4、LTE信令流程分析
4G(LTE)终端注册信令解析

4G系统中终端(UE)开机接入首先要在位置区(TAC)注册才能接受网络服务;之后终端周期性或按事件进行位置区更新(TAU);一、附着与注册终端(UE)通过附着(Attach)启动在核心网注册流程,而TAU(跟踪区域更新)是由终端(UE)根据计时器T3412或异网返回后启动;发起附着(Attach)时,UE将其位置(TAC+CELL)信息注册到网络并根据其业务状态可在处于ECM-IDLE或ECM-CONNECT状态。
终端(UE)通常使用LAI和ECGI来表示其位置,期间可能会请求EPS服务和非EPS服务的组合附着。
在这种情况下EPS将需要与传统网络进行互操作,其间的失败将导致重启跟踪区域更新过程;下图(1)显示了UE注册(上)和更新其跟踪区域(下)的正常流程。
图1. 初始连接注册和跟踪区域更新流程二、终端(UE)附着(Attach)消息[1]RRC连接完成后,UE过向MME发送Attach Request连接到LTE网络。
传递附着请求的S1AP InitialUEMessage中包含TAI和ECGI,通知网络其位置。
MME收到Attach Request后与UE进行LTE 和Security认证。
图2. S1AP Initial UE Message消息图2消息中UE请求联合附着,其附着类型设置为“EPS/IMSI联合附着”----UE在EPS和非EPS附着。
语音域偏好和UE使用已设置为“首选IMS PS语音,次要CS语音”。
因此,当发起(或接收语音服务时)UE可能能够尝试VoLTE;如VOLTE不可用将执行CSFB流程。
图3. EPS/IMSI联合附着消息[2-3]MME通过发送包含拜访的PLMN标识符(即MCC和MNC)的更新位置请求来将UE的位置更新到HSS。
[4-7]MME通过发送创建会话请求与SGW/PGW创建GTP-C会话,PGW向PCRF触发信用控制请求(CCR)。
创建会话请求包含用于PLMN ID服务网络IE和用于TAI和ECGI的用户位置信息IE。
LTE完整信令流程分析

LTE完整信令流程分析LTE(Long Term Evolution)是4G移动通信技术的一种,其完整信令流程可以分为以下几个步骤:小区、小区选择、多路径环境估计、寻呼和分配、随机接入、授权和安全过程、连接和传输。
首先是小区。
移动设备需要找到一个合适的基站进行连接。
移动设备会周期性地扫描周围的频率和小区,以获得可用的信号质量和相应的小区信息。
接下来是小区选择。
移动设备根据收到的小区广播信息,选择一个最佳的小区进行连接。
选择的依据可以是信号强度、小区负载等因素。
然后是多路径环境估计。
移动设备需要识别并估计信号传输过程中所处的多径环境,以便后续的信号处理和解码。
接着是寻呼和分配。
一旦移动设备完成小区选择,它会请求网络进行寻呼以注册到网络中。
网络会为移动设备分配一个临时标识,并通知移动设备在哪个频率和时间上进行下一步操作。
然后是随机接入。
移动设备在分配的频率和时间上,通过发送一个随机接入信令来请求网络的资源分配。
网络收到请求后会返回分配的资源。
接着是授权和安全过程。
网络会验证移动设备的身份,并通过认证过程分配相应的资源。
同时还会启动安全机制来保护用户数据的传输。
最后是连接和传输。
通过授权和安全过程后,移动设备和网络建立连接,并开始进行数据传输。
LTE使用OFDMA(正交频分复用)和MIMO(多输入多输出)技术来提高系统容量和吞吐量。
除了以上流程,LTE还涉及QoS(服务质量)、移动性管理和位置更新等功能来保证通信的稳定性和无缝性。
总的来说,LTE的完整信令流程包括了小区、小区选择、多路径环境估计、寻呼和分配、随机接入、授权和安全过程、连接和传输等步骤。
通过这些步骤,移动设备可以顺利地连接到LTE网络并传输数据。
这些流程不仅保证了通信的可靠性和稳定性,还提高了网络的容量和吞吐量。
LTE基本信令过程

LTE基本信令过程LTE(Long Term Evolution,即长期演进)是第四代移动通信技术,其基本信令过程包括小区、小区选择、网络注册、会话建立和释放等。
下面将详细介绍LTE基本信令过程。
1.小区:LTE设备首先进行小区,以寻找并确定其所在位置附近的LTE基站。
小区分为两个步骤,即小区搜寻和小区同步。
在小区搜寻阶段,设备周围的LTE信号,并检测基站的物理广播信道(PBCH)以获取系统信息。
在小区同步阶段,设备获取基站的时钟和传输时隙,以及频率和增益校准等信息。
2.小区选择:一旦设备完成小区,并获取到基站的系统信息,就会根据一定的策略选择一个最优的小区。
小区选择的依据通常是信号质量和信号强度。
设备会对候选小区进行测量,并选择信号质量较好的小区。
3.网络注册:设备通过小区选择后,会将自己的标识信息发送给基站进行网络注册。
网络注册主要有两个步骤,即随机接入过程(Random Access Procedure)和系统接入过程(System Access Procedure)。
在随机接入过程中,设备向基站发送随机接入信号以寻求网络的许可。
在系统接入过程中,设备向基站发送身份验证和安全策略相关的信息,并获得网络的控制信道,开始与网络进行通信。
4.会话建立:网络注册成功后,设备就可以开始与网络进行数据通信。
设备会与网络进行交互,建立信道和分配资源。
具体的过程包括建立安全连接、分配物理资源、建立信道和分配调度资源。
设备和网络通过这些步骤进行数据传输的准备工作。
5.数据传输:一旦设备和网络建立了信道和资源的分配,并完成准备工作,就可以进行数据传输了。
数据传输过程中,设备通过分配的资源进行上下行数据传输。
设备和网络之间通过物理信道进行数据的发送和接收。
6.会话释放:会话释放是指设备和网络之间通信结束后的清理工作。
设备会向网络发送释放信号,并释放所分配的资源。
网络接收到释放信号后,会对设备进行注销和清理工作,确保资源的回收和清空。
LTE信令流程及信令解码详解

LTE信令流程及信令解码详解LTE(Long Term Evolution)是一种4G无线通信技术,它采用了包括OFDMA(正交频分多址)和MIMO(多输入多输出)等多项技术,以提供高速无线数据传输和更好的用户体验。
LTE信令流程是指在LTE网络中,终端设备和基站之间进行通信时所涉及的一系列信令交互流程。
初始过程是指终端设备在接入LTE网络后,完成相关资源分配和建立数据传输链路的过程。
首先,终端设备会发送系统信息请求信令(RRC Connection Request)给基站,请求获取LTE网络的系统信息,包括频段、带宽等信息。
基站收到请求后,会回复系统信息响应信令(RRC Connection Setup)给终端设备,将LTE网络的系统信息发送给终端设备。
终端设备收到系统信息后,会根据其中的重要参数(如频段和带宽)进行终端配置。
接下来,终端设备会发送随机接入信令(Random Access Preamble)给基站,用于请求分配物理资源。
基站收到随机接入后,会回复随机接入响应信令(Random Access Response),包括一个Temporarily Assigned C-RNTI(临时分配的C-RNTI),用于唯一标识终端设备。
终端设备接收到响应后,会发送接入回执信令(RRC Connection Reestablishment)给基站,用于确认接入成功。
基站收到回执后,会分配一个唯一的UE标识给终端设备,用于后续的数据传输。
保持过程是指终端设备在LTE网络中进行数据传输时的相关信令交互过程。
首先,当终端设备需要发送数据时,会向基站发起调度请求信令(UL-SCH Transmission Request)。
基站收到请求后,会返回一个调度响应信令(UL-SCH Transmission Burst),包括传输资源的分配信息。
终端设备接收到响应后,会根据分配信息将数据进行分组,并在指定的时隙中进行传输。
LTE基本概念及信令流程分析分解

LTE基本概念及信令流程分析分解LTE(Long Term Evolution)是一种第4代(4G)移动通信技术,具有高速数据传输、低延迟、更高的频谱效率和更好的覆盖范围等特点。
LTE基本概念及信令流程分析分解如下:1.基本概念:a.用户面:用户面是指移动设备和LTE网络之间传输数据的部分,主要涉及无线链路、空中接口等。
LTE使用OFDMA(正交频分多址)和MIMO (多输入多输出)等技术,提供高速数据传输和频谱效率。
b.控制面:控制面是指移动设备和LTE网络之间传输控制信息的部分,主要涉及信令过程、协议等。
控制面用于管理无线资源、连接建立和维护等功能,确保通信的可靠性和稳定性。
2.信令流程分析分解:a.接入过程:i.基站选择:移动设备通过扫描周围的基站,选择信号强度最强的基站作为接入点。
ii. 尝试连接:移动设备发送连接请求(RRC Connection Request)给选择的基站。
iii. 寻呼过程:基站通过广播信道向所有连接到该基站的设备发送寻呼消息,通知设备建立连接。
iv. 建立连接:设备收到寻呼消息后,发送连接确认(RRC Connection Setup)给基站确认建立连接。
v.建立数据通路:设备和基站之间建立数据通路,以实现数据传输。
b.数据传输过程:i.资源分配:基站分配资源给设备,包括子载波、时隙等。
ii. 数据传输:设备通过无线链路向基站发送数据,基站收到数据后进行解码和分析。
iii. 反馈信息:基站发送ACK/NACK(确认/否认)给设备,告知数据传输是否成功。
iv. 集束赋形:如果使用了MIMO技术,则基站根据反馈信息调整天线的赋形,提高信号质量和数据传输速率。
v. 端到端延迟控制:LTE通过QCI(QoS Class Identifier)来实现不同业务的延迟控制,保证对延迟敏感的应用(如VoIP)具有较低的延迟。
c.连接释放过程:i. 释放请求:设备发送连接释放请求(RRC Connection Release)给基站,请求释放连接。
LTE信令流程及信令解码详解

LTE信令流程及信令解码详解LTE(Long Term Evolution),是第四代移动通信技术标准,以其高速数据传输、低延迟和大容量等特点成为了当前主流的移动通信技术。
本文将详细介绍LTE的信令流程及信令解码。
1.LTE信令流程(1)小区:UE(User Equipment,用户设备)首先需要附近的基站,以确定可用的LTE网络。
这一步骤主要包括RRC(Radio Resource Control,无线资源控制)连接的小区以及测量实体之间的信道质量。
(2)小区选择和附着:在到可用小区后,UE需要选择一个最佳的小区进行附着,该小区将成为UE与网络之间的主要通信接口。
UE将通过与MME(Mobility Management Entity,移动性管理实体)之间的信令交换来进行小区选择和附着。
(3)建立RRC连接:一旦UE成功附着到小区,UE与eNB(Evolved Node B)之间将建立RRC连接。
RRC连接是UE与网络之间进行信令交换和控制的主要通道。
(4)分配和配置资源:在建立RRC连接后,网络将为UE分配必要的物理资源,并配置UE的通信参数,如频率、带宽、功率等。
这些资源和参数将被用于后续的数据传输和通信。
(5)数据传输:一旦资源和参数被配置完毕,UE和eNB之间可以开始进行数据传输。
UE将使用分配的资源来发送和接收数据,而eNB将负责数据的转发和错误处理。
(6)释放RRC连接:当UE无需再与网络进行通信时,UE可以向网络发送释放RRC连接的请求。
网络将收到请求后,释放该连接并回收相应的资源。
2.LTE信令解码(1)空中接口解码:通过对信令数据进行解调和解调来还原原始信令信息。
这种解码方法主要用于分析和处理无线传输过程中的信令,如小区信息、物理广播信息等。
(2)协议解析:通过解析信令的协议头和数据包来获取有关通信过程的详细信息。
这种解码方法可以分析UE与网络之间的控制过程,如RRC连接的建立、释放过程等。
LTE信令流程分析

LTE信令流程分析LTE(Long Term Evolution)是第四代移动通信(4G)标准之一,为提高用户数据速率、降低网络访问时延、提高系统容量等目标而设计。
第一步是接入过程,移动设备刚刚上电或从休眠状态醒来时需要进行接入过程,该过程包括小区、小区选择、随机接入以及RRC连接建立等。
首先,移动设备进行小区,即附近所有的LTE小区,并获取相应的小区信息,如频点、物理小区ID等。
然后,设备根据一定的选择策略选出需要进行接入的小区。
接下来,设备进行随机接入过程,即向选定的小区发送接入请求,并等待接收到的响应。
最后,设备与小区建立RRC(Radio Resource Control)连接,该连接用于传递控制信息。
第二步是寻呼与分配,当移动设备在LTE网络中需要进行呼叫或数据传输时,需要进行寻呼与分配过程。
寻呼过程是小区向设备发送寻呼消息,设备收到消息后根据自己的标识进行回应,以使小区将后续的数据分配给设备。
数据分配过程是小区将数据分配给设备进行传输。
第三步是资源分配与传输,设备通过与小区的交互,获取到LTE系统中的无线资源,包括时隙、频段等。
之后,设备与小区进行物理信道的配置,包括功率、调制方式等参数的配置。
最后,设备与小区通过物理信道进行数据传输。
第四步是切换过程,当设备从当前小区移动到另一个小区时,需要进行切换过程。
切换可以是基于同一频点的切换,或者是基于不同频点的切换。
在切换过程中,设备会与新小区进行信号质量测量,然后与新小区进行切换协商,最后完成切换。
切换过程需要保证设备与网络的连续性和数据传输可靠性。
第五步是释放过程,当设备不再需要与LTE网络进行交互时,需要进行释放过程,即设备与小区断开连接,释放占用的资源,以便其他设备使用。
综上所述,LTE信令流程包括接入过程、寻呼与分配、资源分配与传输、切换过程以及释放过程。
通过这些流程,LTE网络能够实现高速数据传输、低时延、高系统容量等优势,为用户提供更好的通信服务。
LTE中文版信令流程分析

LTE中文版信令流程分析LTE(Long Term Evolution)通信网络是一种第四代移动通信技术,其信令流程是指在建立和维持通信连接过程中所涉及的信令消息和流程。
下面将对LTE中文版信令流程进行详细分析。
1.接入网络选择:当移动设备启动或进入新的服务范围时,它会扫描周围的信号,并确定附近的LTE网络。
在这个过程中,设备会发送“接入网络选择”信令消息到基站,以获取附近网络的信息。
基站收到消息后,会返回所有可选网络的信息给移动设备。
2.接入过程:接入过程是移动设备与基站建立初始连接的过程。
移动设备通过发送“随机接入请求”消息开始接入过程。
基站收到请求后,会分配一个时间与频率资源给移动设备,并返回“随机接入响应”消息。
移动设备收到响应消息后,根据分配的资源发送“随机接入确认”消息,即完成接入过程。
3.同步过程:在LTE网络中,设备需要与网络同步,在物理层和逻辑层有两个同步过程。
物理层同步是指设备与基站之间的时钟和帧同步,用于正确接收和发送数据。
逻辑层同步是指设备与网络间的系统信息同步,以获取网络状态和配置信息。
4.小区重选:在设备连接到一个LTE网络后,它会周期性地监测周围的小区,并决定是否切换到更强的信号。
设备通过发送“重选请求”消息来请求网络切换。
基站收到请求后,根据设备的测量报告决定是否接受切换请求,并返回“重选响应”消息通知设备是否切换到新的小区。
5.移动性管理:在移动设备从一个小区到另一个小区切换时,移动性管理起着重要的作用。
设备会周期性地向邻近的小区发送“测量报告”消息,用于测量信号质量和判断是否需要进行切换。
基站会根据设备发送的测量报告来调整切换策略,并采取相应的措施。
6.建立和释放连接:当设备需要与网络建立连接时,它会发送“连接请求”消息到基站。
基站收到请求后,会根据网络资源情况,返回“连接响应”消息。
设备收到响应消息后,会发送“连接确认”消息,以确认连接的建立。
连接释放是指设备与网络断开连接的过程,它可以是主动释放,也可以是被动释放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各系统消息作用
系统消息功能说明 系统消息功能说明
3GPP各状态间转换
各系统状态转移图 各系统状态转移图
GSM_Connected CELL_DCH Handover E-UTRA RRC CONNECTED Handover GPRS Packet transfer mode CCO, Reselection Connection establishment/release
LTE中的承载
Bear( Bear(承载 承载)) in in LTE LTE
• • • Radio Bearer承载空口RRC信令和NAS信令 S1 Bearer 承载eNB与MME间S1-AP信令 NAS消息也可作为NAS PDU附带在RRC消息中发送
无线承载分类
根据承载内容分类 根据承载内容分类
NAS NAS消息其他承载方式 消息其他承载方式
• 由于带宽增加,数据传输性能增强,LTE的RRC消息的数据携带能力显著提升; 因此LTE中所有NAS消息可填充在RRC消息中携带传输,进一步精简了信令流程 • NAS消息通过四条RRC消息传递:
– ULInformationTransfer 和 DLInformationTransfer (由SRB2承载,SRB2未建立时由 SRB1承载) – RRCConnectionSetupComplete 和 RRCConnectionReconfiguration (由SRB1承载) – RRCConnectionSetupComplete(只携带NAS的初始直传消息)
• 安全方面的功能,用户面 的加密和解密功能由 PDCP子层完成 仅存在一个MAC实体 •
•
系统消息(36.331)
LTE LTE系统消息 系统消息
• 系统消息的组成
– MasterInformationBlock(MIB) – 多个SystemInformationBlocks (SIBs)
•
MIB
Uu口控制面协议栈
与 的异同 与3G 3G 的异同
• 3G中控制平面不存在 PDCP协议栈,由RLC层 提供无线信令承载SRB RLC层依然提供TM/UM /AM三种传ห้องสมุดไป่ตู้模式 3G中UM/AM传输模式下 的加密由RLC层实现, TM模式 下的加密由 MAC层实现 3G中含有多个MAC实体: MAC-b, MAC-c/sh, MAC-d, MAC-hs
• 3G中PDCP层仅用于承 载PS业务,广播和多播 业务由BMC层协议承载 3G中用户数据的加密和 解密由RLC和MAC层完 成 3G中含有多个MAC实体: MAC-b, MAC-c/sh, MAC-d, MAC-hs RLC层依然提供TM/UM /AM三种传输模式
•
•
LTE LTE用户面 用户面
– 承载于BCCH → BCH → PBCH上 – 包括有限个用以读取其他小区 信息的最重要、最常用的传输 参数(系统带宽,系统帧号, PHICH配置信息) – 时域:紧邻同步信道,以 10ms为周期重传4次 – 频域:位于系统带宽中央的72 个子载波
PBCH频域映射结构
PBCH时域映射结构
系统消息(36.331)
4
•
Msg3:第一次调度传输
– UE在接收Msg2后,在其分配的上行资源上传输Msg3
基于非竞争的随机接入
基于非竞争的随机接入过程 基于非竞争的随机接入过程
• UE根据eNB的指示,在指定的 PRACH上使用指定的Preamble码发 起随机接入 • Msg0:随机接入指示
– 对于切换场景,eNB通过RRC信令通 知UE – 对于下行数据到达和辅助定位场景, eNB通过PDCCH通知UE
第六步 TA更新
第六步 小区更新
第七步 RRC连接释放
第八步 重新待机 1.小区选择 2.等待呼叫
第六步 测量控制
第六步 IRAT切换
主要内容
• 基本概念
– 网络架构 – 协议栈结构 – 接口功能
• 端到端业务建立/释放 相关流程
– Attach流程 – Detach流程 – Service Request过程
竞争接入过程
基于竞争的随机接入(2-1)
基于竞争的随机接入过程 基于竞争的随机接入过程2-1 2-1
• • UE随机选择preamble码发起 Msg1:发送Preamble码
– eNB可以选择64个Preamble码中 的部分或全部用于竞争接入 – Msg1承载于PRACH上
1 2
•
Msg2:随机接入响应
– Msg2由eNB的MAC层组织,并由 3 DL_SCH承载 – 一条Msg2可同时响应多个UE的随 机接入请求 – eNB使用PDCCH调度Msg2,并通过RA-RNTI进行寻址,RA-RNTI由承载 Msg1的PRACH时频资源位置确定 – Msg2包含上行传输定时提前量、为Msg3分配的上行资源、临时C-RNTI等
– 逐用户数据包的过滤和检查 – 用户IP分配
网元间控制面整体协议栈
NAS Relay RRC PDCP RLC MAC L1 UE LTE-Uu RRC PDCP RLC MAC L1 eNodeB S1-AP SCTP IP L2 L1 S1-MME S1-AP SCTP IP L2 L1 MME NAS
CELL_FACH
CELL_PCH URA_PCH Connection establishment/release UTRA_Idle
CCO with optional NACC Reselection Connection establishment/release
Reselection
E-UTRA RRC IDLE
• 无线网基本信令流程
– 随机接入 – 寻呼 – RRC连接建立、重配、 重建立、释放 – 测量
• 移动性管理
– TAU – 切换 – 小区重选
• 附录
EPC与E-UTRAN功能划分
EUTRAN EUTRAN
EPC EPC
EPC与E-UTRAN功能简述
功能概述 功能概述
• eNB功能:
– 无线资源管理相关的功能,包括无线承载控制、接纳控制、连接移动性管理、上/ 下行动态资源分配/调度等; – IP头压缩与用户数据流加密; – UE附着时的MME选择; – 提供到S-GW的用户面数据的路由; – 寻呼消息的调度与传输; – 系统广播信息的调度与传输; – 测量与测量报告的配置。
•
MME功能:
– – – – – 寻呼消息分发,MME负责将寻呼消息按照一定的原则分发到相关的eNB; 安全控制; 空闲状态的移动性管理; EPC承载控制; 非接入层信令的加密与完整性保护。
• •
服务网关功能:
– 终止由于寻呼原因产生的用户平面数据包; – 支持由于UE移动性产生的用户平面切换。
PDN网关功能:
• 数据承载为DRB,通过eNB为其分配的PDSCH来承载 • 信令承载通过SRB,LTE中有三类SRB
– SRB0:承载RRC消息,映射到CCCH信道 – SRB1:承载RRC消息,也可承载NAS消息,映射到DCCH信道 – SRB2:承载NAS消息,映射到DCCH信道 – UE的RRC连接未建立时,由SRB0承载RRC信令;SRB2未建立时,由SRB1承载NAS信令
– 核心网触发:通知UE接收寻呼请求(被叫,数据推送) – eNodeB触发:通知系统消息更新以及通知UE接收ETWS等信息
• • • • •
在S1AP接口消息中,MME对eNB发paging消 息,每个paging消息携带一个被寻呼UE信息 eNB读取Paging消息中的TA列表,并在其下属 于该列表内的小区进行空口寻呼 若之前UE已将DRX消息通过NAS告诉MME, 则MME会将该信息通过paging消息告诉eNB 空口进行寻呼消息的传输时,eNB将具有相同 寻呼时机的UE寻呼内容汇总在一条寻呼消息里 寻呼消息被映射到PCCH逻辑信道中,并根据 UE的DRX周期在PDSCH上发送
控制面协议栈 控制面协议栈
• 没有RNC,空中接口的控制平面(RRC)功能由eNB进行管理和控制
网元间用户面整体协议栈
用户面协议栈 用户面协议栈
• • 用户面和控制面协议栈均包含PHY,MAC,RLC和PDCP层,控制面向上还包含 RRC层和NAS层 没有了RNC,空中接口的用户平面(MAC/RLC)功能由eNB进行管理和控制
LTE LTE系统消息 系统消息 • SIBs
– 除MIB以外的系统消息,包括SIB1-SIB12 – 除SIB1以外,SIB2-SIB12均由SI (System Information)承载 – SIB1是除MIB外最重要的系统消息,固定以20ms为周期重传4 次,即SIB1在每两个无线帧(20ms)的子帧#5中重传(SFN mod 2 = 0,SFN mod 8 ≠ 0)一次,如果满足SFN mod 8 = 0 时,SIB1的内容可能改变,新传一次。 – SIB1和所有SI消息均传输在BCCH → DL-SCH → PDSCH上 – SIB1的传输通过携带SI-RNTI(SI-RNTI每个小区都是相同的)的 PDCCH调度完成 – SIB1中的SchedulingInfoList携带所有SI的调度信息,接收SIB1以 后,即可接收其他SI消息
UE各状态说明
RRC RRC状态 状态
状态 PLMN选择 NAS配置的DRX过程 系统信息广播和寻呼 RRC_IDLE 邻小区测量 小区重选的移动性 UE获取1个TA区内的唯一标识 eNodeB内无终端上下文 网络侧有UE的上下文信息 网络侧知道UE所处小区 网络和终端可以传输数据 网络控制终端的移动性 RRC_CONNECTED 邻小区测量 存在RRC连接: UE可以从网络侧收发数据 监听共享信道上指示控制授权的控制信令 UE可以上报信道质量给网络侧 UE可以根据网络配置进行DRX 行为