LTE信令流程分析

合集下载

LTE完整信令流程分析

LTE完整信令流程分析

LTE完整信令流程分析LTE(Long Term Evolution)是4G移动通信技术的一种,其完整信令流程可以分为以下几个步骤:小区、小区选择、多路径环境估计、寻呼和分配、随机接入、授权和安全过程、连接和传输。

首先是小区。

移动设备需要找到一个合适的基站进行连接。

移动设备会周期性地扫描周围的频率和小区,以获得可用的信号质量和相应的小区信息。

接下来是小区选择。

移动设备根据收到的小区广播信息,选择一个最佳的小区进行连接。

选择的依据可以是信号强度、小区负载等因素。

然后是多路径环境估计。

移动设备需要识别并估计信号传输过程中所处的多径环境,以便后续的信号处理和解码。

接着是寻呼和分配。

一旦移动设备完成小区选择,它会请求网络进行寻呼以注册到网络中。

网络会为移动设备分配一个临时标识,并通知移动设备在哪个频率和时间上进行下一步操作。

然后是随机接入。

移动设备在分配的频率和时间上,通过发送一个随机接入信令来请求网络的资源分配。

网络收到请求后会返回分配的资源。

接着是授权和安全过程。

网络会验证移动设备的身份,并通过认证过程分配相应的资源。

同时还会启动安全机制来保护用户数据的传输。

最后是连接和传输。

通过授权和安全过程后,移动设备和网络建立连接,并开始进行数据传输。

LTE使用OFDMA(正交频分复用)和MIMO(多输入多输出)技术来提高系统容量和吞吐量。

除了以上流程,LTE还涉及QoS(服务质量)、移动性管理和位置更新等功能来保证通信的稳定性和无缝性。

总的来说,LTE的完整信令流程包括了小区、小区选择、多路径环境估计、寻呼和分配、随机接入、授权和安全过程、连接和传输等步骤。

通过这些步骤,移动设备可以顺利地连接到LTE网络并传输数据。

这些流程不仅保证了通信的可靠性和稳定性,还提高了网络的容量和吞吐量。

LTE信令流程及信令解码详解

LTE信令流程及信令解码详解

LTE信令流程及信令解码详解LTE(Long Term Evolution)是一种4G无线通信技术,它采用了包括OFDMA(正交频分多址)和MIMO(多输入多输出)等多项技术,以提供高速无线数据传输和更好的用户体验。

LTE信令流程是指在LTE网络中,终端设备和基站之间进行通信时所涉及的一系列信令交互流程。

初始过程是指终端设备在接入LTE网络后,完成相关资源分配和建立数据传输链路的过程。

首先,终端设备会发送系统信息请求信令(RRC Connection Request)给基站,请求获取LTE网络的系统信息,包括频段、带宽等信息。

基站收到请求后,会回复系统信息响应信令(RRC Connection Setup)给终端设备,将LTE网络的系统信息发送给终端设备。

终端设备收到系统信息后,会根据其中的重要参数(如频段和带宽)进行终端配置。

接下来,终端设备会发送随机接入信令(Random Access Preamble)给基站,用于请求分配物理资源。

基站收到随机接入后,会回复随机接入响应信令(Random Access Response),包括一个Temporarily Assigned C-RNTI(临时分配的C-RNTI),用于唯一标识终端设备。

终端设备接收到响应后,会发送接入回执信令(RRC Connection Reestablishment)给基站,用于确认接入成功。

基站收到回执后,会分配一个唯一的UE标识给终端设备,用于后续的数据传输。

保持过程是指终端设备在LTE网络中进行数据传输时的相关信令交互过程。

首先,当终端设备需要发送数据时,会向基站发起调度请求信令(UL-SCH Transmission Request)。

基站收到请求后,会返回一个调度响应信令(UL-SCH Transmission Burst),包括传输资源的分配信息。

终端设备接收到响应后,会根据分配信息将数据进行分组,并在指定的时隙中进行传输。

LTE信令流程及信令解码详解

LTE信令流程及信令解码详解

LTE信令流程及信令解码详解LTE(Long Term Evolution),是第四代移动通信技术标准,以其高速数据传输、低延迟和大容量等特点成为了当前主流的移动通信技术。

本文将详细介绍LTE的信令流程及信令解码。

1.LTE信令流程(1)小区:UE(User Equipment,用户设备)首先需要附近的基站,以确定可用的LTE网络。

这一步骤主要包括RRC(Radio Resource Control,无线资源控制)连接的小区以及测量实体之间的信道质量。

(2)小区选择和附着:在到可用小区后,UE需要选择一个最佳的小区进行附着,该小区将成为UE与网络之间的主要通信接口。

UE将通过与MME(Mobility Management Entity,移动性管理实体)之间的信令交换来进行小区选择和附着。

(3)建立RRC连接:一旦UE成功附着到小区,UE与eNB(Evolved Node B)之间将建立RRC连接。

RRC连接是UE与网络之间进行信令交换和控制的主要通道。

(4)分配和配置资源:在建立RRC连接后,网络将为UE分配必要的物理资源,并配置UE的通信参数,如频率、带宽、功率等。

这些资源和参数将被用于后续的数据传输和通信。

(5)数据传输:一旦资源和参数被配置完毕,UE和eNB之间可以开始进行数据传输。

UE将使用分配的资源来发送和接收数据,而eNB将负责数据的转发和错误处理。

(6)释放RRC连接:当UE无需再与网络进行通信时,UE可以向网络发送释放RRC连接的请求。

网络将收到请求后,释放该连接并回收相应的资源。

2.LTE信令解码(1)空中接口解码:通过对信令数据进行解调和解调来还原原始信令信息。

这种解码方法主要用于分析和处理无线传输过程中的信令,如小区信息、物理广播信息等。

(2)协议解析:通过解析信令的协议头和数据包来获取有关通信过程的详细信息。

这种解码方法可以分析UE与网络之间的控制过程,如RRC连接的建立、释放过程等。

LTE信令流程分析

LTE信令流程分析

LTE信令流程分析LTE(Long Term Evolution)是第四代移动通信(4G)标准之一,为提高用户数据速率、降低网络访问时延、提高系统容量等目标而设计。

第一步是接入过程,移动设备刚刚上电或从休眠状态醒来时需要进行接入过程,该过程包括小区、小区选择、随机接入以及RRC连接建立等。

首先,移动设备进行小区,即附近所有的LTE小区,并获取相应的小区信息,如频点、物理小区ID等。

然后,设备根据一定的选择策略选出需要进行接入的小区。

接下来,设备进行随机接入过程,即向选定的小区发送接入请求,并等待接收到的响应。

最后,设备与小区建立RRC(Radio Resource Control)连接,该连接用于传递控制信息。

第二步是寻呼与分配,当移动设备在LTE网络中需要进行呼叫或数据传输时,需要进行寻呼与分配过程。

寻呼过程是小区向设备发送寻呼消息,设备收到消息后根据自己的标识进行回应,以使小区将后续的数据分配给设备。

数据分配过程是小区将数据分配给设备进行传输。

第三步是资源分配与传输,设备通过与小区的交互,获取到LTE系统中的无线资源,包括时隙、频段等。

之后,设备与小区进行物理信道的配置,包括功率、调制方式等参数的配置。

最后,设备与小区通过物理信道进行数据传输。

第四步是切换过程,当设备从当前小区移动到另一个小区时,需要进行切换过程。

切换可以是基于同一频点的切换,或者是基于不同频点的切换。

在切换过程中,设备会与新小区进行信号质量测量,然后与新小区进行切换协商,最后完成切换。

切换过程需要保证设备与网络的连续性和数据传输可靠性。

第五步是释放过程,当设备不再需要与LTE网络进行交互时,需要进行释放过程,即设备与小区断开连接,释放占用的资源,以便其他设备使用。

综上所述,LTE信令流程包括接入过程、寻呼与分配、资源分配与传输、切换过程以及释放过程。

通过这些流程,LTE网络能够实现高速数据传输、低时延、高系统容量等优势,为用户提供更好的通信服务。

LTE中文版信令流程分析

LTE中文版信令流程分析

LTE中文版信令流程分析LTE(Long Term Evolution)通信网络是一种第四代移动通信技术,其信令流程是指在建立和维持通信连接过程中所涉及的信令消息和流程。

下面将对LTE中文版信令流程进行详细分析。

1.接入网络选择:当移动设备启动或进入新的服务范围时,它会扫描周围的信号,并确定附近的LTE网络。

在这个过程中,设备会发送“接入网络选择”信令消息到基站,以获取附近网络的信息。

基站收到消息后,会返回所有可选网络的信息给移动设备。

2.接入过程:接入过程是移动设备与基站建立初始连接的过程。

移动设备通过发送“随机接入请求”消息开始接入过程。

基站收到请求后,会分配一个时间与频率资源给移动设备,并返回“随机接入响应”消息。

移动设备收到响应消息后,根据分配的资源发送“随机接入确认”消息,即完成接入过程。

3.同步过程:在LTE网络中,设备需要与网络同步,在物理层和逻辑层有两个同步过程。

物理层同步是指设备与基站之间的时钟和帧同步,用于正确接收和发送数据。

逻辑层同步是指设备与网络间的系统信息同步,以获取网络状态和配置信息。

4.小区重选:在设备连接到一个LTE网络后,它会周期性地监测周围的小区,并决定是否切换到更强的信号。

设备通过发送“重选请求”消息来请求网络切换。

基站收到请求后,根据设备的测量报告决定是否接受切换请求,并返回“重选响应”消息通知设备是否切换到新的小区。

5.移动性管理:在移动设备从一个小区到另一个小区切换时,移动性管理起着重要的作用。

设备会周期性地向邻近的小区发送“测量报告”消息,用于测量信号质量和判断是否需要进行切换。

基站会根据设备发送的测量报告来调整切换策略,并采取相应的措施。

6.建立和释放连接:当设备需要与网络建立连接时,它会发送“连接请求”消息到基站。

基站收到请求后,会根据网络资源情况,返回“连接响应”消息。

设备收到响应消息后,会发送“连接确认”消息,以确认连接的建立。

连接释放是指设备与网络断开连接的过程,它可以是主动释放,也可以是被动释放。

LTE常见信令流程总结

LTE常见信令流程总结

LTE常见信令流程总结LTE(Long-Term Evolution)是一种用于移动通信网络的标准,是4G通信技术的一种。

LTE信令流程是指在LTE网络中,设备之间进行通信所涉及的各种信令过程。

在LTE网络中,设备之间的通信主要包括连接建立、数据传输、连接释放等过程,在这些过程中需要经过一系列的信令流程来完成。

LTE信令流程可以分为以下几个主要部分:1.接入过程:接入过程是指设备连接到LTE网络的过程。

在接入过程中,设备首先进行初始接入,即与LTE基站进行随机接入的过程。

接入成功后,设备会进行UE同步和小区选择,确定要连接的LTE基站。

接入过程中的主要信令包括RRC连接建立、测量报告等。

2.连接建立:连接建立是指设备在LTE网络中建立到目标设备的连接的过程。

在连接建立过程中,设备需要先进行RRC连接建立,然后进行UE安全功能的激活,最后进行RAB建立,确保通信质量。

连接建立过程中的主要信令包括RRC连接请求、RRC连接建立等。

3.数据传输:数据传输是LTE网络中最常见的通信过程。

在数据传输过程中,设备通过LTE网络进行数据的发送和接收。

数据传输过程中的主要信令包括PDCP数据传输、RLC数据传输、MAC数据传输等。

4.连接释放:连接释放是指设备在LTE网络中释放连接的过程。

在连接释放过程中,设备需要发送连接释放请求,等待对方设备确认后释放连接。

连接释放过程中的主要信令包括RRC连接释放等。

除了上述主要的信令流程外,LTE网络中还涉及到一些其他重要的信令流程,如小区选择过程、测量报告过程、切换过程、重定向过程等。

这些信令流程都是为了保证LTE网络中设备之间的通信质量和稳定性。

总的来说,LTE网络中的信令流程是为了保证设备之间能够进行有效的通信,并提供高质量的通信服务。

通过了解和掌握LTE网络中的信令流程,可以更好地理解LTE网络的工作原理和特点,更好地进行LTE网络的优化和管理。

同时,随着LTE技术的不断发展和完善,LTE网络中的信令流程也将会不断地进行更新和改进,以适应不断变化的通信需求和用户要求。

LTE常见信令流程总结

LTE常见信令流程总结

LTE常见信令流程总结LTE(Long Term Evolution)是一种第四代移动通信技术,它使用了全新的LTE协议来提供更快速、更高效的无线通信。

LTE中的信令流程是指在通信设备之间进行控制与管理的通信过程。

下面是LTE常见信令流程的总结。

第一步:附着过程(Attach Procedure)附着过程是终端设备和LTE网络之间建立连接的第一步。

终端设备通过发起附着请求向网络注册自己,并提供诸如设备的标识、能力信息等。

LTE网络接收并处理附着请求,然后为终端设备分配唯一的标识符(EPS (Evolved Packet System)标识符)以及一些参数。

第二步:鉴权和加密过程(Authentication and Encryption Procedure)终端设备在完成附着过程后,需要与LTE网络进行鉴权和加密过程。

在这个流程中,终端设备和LTE网络之间进行身份验证和密钥协商。

终端设备提供鉴权向量进行鉴权,并使用鉴权向量中的信息生成加密密钥和完整性密钥。

完成鉴权和加密后,终端设备可以开始与网络进行通信。

第三步:PDP(Packet Data Protocol)激活过程(PDP Activation Procedure)PDP激活过程是为了开启终端设备在数据通信中使用IP(Internet Protocol)网络的能力。

终端设备通过IPv4或IPv6地址请求逻辑通道,以便在终端设备和LTE网络之间传输数据。

网络为终端设备分配地址和QoS(Quality of Service)参数等,并且建立了数据传输所需的电路。

第四步:无线承载资源分配(Radio Bearer Establishment)无线承载资源分配是为终端设备建立与LTE网络之间的物理通路,以进行数据传输。

在这个流程中,网络为终端设备分配物理资源,例如频段、时隙等。

终端设备和网络之间的无线链路建立后,数据传输可以开始。

第五步:UE Context释放过程(UE Context Release Procedure)UE Context释放过程是终端设备与网络之间断开连接的过程。

lte信令流程

lte信令流程

lte信令流程LTE信令流程。

LTE(Long Term Evolution)是第四代移动通信技术的缩写,它在提供更高数据传输速率、更低延迟和更好的覆盖范围方面具有显著优势。

LTE网络中的信令流程是指移动设备和基站之间进行通信时所涉及的信令交换过程。

下面将介绍LTE信令流程的主要内容。

1. 接入过程。

当移动设备需要接入LTE网络时,首先会发送接入请求给附近的基站。

基站收到请求后,会向移动设备发送接入许可。

移动设备收到许可后,会进行随机接入过程,选择一个随机接入时隙,并发送接入请求。

基站收到请求后,会分配一个临时的标识给移动设备,确认接入成功。

2. 呼叫建立过程。

在LTE网络中,呼叫建立过程是指移动设备与网络之间建立通话或数据传输连接的过程。

当移动设备需要发起呼叫时,会向基站发送呼叫请求。

基站收到请求后,会向核心网发送呼叫请求,并等待核心网的响应。

核心网在收到呼叫请求后,会进行用户身份验证和授权,并向基站发送呼叫建立请求。

基站收到建立请求后,会向移动设备发送建立请求,建立通话或数据传输连接。

3. 手over过程。

在移动通信中,手over是指移动设备在通话或数据传输过程中由一个基站切换到另一个基站的过程。

在LTE网络中,手over过程分为两种情况,硬切换和软切换。

硬切换是指移动设备在通话或数据传输过程中突然切换到另一个基站,而软切换是指移动设备在通话或数据传输过程中平滑地切换到另一个基站。

无论是硬切换还是软切换,移动设备在切换过程中都需要与原基站和目标基站进行信令交换,以确保通话或数据传输的连续性。

4. 释放过程。

当通话或数据传输结束时,移动设备会向基站发送释放请求。

基站收到请求后,会向核心网发送释放请求,并等待核心网的响应。

核心网在收到释放请求后,会进行用户鉴权和计费,并向基站发送释放请求。

基站收到释放请求后,会向移动设备发送释放请求,结束通话或数据传输连接。

以上就是LTE信令流程的主要内容。

通过对接入过程、呼叫建立过程、手over过程和释放过程的介绍,我们可以更好地理解LTE 网络中移动设备和基站之间的信令交换过程,为LTE网络的优化和问题排查提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UE可以从网络侧收发数据 监听共享信道上指示控制授权的控制信令 UE可以上报信道质量给网络侧 UE可以根据网络配置进行DRX
LTE中的承载
Bear(承载) in LTE
基 本 概 念 无线承载的分类
Radio Bearer承载空口RRC信令和NAS信令 S1 Bearer 承载eNB与MME间S1-AP信令 NAS消息也可作为NAS PDU附带在RRC消息中发送
基本概念
网络架构
EPC
UU
EPC与E-UTRAN功能划分
基本概念
网络架构
LTE中核心网演进方向为EPC演进核心网(Evolved Packet Core),包含MME (Mobility Management Entity)和S-GW(Serving Gateway),无线接入网 UTRAN(Universal Terrestrial Radio Access Network) 演进方向为EUTRAN(Evolved UTRAN)。EPC和 EUTRAN合称EPS演进分组系统(Evolved Packet System)
MME功能:
寻呼消息分发,MME负责将寻呼消息按照一定的原则分发到相关的eNB; 安全控制; 空闲状态的移动性管理; EPC承载控制; 非接入层信令的加密与完整性保护。
服务网关功能:
终止由于寻呼原因产生的用户平面数据包; 支持由于UE移动性产生的用户平面切换。
PDN网关功能:
逐用户数据包的过滤和检查 用户IP分配、合法监听、上下行业务级的收费、上下行业务级速率控制等
TD-LTE信令流程 分析
黄勇 2013年08月
主要内容
基本概念
网络架构 协议栈结构 接口功能 UE的工作模式与状态 无线承载的分类 NAS消息分类
空口基本信令流程
系统消息 随机接入 寻呼 RRC连接建立、重配、重建 立、释放 测量
端到端业务建立/释放相 关流程
Attach流程 Detach流程 Service Request过程 专用承载建立流程 专用承载修改流程 专用承载释放流程 S1释放流程
网元间用户面整体协议栈
基本概念
协议栈结构
用户面协议栈
安全方面的功能,用户面的加密和解密功能由PDCP子层完成,而3G中用 户数据的加密和解密由RLC和MAC层完成 仅存在一个MAC实体 3G中PDCP层仅用于承载PS业务,广播和多播业务由BMC层协议承载
网元间用户面整体协议栈
基本概念
协议栈结构
用户面协议内部的关系
网络接口
S1接口:eNodeB与EPC X2接口:eNodeB之间 Uu接口:eNodeB与UE
NOTE: 和UMTS相比,由于NodeB 和 RNC 融 合为网元eNodeB ,所以TD-LTE少了Iub接口。 X2接口类似于Iur接口,S1接口类似于Iu接口
EPC与E-UTRAN功能划分
EUTRAN
基 本 概 念 无线承载的分类
数据承载为DRB,通过eNB为其分配的PDSCH来承载
信令承载通过SRB,LTE中有三类SRB
每种SRB可承载信令内容见附录
SRB0:承载RRC消息,映射到CCCH信道
SRB1:承载RRC消息,也可承载NAS消息,映射到DCCH信道
SRB2:承载NAS消息,映射到DCCH信道 UE的RRC连接未建立时,由SRB0承载RRC信令;SRB2未建立时,由SRB1承载NAS信令
基本概念
协议栈结构
层2协议架构(DL)
层2协议架构(UL)
逻辑信道、传输信道和物理信道映射关系见附录
用户面协议内部的关系
基本概念
协议栈结构
MAC(Media Access Control)功能:
信道映射 传输格式选择(调制方式、信道编码) 逻辑信道复用、解复用 动态调度 混合重传
用户面协议内部的关系
X2接口应用层协议主要功能:
支持LTE_ACTIVE状态下UE的LTE接入 系统内的移动性管理功能;
X2接口自身的管理功能,如错误指示、 X2接口的建立与复位,更新X2接口配置 数据等;
负荷管理功能。
X2接口用户面提供eNB之间的用户数 据传输功能
X2-U接口协议栈与S1-U接口协议栈 完全相同
3GPP各状态间转换
EMM消息
Attach request 、 Attach accept 、 Attach complete Attach reject Detach request、 Detach accept Tracking area update request Tracking area update accept Tracking area update complete Tracking area update reject Extended service request 、 Service reject GUTI reallocation command GUTI reallocation complete Authentication request、Authentication response Authentication reject、Authentication failure Identity request、Identity response Security mode command、Security mode complete Security mode reject EMM status、EMM information Downlink NAS transport Uplink NAS transport CS Service notification
E-UTRAN
EPC
Internet
UE
eNB
S-GW
P-GW
Peer
Entity
End-to-end Service
EPS Bearer
External Bearer
E-RAB
Radio Bearer
S1 Bearer
S5/S8 Bearer
Radio
S1
S5/S8
Gi
无线承载分类
根据承载内容分类
UDP/IP之上的GTP-U用来传输S-GW与 eNB之间的用户平面PDU
S1用户面主要功能为:
在S1接口目标节点中指示数据分组所属 的SAE接入承载;
移动性过程中尽量减少数据的丢失;
错误处理机制;
MBMS支持功能;
分组丢失检测机制;
X2接口协议栈
X2接口
基本概念
接口功能
LTE系统X2接口的定义采用了与S1接口 一致的原则
GPRS Packet transfer mode
CCO with optional NACC
CCO, Reselection
Connection establishment/release
Connection establishment/release
UTRA_Idle
Reselection
E-UTRA RRC_IDLE
Reselection CCO, Reselection
GSM_Idle/GPRS Packet_Idle
当存在RRC连接时,UE处于RRC连接状态,否则为RRC IDLE状态
UE各状态说明
RRC状态
基 本 概 念 UE的工作模式与状态
状态 RRC_IDLE
RRC_CONNECTED
行为 PLMN(Public Land Mobile Network)选择 NAS配置的DRX过程 系统信息广播和寻呼 邻小区测量 小区重选的移动性 UE获取1个TA区内的唯一标识 eNodeB内无终端上下文 网络侧有UE的上下文信息 网络侧知道UE所处小区 网络和终端可以传输数据 网络控制终端的移动性 邻小区测量 存在RRC连接:
ESM消息
Activate default EPS bearer context request Activate default EPS bearer context accept Activate default EPS bearer context reject Activate dedicated EPS bearer context request Activate dedicated EPS bearer context accept Activate dedicated EPS bearer context reject Modify EPS bearer context request Modify EPS bearer context accept Modify EPS bearer context reject Deactivate EPS bearer context request Deactivate EPS bearer context accept PDN connectivity request、PDN connectivity reject PDN disconnect request、PDN disconnect reject Bearer resource allocation request Bearer resource allocation reject Bearer resource modification request Bearer resource modification reject ESM information request、ESM information response ESM status
接入网 (eNodeB)
用户设备 (UE)
EPC分为三部分:
MME
(Mobility Management Entity, 负责信令处理部分)
S-GW (Serving Gateway , 负责本地网络用户数据处理部分)
相关文档
最新文档