半轴上,点B在y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y=x2+;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣x2+;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y=x2+;故二次函数的解析式分别为:y=x2+或y=﹣x2+或y=﹣x2+或y=x2+.26.(10分)已知二次函数y=ax2+bx﹣2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【解答】解:(1)由题意得解得:.(2)①由(1)知二次函数为y=x2﹣x﹣2∵A(4,0),∴B(﹣1,0),C(0,﹣2)∴OA=4,OB=1,OC=2∴AB=5,AC=2,BC=∴AC2+BC2=25=AB2∴△ABC为直角三角形,且∠ACB=90°∵AE=2t,AF=t,∴==又∵∠EAF=∠CAB,∴△AEF∽△ACB∴∠AEF=∠ACB=90°∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF=AE=t假设△DCF为直角三角形当点F在线段AC上时ⅰ)若C为直角顶点,则点D与点B重合,如图2∴AE=AB=t=÷2=;ⅱ)若D为直角顶点,如图3∵∠CDF=90°,∴∠ODC+∠EDF=90°∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°∴∠ODC=∠OBC,∴BC=DC∵OC⊥BD,∴OD=OB=1∴AD=3,∴AE=∴t=;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形综上所述,存在时刻t,使得△DCF为直角三角形,t=或t=.②ⅰ)当0<t≤时,重叠部分为△DEF,如图1、图2∴S=×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4过点G作GH⊥BE于H,设GH=m则BH=,DH=2m,∴DB=∵DB=AD﹣AB=4t﹣5∴=4t﹣5,∴m=(4t﹣5)∴S=S△DEF ﹣S△DBG=×2t×t﹣(4t﹣5)×(4t﹣5)=﹣t2+t﹣;ⅲ)当2<t≤时,重叠部分为△BEG,如图5∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t)∴S=×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
湖南省八年级下学期数学期中考试试卷

湖南省八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题(每小题3分,共36分) (共12题;共34分)1. (3分)下列函数关系式:①y=-x;②y=2x+11;③y=x2+x+1;④y=.其中一次函数的个数是()A . 4个B . 3个C . 2个D . 1个2. (3分)△ABC中,∠C=60,高BE经过高AD中点F,EF=1,则BF长为()A . 2B . 3C . 4D . 53. (3分)(2018·陕西) 如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是()A . AB= EFB . AB=2EFC . AB= EFD . AB= EF4. (3分) (2017九上·沙河口期中) 如图,函数y= 与y=kx+2在同一坐标系中,图象只能是下图的()A .B .C .D .5. (3分) (2019八下·淅川期末) 已知四边形,有下列四组条件:① ,;② ,;③ ,;④ , .其中不能判定四边形为平行四边形的一组条件是()A . ①B . ②C . ③D . ④6. (3分) (2019八下·乐山期末) 将直线y=-2x向上平移5个单位,得到的直线的解析式为()A . y=-2x-5B . y=-2x+5C . y=-2(x-5)D . y=-2(x+5)7. (3分) (2020八下·公主岭月考) 如图,在平面直角坐标系中,点A,B均在坐标轴上,且AB=4,以A,O,B为顶点作矩形AOBC,对角线AB,OC相交于点P,设点P的坐标为(x,y),则x,y应满足的关系是()A .B .C .D .8. (3分) (2020八下·南召期末) 下列函数中,y随着 x的减小而增大的是()A .B .C .D .9. (2分) (2019八下·赵县期末) 将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是()A . 12cm≤h≤19cmB . 12cm≤h≤13cmC . 11cm≤h≤12cmD . 5cm≤h≤12cm10. (2分) (2019八上·涡阳月考) 甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A . 前2分钟,乙的平均速度比甲快B . 5分钟时两人都跑了500米C . 甲跑完800米的平均速度为100米/分D . 甲乙两人8分钟各跑了800米11. (3分) (2019七下·遂宁期中) 若方程组的解中x与y相等,则m的值为()A . 3B . 9C . 10D . 2012. (3分) (2019八下·乌鲁木齐期中) 如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC 于H,FD=12,则HE等于()A . 24B . 12C . 6D . 8二、填空题(每小题3分,共18分) (共6题;共17分)13. (3分) (2018九上·广水期中) 如图,P是等边△ABC内一点,且PA=6,PC=8,PB=10,若△APB绕点A逆时针旋转60°后,得到△AP′C,则∠APC=°.14. (3分) (2019八下·朝阳期末) 在平面直角坐标系中,一次函数 ( 、为常数, )的图象如图所示,根据图象中的信息可求得关于的方程的解为.15. (3分) (2020八下·莲湖期末) 如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为.16. (3分)已知关于x的方程ax-5=6的解为x=3,则一次函数y=ax-11与x轴的交点的坐标为.17. (2分) (2020九下·襄阳月考) 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为.18. (3分) (2020八上·黑山期中) 一次函数的图象经过象限.三、解答题(共8题,共66分) (共8题;共69分)19. (5分)计算下列各式的值:(1)(2)(3).20. (5分)(2017·浙江模拟) 先化简,再求值:,其中.21. (10分) (2019八上·慈溪月考) 解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)22. (5分)直线y=kx+b 与x轴、y轴的交点分别为(﹣1,0)、(0,3),求这条直线的解析式,并求出该直线与两坐标轴围成的三角形面积.23. (2分) (2017八下·云梦期中) 如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)当四边形BFDE是矩形时,求t的值;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.24. (15分)综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年湖南省长沙市麓山国际实验学校八年级(下)
期中数学试卷
参考答案与试题解析
一、选择题(每题3分,共36分)
1.(3分)下列函数中,一定是一次函数的是()
A.y=﹣8x B.y=+3 C.y=5x2+6 D.y=﹣kx+1
【分析】根据一次函数的定义,逐一分析四个选项,此题得解.
【解答】解:A、∵﹣8≠0,
∴y=﹣8x是一次函数,A符合题意;
B、∵自变量x的次数为﹣1,
∴y=+3不是一次函数,B不符合题意;
C、∵自变量x的次数为2,
∴y=5x2+6不是一次函数,C不符合题意;
D、当k=0时,函数y=1为常数函数,不是一次函数,D不符合题意.
故选:A.
【点评】本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.
2.(3分)函数y=kx﹣2的图象经过点P(﹣1,3),则k的值为()
A.1 B.﹣5 C.D.﹣1
【分析】把点(﹣1,3)代入一次函数y=kx﹣2,通过解一次方程来求k的值.【解答】解:∵一次函数y=kx﹣2的图象经过点(﹣1,3),
∴﹣k﹣2=3,
解得k=﹣5.
故选:B.
【点评】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满
足函数关系式y=kx+b(k≠0).
3.(3分)一次函数y=(k﹣1)x+k不经过第三象限,则k的值是()A.1 B.0 C.±1 D.﹣1
【分析】根据一次函数y=(k﹣1)x+k图象在坐标平面内的位置关系先确定k的取值范围,从而求解.
【解答】解:由一次函数y=(k﹣1)x+k的图象不经过第三象限,
则经过第二、四象限或第一、二、四象限,
只经过第二、四象限,则k=0.
又由k<0时,直线必经过二、四象限,故知k﹣1<0,即k<1.
再由图象过一、二象限,即直线与y轴正半轴相交,所以k>0.
当k﹣1=0,即k=1时,y=1,这时直线也不过第三象限,
故0≤k<1.
故选:B.
【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交..
4.(3分)已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
【分析】根据一次函数y=(k﹣2)x+k图象在坐标平面内的位置关系先确定k的取值范围,从而求解.
【解答】解:由一次函数y=(k﹣2)x+k的图象不经过第三象限,
则经过第二、四象限或第一、二、四象限,
只经过第二、四象限,则k=0.
又由k<0时,直线必经过二、四象限,故知k﹣2<0,即k<2.
再由图象过一、二象限,即直线与y轴正半轴相交,所以k>0.。