(通用版)2019版高考数学一轮复习第9章平面解析几何10第10讲圆锥曲线中的范围、最值问题教案理

合集下载

高三数学一轮复习第九章平面解析几何第十节圆锥曲线的综合问题夯基提能

高三数学一轮复习第九章平面解析几何第十节圆锥曲线的综合问题夯基提能

高三数学一轮复习第九章平面解析几何第十节圆锥曲线的综合问题夯基提能A组基础题组1.(2015课标Ⅱ文,20,12分)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.2.已知椭圆的中心是坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)在线段OF上是否存在点M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范围;若不存在,请说明理由.3.(2016云南昆明两区七校调研)已知椭圆C:+=1(a>b>0)的左,右顶点分别为A,B,其离心率e=,点M为椭圆上的一个动点,△MAB面积的最大值是2.(1)求椭圆的方程;(2)若过椭圆C的右顶点B的直线l与椭圆的另一个交点为D,线段BD的垂直平分线与y轴交于点P,当·=0时,求点P的坐标.B组提升题组4.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标.5.(2016甘肃兰州实战考试)已知椭圆+=1(a>b>0)的离心率为,且经过点P,过它的两个焦点F1,F2分别作直线l1与l2,l1交椭圆于A,B两点,l2交椭圆于C,D两点,且l1⊥l2.(1)求椭圆的标准方程;(2)求四边形ACBD的面积S的取值范围.答案全解全析A组基础题组1.解析(1)由题意有=,+=1,解得a2=8,b2=4,所以椭圆C的方程为+=1.(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM),把y=kx+b代入+=1得(2k2+1)x2+4kbx+2b2-8=0.故xM==,yM=kxM+b=,于。

高三数一轮复习课件:第九章 平面解析几何. .ppt..

高三数一轮复习课件:第九章 平面解析几何. .ppt..
解:如图,因为 kAP=12- -01=1,
kBP= 03--10=- 3, 所以 k∈(-∞,- 3]∪[1,+∞). 故填(-∞,- 3]∪[1,+∞).
2019年5月30日
你是我心中最美的云朵
18
类型二 求直线方程
根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为 1100; (2)直线过点(-3,4),且在两坐标轴上的截距相等; (3)直线过点(5,10),且到原点的距离为 5.
2019年5月30日
你是我心中最美的云朵
13
类型一 直线的倾斜角和斜率
(1)设直线 2x+my=1 的倾斜角为 α,若 m∈(-∞, -2 3)∪[2,+∞),则角 α 的取值范围是________.
解:据题意知 tanα=-m2 ,因为 m<-2 3或 m≥2.
所以 0<tanα< 33或-1≤tanα<0.
(3)过点 P1(x1,y1),P2(x2,y2)的直线方程 ①若 x1=x2,且 y1≠y2 时,直线垂直于 x 轴,方程为____________; ②若 x1≠x2,且 y1=y2 时,直线垂直于 y 轴,方程为____________; ③若 x1=x2=0,且 y1≠y2 时,直线即为 y 轴,方程为____________; ④若 x1≠x2,且 y1=y2=0,直线即为 x 轴,方程为____________.
x=


y=
.
2019年5月30日
你是我心中最美的云朵
4
2.直线的倾斜角与斜率 (1)直线的倾斜角:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴____________与 直线 l 向上方向之间所成的角 α 叫做直线 l 的倾斜角.当直线 l 与 x 轴________或________ 时,我们规定它的倾斜角为 0°.因此,直线的倾斜角 α 的取值范围为 __________________. (2)斜率:一条直线的倾斜角 α 的____________叫做这条直线的斜率,常用小写字母 k 表示,即 k=______(α≠______).当直线平行于 x 轴或者与 x 轴重合时,k______0; 当直线的倾斜角为锐角时,k______0;当直线的倾斜角为钝角时,k______0;倾斜角为 ______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示 直线的倾斜程度.

高考数学一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题课件 文

高考数学一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题课件 文

思考辨析
× ×
√ √
×

答案
返回
考点自测
2
考点自测
1.直线 y=kx-k+1 与椭圆x92+y42=1 的位置关系为__相__交____. 解析 直线y=kx-k+1=k(x-1)+1恒过定点(1,1), 又点(1,1)在椭圆内部, 故直线与椭圆相交.
解析答案
2.若直线 y=kx 与双曲线x92-y42=1 相交,则 k 的取值范围是__-__23_,__23__. 解析 双曲线x92-y42=1 的渐近线方程为 y=±23x, 若直线与双曲线相交,数形结合,得 k∈-23,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有 ___3_____条. 解析 过(0,1)与抛物线y2=4x相切的直线有2条, 过(0,1)与对称轴平行的直线有1条, 这3条直线与抛物线都只有一个公共点.
解析答案
4.已知倾斜角为60°的直线l通过抛物线x2=4y的焦点,且与抛物线相交于 A、B两点,则弦AB的长为___1_6____. 解析 直线 l 的方程为 y= 3x+1, 由xy2==43yx+1 ,得 y2-14y+1=0. 设A(x1,y1),B(x2,y2),则y1+y2=14, ∴AB=y1+y2+p=14+2=16.
解析答案
解析答案
返回
答案
平行 平行或重合
答案
知识拓展
过一点的直线与圆锥曲线的位置关系 (1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交. (2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切 线和一条与对称轴平行或重合的直线; 过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线 和一条与对称轴平行或重合的直线;

2019版高考数学理科课标A版一轮复习课件:第九章 平面

2019版高考数学理科课标A版一轮复习课件:第九章 平面
x2 y 2 2=|AB|,故点F的轨迹是以A、B为焦点的椭圆,可知其方程为 + =1,又 3 4 x2 y 2 点F不能在y轴上,故所求轨迹方程为 + =1(x≠0),故选C. 3 4
例2 如图,P是圆x2+y2=4上的动点,P点在x轴上的射影是D,点M满足 DM
1 DP . = 2
面进行:一是方程的化简是否为同解变形;二是是否符合题目的实际意
义. 2.求点的轨迹与求轨迹方程是不同的要求,求轨迹时,应先求轨迹方程, 然后根据方程说明轨迹的形状、位置、大小等. 3.在求轨迹问题时常用的数学思想 (1)函数与方程的思想:求平面曲线的轨迹方程是将几何条件(性质)表示 为动点坐标x、y的方程及函数关系; (2)数形结合的思想:由曲线的几何性质求曲线方程是“数”与“形” 的有机结合; (3)等价转化的思想:通过坐标系使“数”与“形”相互结合,在解决问 题时又需要相互转化.
围对动点坐标取值范围的影响.
6.交轨法:求两条动曲线(含直线)的交点的轨迹方程时,可引入参数t,用t 分别表示两条动曲线的方程,联立它们消去t便得交点的轨迹方程,此方 法称为交轨法. 例1 (2017广东七校联考,10)已知圆的方程为x2+y2=4,若抛物线过定点 A(0,1),B(0,-1),且以该圆的切线为准线,则抛物线焦点的轨迹方程是 ( C )
(1)求动点M的轨迹C的方程,并说明轨迹是什么图形; (2)过点N(3,0)的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB
为邻边的平行四边形OAEB的顶点E的轨迹方程.
解题导引
解析 (1)设M(x,y),则D(x,0),
1 DM = DP 知P(x,2y), 由 2

(1)分析题目:与动点M(x,y)相关的点P(x0,y0)在已知曲线上运动;

[精品]2019高考数学一轮复习第九章平面解析几何9.6圆锥曲线的综合问题练习文

[精品]2019高考数学一轮复习第九章平面解析几何9.6圆锥曲线的综合问题练习文

§9.6圆锥曲线的综合问题考纲解读考点内容解读要求高考示例常考题型预测热度1.定点与定值问题1.了解圆锥曲线的简单应用2.掌握解析几何中求解定点、定值问题的方法和步骤Ⅲ2017课标全国Ⅱ,20;2016北京,19;2015课标Ⅱ,20解答题★★★2.参变量的取值范围与最值问题1.了解参变量的意义2.理解解析几何中求解范围和最值问题的基本方法3.理解函数思想和方程思想在圆锥曲线中的应用Ⅲ2017山东,21;2017浙江,21;2016山东,21;2016浙江,19解答题★★★3.存在性问题1.理解圆锥曲线中存在性问题的基本解法2.理解转化思想在圆锥曲线中的应用Ⅲ2015四川,20;2015湖北,22;2014重庆,21;2014湖南,20解答题★★☆分析解读从近几年的高考试题来看,直线与圆锥曲线、圆锥曲线间的综合考查主要涉及曲线的求法、位置关系的判断及应用、弦长问题、最值问题、定点定值的探索问题及各圆锥曲线间的联系等,同时着重考查学生的分析问题及解决综合问题的能力.分值较高,难度较大.客观题以各圆锥曲线间的联系为主,凸显知识的连贯性和综合性,着重考查函数与方程、分类讨论、数形结合等数学思想的应用.在解圆锥曲线综合问题时,需要较强的代数运算能力、图形认知能力、逻辑思维能力、数形之间转化能力,在推理过程中要保持思维的逻辑性,确保结果正确完整.五年高考考点一定点与定值问题1.(2017课标全国Ⅱ,20,12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且·=1.证明:过点P且垂直于OQ的直线l过C的左焦点 F.解析(1)设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由=得x0=x,y0=y.因为M(x0,y0)在C上,所以+=1.因此点P的轨迹方程为x2+y2=2.(2)证明:由题意知F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),·=3+3m-tn,=(m,n),=(-3-m,t-n).由·=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0.所以·=0,即⊥.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点 F.2.(2015课标Ⅱ,20,12分)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l 的斜率的乘积为定值.解析(1)由题意有=,+=1,又c2=a2+b2,所以a2=8,b2=4.所以C的方程为+=1.(2)设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入+=1得(2k2+1)x2+4kbx+2b2-8=0.故x M==,y M=k·xM+b=.于是直线OM的斜率k OM==-,即k OM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.3.(2015陕西,20,12分)如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为 2.解析(1)由题设知=,b=1,结合a2=b2+c2,解得a=.所以椭圆E的方程为+y2=1.(2)证明:由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.由已知可知Δ>0.设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=.[]从而直线AP,AQ的斜率之和k AP+k AQ=+=+=2k+(2-k)=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.4.(2014江西,20,13分)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2.证明:|MN2|2-|MN1|2为定值,并求此定值.解析(1)证明:依题意可设直线AB的方程为y=kx+2,代入x2=4y,得x2=4(kx+2),即x2-4kx-8=0.设A(x1,y1),B(x2,y2),则有x1x2=-8,直线AO的方程为y=x,直线BD的方程为x=x2.解得交点D的坐标为,注意到x1x2=-8及=4y1,则有y===-2.因此D点在定直线y=-2上(x≠0).(2)依题设知,切线l的斜率存在且不等于0,设切线l的方程为y=ax+b(a≠0),代入x2=4y得x2=4(ax+b),即x2-4ax-4b=0,由Δ=0得(4a)2+16b=0,化简整理得b=-a2.故切线l的方程可写为y=ax-a2.分别令y=2、y=-2得N1、N2的坐标为N1、N2,则|MN2|2-|MN1|2=+42-=8,即|MN2|2-|MN1|2为定值8.教师用书专用(5)5.(2013江西,20,13分)椭圆C:+=1(a>b>0)的离心率e=,a+b=3.(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.解析(1)因为e==,所以a=c,b= c.代入a+b=3得,c=,a=2,b=1.故椭圆C的方程为+y2=1.(2)证法一:因为B(2,0),P不为椭圆顶点,则直线BP的方程为y=k(x-2),①把①代入+y2=1,解得P.直线AD的方程为y=x+1.②①与②联立解得M.由D(0,1),P,N(x,0)三点共线知=,解得N.所以MN的斜率为m===,则2m-k=-k=(定值).证法二:设P(x0,y0)(x0≠0,±2),则k=,直线AD的方程为y=(x+2),直线BP的方程为y=(x-2),直线DP的方程为y-1=x,令y=0,由y0≠1可得N,联立得解得M,因此MN的斜率为m====,所以2m-k=-====(定值).考点二参变量的取值范围与最值问题1.(2017山东,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D 为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.解析(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立得得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,等号当且仅当t=3时成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述:当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.2.(2016浙江,19,15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M 的横坐标的取值范围.解析(1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得=1,即p=2.(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1.因为AF不垂直于y轴,可设直线AF:x=sy+1(s≠0),由消去x得y2-4sy-4=0,故y1y2=-4,所以,B.又直线AB的斜率为,故直线FN的斜率为-.从而得直线FN:y=-(x-1),直线BN:y=-.所以N.设M(m,0),由A,M,N三点共线得=,于是m=.所以m<0或m>2.经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).3.(2016山东,21,14分)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(1)求椭圆C的方程;(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点 B.(i)设直线PM,QM的斜率分别为k,k',证明为定值;(ii)求直线AB的斜率的最小值.解析(1)设椭圆的半焦距为 c.由题意知2a=4,2c=2,所以a=2,b==.所以椭圆C的方程为+=1.(2)(i)设P(x0,y0)(x0>0,y0>0).由M(0,m),可得P(x0,2m),Q(x0,-2m). 所以直线PM的斜率k==,直线QM的斜率k'==-.此时=-3.所以为定值-3.(ii)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=,可得x1=.所以y1=kx1+m=+m.同理x2=,y2=+m.所以x2-x1=-=,y2-y1=+m--m=,所以k AB===.由m>0,x0>0,可知k>0,所以6k+≥2,等号当且仅当k=时取得.此时=,即m=,符合题意.所以直线AB的斜率的最小值为.4.(2014北京,19,14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点.若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.解析(1)由题意,知椭圆C的标准方程为+=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=.故椭圆C的离心率e==.(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.因为OA⊥OB,所以·=0,即tx0+2y0=0,解得t=-.又+2=4,所以|AB|2=(x0-t)2+(y0-2)2=+(y0-2)2=+++4=+++4=++4(0<≤4).因为+≥4(0<≤4),且当=4时等号成立,所以|AB|2≥8.故线段AB长度的最小值为2.教师用书专用(5—7)5.(2015山东,21,14分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.解析(1)由题意知+=1,又=,解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又+=1,即=1,所以λ=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m), 所以△OAB的面积S=|m||x1-x2|===2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2=2.故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(i)知,△ABQ面积为3S,所以△ABQ面积的最大值为6.6.(2014山东,21,14分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2.证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.解析(1)由题意知=,可得a2=4b2,椭圆C的方程可简化为x2+4y2=a2.将y=x代入可得x=±,因此×=,可得a=2.因此b=1,所以椭圆C的方程为+y2=1.(2)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(-x1,-y1),所以直线AB的斜率k AB=,因为AB⊥AD,所以直线AD的斜率k=-.设直线AD的方程为y=kx+m,由题意知k≠0,m≠0.由可得(1+4k2)x2+8mkx+4m2-4=0.所以x1+x2=-,因此y1+y2=k(x1+x2)+2m=.由题意知x1≠-x2,所以k1==-=.所以直线BD的方程为y+y1=(x+x1).令y=0,得x=3x1,即M(3x1,0).可得k2=-.所以k1=-k2,即λ=-.因此存在常数λ=-使得结论成立.(ii)直线BD的方程为y+y1=(x+x1),令x=0,得y=-y1,即N.由(i)知M(3x1,0),可得△OMN的面积S=×3|x1|×|y1|=|x1||y1|.因为|x1||y1|≤+=1,当且仅当=|y1|=时等号成立, 此时S取得最大值,所以△OMN面积的最大值为.7.(2013浙江,22,14分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.解析(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,所以抛物线C的方程为x2=4y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.由解得点M的横坐标x M===.同理点N的横坐标x N=.所以|MN|=|x M-x N|==8=.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,[]|MN|的最小值是.考点三存在性问题1.(2015四川,20,13分)如图,椭圆E:+=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且·=-1.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得·+λ·为定值?若存在,求λ的值;若不存在,请说明理由.解析(1)由已知得,点C,D的坐标分别为(0,-b),(0,b).又点P的坐标为(0,1),且·=-1,于是解得a=2,b=.所以椭圆E的方程为+=1.(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).由得(2k2+1)x2+4kx-2=0.其判别式Δ=(4k)2+8(2k2+1)>0,所以,x1+x2=-,x1x2=-.从而,·+λ·=x1x2+y1y2+λ[x1x2+(y1-1)(y2-1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==--λ-2.所以,当λ=1时,--λ-2=-3.此时,·+λ·=-3为定值.当直线AB斜率不存在时,直线AB即为直线CD.当λ=1时,·+λ·=·+·=-2-1=-3.故存在常数λ=1,使得·+λ·为定值-3.2.(2015湖北,22,14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3.当栓子D在滑槽AB内做往复运动时,带动..N绕O转动,M处的笔尖画出的椭圆记为 C.以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.图1 图2(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x-2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解析(1)因为|OM|≤|MN|+|NO|=3+1=4.当M,N在x轴上时,等号成立;同理,|OM|≥|MN|-|NO|=3-1=2,当D,O重合,即MN⊥x轴时,等号成立.所以椭圆C的中心为原点O,长半轴长为4,短半轴长为2,其方程为+=1.(2)(i)当直线l的斜率不存在时,直线l为x=4或x=-4,都有S△OPQ=×4×4=8.(ii)当直线l的斜率存在时,设直线l:y=kx+m,由消去y,可得(1+4k2)x2+8kmx+4m2-16=0.因为直线l总与椭圆C有且只有一个公共点,所以Δ=64k2m2-4(1+4k2)(4m2-16)=0,即m2=16k2+4.①又由可得P;同理可得Q.由原点O到直线PQ的距离为d=和|PQ|=·|x P-x Q|,可得S△OPQ=|PQ|·d=|m||x P-x Q|=·|m|=.②将①代入②得,S△OPQ==8.当k2>时,S△OPQ=8·=8>8;当0≤k2<时,S△OPQ=8·=8.因0≤k2<,则0<1-4k2≤1,≥2,所以S△OPQ=8≥8,当且仅当k=0时取等号.所以当k=0时,S△OPQ的最小值为8.综合(i)(ii)可知,当直线l与椭圆C在四个顶点处相切时,△OPQ的面积取得最小值8.3.(2014湖南,20,13分)如图,O为坐标原点,双曲线C1:-=1(a1>0,b1>0)和椭圆C2:+=1(a2>b2>0)均过点P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C1,C2的方程;(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且|+|=||?证明你的结论.解析(1)设C2的焦距为2c2,由题意知,2c2=2,2a1=2,从而a1=1,c2=1.因为点P在双曲线x2-=1上,所以-=1,故=3.由椭圆的定义知2a2=+=2.于是a2=,=-=2,故C1,C2的方程分别为x2-=1,+=1.(2)不存在符合题设条件的直线.(i)若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=或x=-.当x=时,易知A(,),B(,-),所以|+|=2,||=2,此时,|+|≠||.当x=-时,同理可知,|+|≠||.(ii)若直线l不垂直于x轴,设l的方程为y=kx+m,由得(3-k2)x2-2kmx-m2-3=0.当l与C1相交于A,B两点时,设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,从而x1+x2=,x1x2=. 于是y1y2=k2x1x2+km(x1+x2)+m2=.由得(2k2+3)x2+4kmx+2m2-6=0.因为直线l与C2只有一个公共点,所以上述方程的判别式Δ=16k2m2-8(2k2+3)(m2-3)=0.化简,得2k2=m2-3,因此·=x1x2+y1y2=+=≠0,于是++2·≠+-2·,即|+|2≠|-|2,故|+|≠||.综合(i),(ii)可知,不存在符合题设条件的直线.教师用书专用(4)4.(2014重庆,21,12分)如图,设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(1)求该椭圆的标准方程;(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程.若不存在,请说明理由.解析(1)设F1(-c,0),F2(c,0),其中c2=a2-b2.由=2得|DF1|== c.从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2得|DF2|2=|DF1|2+|F1F2|2=,因此|DF2|=.所以2a=|DF1|+|DF2|=2,故a=,b2=a2-c2=1.因此,所求椭圆的标准方程为+y2=1.(2)如图,设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2.由圆和椭圆的对称性,易知,x2=-x1,y1=y2.由(1)知F1(-1,0),F2(1,0),所以=(x1+1,y1),=(-x1-1,y1).再由F1P1⊥F2P2得-(x1+1)2+=0.由椭圆方程得1-=(x1+1)2,即3+4x1=0,解得x1=-或x1=0.当x1=0时,P1,P2重合,不存在满足题设要求的圆.当x1=-时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心 C.设C(0,y0),由CP1⊥F1P1,得·=-1.而y1=|x1+1|=,故y0=.圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.三年模拟A组2016—2018年模拟·基础题组考点一定点与定值问题1.(2016河北唐山调研,9)过抛物线y=ax2(a>0)的焦点F作一条直线交抛物线于A,B两点,若线段AF,BF的长分别为m,n,则等于( )A. B. C.2a D.答案 B2.(2018河北五校12月联考,20)已知椭圆C:+=1(a>b>0)的离心率为,右焦点为F,上顶点为A,且△AOF的面积为(O是坐标原点).(1)求椭圆C的方程;(2)设P是椭圆C上的一点,过P的直线l与以椭圆的短轴为直径的圆切于第一象限,切点为M,证明:|PF|+|PM|为定值.解析(1)设椭圆的半焦距为c,由已知得?∴椭圆的方程为+y2=1.(2)证明:以短轴为直径的圆的方程为x2+y2=1,F(1,0),设P(x0,y0),则+=1(0<x0≤).∴|PF|=====(2-x0).又l与圆x2+y2=1相切于M,∴|PM|=====x0,∴|PF|+|PM|=(2-x0)+x0=,为定值.考点二参变量的取值范围与最值问题3.(2018山西康杰中学等六校12月联考,11)抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两点,x1+x2+4=|AB|,则∠AFB的最大值为( )A. B. C. D.答案 B4.(2017河南六市一模,9)已知圆(x-1)2+y2=的一条切线y=kx与双曲线C:-=1(a>0,b>0)有两个交点,则双曲线C 的离心率的取值范围是( )A.(1,)B.(1,2)C.(,+∞)D.(2,+∞)答案 D5.(2016皖江示范高中联考,14)若点P是椭圆+y2=1上的动点,则P到直线l:y=x+1的距离的最大值是. 答案6.(2018河南中原名校联盟12月联考,20)设椭圆+=1(a>)的右焦点为F,右顶点为 A.已知|OA|-|OF|=1,其中O 为原点,e为椭圆的离心率.(1)求椭圆的方程及离心率e的值;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),∵a-c=1,∴a=1+c,a2=1+2c+c2,又a2=b2+c2,∴3=1+2c,c=1,∴a=2,所以,椭圆的方程为+=1,e==.(2)易知l的斜率存在且不为0,设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2),设B(x B,y B),由方程组消去y得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=,由题意得x B=,从而y B=,由(1)知,F(1,0),设H(0,y H),则=(-1,y H),=,由BF⊥HF,得·=0,所以+=0,解得y H=,因此直线MH的方程为y=-x+,设M(x M,y M),由方程组消去y,解得x M=,在△MAO中,∠MOA≤∠MAO?|MA|≤|MO|,则(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-或k≥,所以,直线l的斜率的取值范围为∪.考点三存在性问题7.(2018山西康杰中学等六校12月联考,20)已知F1,F2分别为椭圆E:+=1(a>b>0)的左、右焦点,点P在椭圆E上,且|PF1|+|PF2|=4.(1)求椭圆E的方程;(2)过F1的直线l1,l2分别交椭圆E于A,C和B,D,且l1⊥l2,问是否存在实数λ,使得,λ,成等差数列?若存在,求出λ的值;若不存在,请说明理由.解析(1)由已知|PF1|+|PF2|=4,得2a=4,即a=2,又点P在椭圆上,所以+=1,解得b=,故椭圆的标准方程为+=1.(2)当AC⊥x轴时,|BD|=4,|AC|=3,由2λ=+=,得λ=.当BD⊥x轴时,|BD|=3,|AC|=4,由2λ=+=,得λ=.当AC、BD与x轴均不垂直时,设l1:y=k(x+1)(k≠0),A(x1,y1),C(x2,y2),直线l1与椭圆E的方程联立并消去y得(3+4k2)x2+8k2x+4k2-12=0,则x1+x2=,x1x2=,所以|AC|=|x1-x2|=,从而=,同理可得=,所以+==,令=2λ,得λ=.综上,存在常数λ=,使得,λ,成等差数列.8.(2017江西赣中南五校联考,20)在直角坐标系xOy中,点M到点F1(-,0),F2(,0)的距离之和是4,点M的轨迹是C,直线l:y=kx+与轨迹C交于不同的两点P和Q.(1)求轨迹C的方程;(2)是否存在常数k,使以线段PQ为直径的圆过原点O?若存在,求出k的值;若不存在,请说明理由.解析(1)∵点M到F1(-,0),F2(,0)的距离之和是4,且2<4,∴M的轨迹是焦点在x轴上,长轴长为4,焦距为2的椭圆,其方程为+y2=1.(2)存在.理由如下:将y=kx+代入曲线C的方程,整理得(1+4k2)x2+8kx+4=0,设P(x1,y1),Q(x2,y2),则x1+x2=-,x1x2=,又y1·y2=(kx1+)(kx2+)=k2x1x2+k(x1+x2)+2.若以线段PQ为直径的圆过原点,则·=0,所以x1x2+y1y2=0,即(k2+1)x1x2+k(x1+x2)+2=0,即(k2+1)·+k·+2=0,解得k=±.又因为k的取值应满足Δ>0,即4k2-1>0,(*)将k=±代入(*)式知符合题意.故存在k=±,使以线段PQ为直径的圆过原点O.B组2016—2018年模拟·提升题组(满分:55分时间:45分钟)一、填空题(每小题5分,共10分)1.(2018江西宜春一模,16)设F1、F2分别是椭圆+=1的左、右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为.答案152.(2017广东七校第二次联考,16)已知点P是抛物线C1:y2=4x上的动点,过P作圆C2:(x-3)2+y2=2的两条切线,则两条切线的夹角的最大值为.答案二、解答题(每小题15分,共45分)3.(2018湖南师大附中12月联考,20)已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C的方程;(2)如图,设F1、F2为椭圆C的左、右焦点,若椭圆C的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形面积的最大值.解析(1)∵椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为,∴解得a=2,b=,c=1,∴椭圆C的方程为+=1.(2)设过椭圆右焦点F2的直线AB的方程为x=ty+1,由整理,得(3t2+4)y2+6ty-9=0,设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=,∴|y1-y2|===,连接OA,OB,∴S△OAB=+=×|OF2|×|y1-y2|=,∴椭圆C的内接平行四边形面积S=4S△OAB=,令m=,则m≥1,则S=f(m)=,注意到S=f(m)在[1,+∞)上单调递减,∴Smax=f(1)=6,当且仅当m=1,即t=0时等号成立.故这个平行四边形面积的最大值为 6.4.(2017豫北名校联盟联考,20)已知点P是椭圆C上任一点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且=,直线l与椭圆C交于不同两点A,B(A,B都在x轴上方),且∠OFA+∠OFB=180°.(1)求椭圆C的方程;(2)当A为椭圆与y轴正半轴的交点时,求直线l的方程;(3)对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.解析(1)设P(x,y),则d1=|x+2|,d2=. 由==,化简,得+y2=1,∴椭圆C的方程为+y2=1.(2)由题意及(1)知A(0,1),又F(-1,0),∴kAF==1. 又∵∠OFA+∠OFB=180°,∴kBF=-1,∴BF:y=-1×(x+1)=-x-1,代入+y2=1,解得(舍去)或∴B.k AB==,∴AB:y=x+1,即直线l的方程为y=x+1.(3)存在.解法一:∵∠OFA+∠OFB=180°,∴kAF+k BF=0. 设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+b.将y=kx+b代入+y2=1,整理得x2+2kbx+b2-1=0.∴x1+x2=-,x1x2=,∴kAF+k BF=+=+==0.∴(kx1+b)(x2+1)+(kx2+b)(x1+1)=2kx1x2+(k+b)(x1+x2)+2b=2k·-(k+b)·+2b=0,∴b-2k=0,∴b=2k,∴直线AB的方程为y=k(x+2),∴直线l总经过定点(-2,0).解法二:∵∠OFA+∠OFB=180°,∴B关于x轴的对称点B1在直线AF上.设A(x1,y1),B(x2,y2),则B1(x2,-y2),设直线AF的方程为y=k(x+1),代入+y2=1,得x2+2k2x+k2-1=0.∴x1+x2=-,x1x2=.k AB=,AB:y-y1=(x-x1),令y=0,得x=x1-y1·=.又∵y1=k(x1+1),-y2=k(x2+1),∴x=====-2,∴直线l总经过定点(-2,0).5.(2016吉林五校第一次联考,20)已知椭圆C:+=1(a>b>0)的离心率e=,它的一个顶点在抛物线x2=4y的准线上.(1)求椭圆C的方程;(2)设A(x1,y1),B(x2,y2)是椭圆C上两点,已知m=,n=,且m·n=0,求·的取值范围. 解析(1)抛物线x2=4y的准线为y=-,∴b=.e=?=?a=,∴椭圆C的方程为+=1.(2)由m·n=0及(1)得x1x2=-3y1y2,当直线AB的斜率不存在时,x1=x2,y2=-y1,∴=3,又+=1,∴=1.∴·=x1x2+y1y2=2=2.当直线AB的斜率存在时,设方程为y=kx+m,由得(1+3k2)x2+6kmx+3m2-6=0,∴Δ=36k2m2-12(3k2+1)(m2-2)=12(6k2-m2+2)>0,且x1+x2=,x1x2=.由x1x2=-3y1y2=-3(kx1+m)(kx2+m)?(1+3k2)x1x2+3km(x1+x2)+3m2=0,整理得1+3k2=m2,∴·=x1x2+y1y2=x1x2===2-,∵m2=1+3k2≥1,∴0<≤4,∴-2≤·<2.综上,-2≤·≤2.C组2016—2018年模拟·方法题组方法 1 圆锥曲线中的定点、定值问题的求解方法1.(2017河南郑州一模,11)已知直线l与双曲线-y2=1相切于点P,l与双曲线的两条渐近线交于M,N两点,则·的值为( )A.3B.4C.5D.与P的位置有关答案 A2.(2017河南十所名校联考,21)如图,O为坐标原点,椭圆C:+=1(a>b>0)的离心率为,以椭圆C的长轴长、短轴长为两相邻边长的矩形的面积为8.(1)求椭圆C的方程;(2)若P、Q是椭圆C上的两个动点,且k OP·kOQ=-,试问:S△OPQ是否为定值?若是,求出该定值;若不是,请说明理由.解析(1)依题意可知解之得∴椭圆C的方程为+y2=1.(2)S△OPQ为定值.设P(x1,y1),Q(x2,y2),当直线PQ的斜率不存在时,P,Q两点关于x轴对称,不妨设P在x轴下方,Q在x轴上方,则k OQ=-k OP,可得=,结合+=1可得|x1|=,|y1|=,从而|x1||y1|=1,S△OPQ=1.当直线PQ的斜率存在时,设直线PQ的方程为y=kx+m,由得(4k2+1)x2+8kmx+4(m2-1)=0,则x1+x2=,x1x2=,从而|PQ|=|x1-x2|=·=.O到直线PQ的距离d=,则S△OPQ=|PQ|d=,k OP·kOQ=====-,则4k2+1=2m2,则S△OPQ==1.综上,S△OPQ为定值 1.方法 2 圆锥曲线中的最值和范围问题的求解方法3.(2018河南洛阳一模,11)过椭圆+=1上一点H作圆x2+y2=2的两切线,点A,B为切点.过A,B的直线l与x轴,y 轴分别交于点P,Q.则△POQ(O为坐标原点)的面积的最小值为( )A. B. C.1 D.答案 B4.(2017江西南昌三校联考,11)已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为( )A.-2B.-C.1D.0答案 A5.(2018河南百校联盟12月联考,20)已知点F为抛物线C:y2=2px(p>0)的焦点,抛物线y2=-8x的准线与抛物线C交于点A,且|AF|=3.(2)若直线l:x=my+1与抛物线C交于不同的两点D,E,点G为线段DE的中点,设|FD|=λ|FE|,H(2,0).若1≤λ≤2,求|GH|的取值范围.解析(1)抛物线y2=-8x的准线方程为x=2,所以点A的横坐标为2,[]由抛物线的定义得|AF|=2+,因为|AF|=3,所以2+=3,解得p=2,所以抛物线C的方程为y2=4x.(2)直线l:x=my+1过抛物线C的焦点F,设D(x1,y1),E(x2,y2),联立得y2-4my-4=0,则y1+y2=4m,y1y2=-4,∴x1+x2===4m2+2,由|FD|=λ|FE|,得y1=-λy2,所以(-λ)+=+,所以(-λ)++2==-4m2,由1≤λ≤2可得-≤(-λ)++2≤0,所以0≤m2≤,又|GH|==,所以1≤≤,所以|GH|的取值范围是.6.(2017皖南八校12月联考,20)如图,点A(-2,0)、B(2,0)分别为椭圆C:+=1(a>b>0)的左、右顶点,P,M,N为椭圆C上非顶点的三点,直线AP、BP的斜率分别为k1、k2,且k1k2=-,AP∥OM,BP∥ON.(2)求||·||的最大值.解析(1)设P(x,y),由k1k2=-,得·=-,化简整理得+y2=1.∴椭圆C的方程为+y2=1.(2)易知k OM·kON=k1k2=-,设k OM=k,则k ON=-,∴lOM:y=kx,l ON:y=-,由得=,=,∴||2=.由得=,=,∴||2=.||·||==2≤.当且仅当16k2=,即k=±时,等号成立.故||·||的最大值为.方法 3 圆锥曲线中存在性问题的求解方法7.(2018湖北八校12月联考,20)已知抛物线C:y2=2px(p>0)在第一象限内的点P(2,t)到焦点F的距离为.(1)若M,过点M,P的直线l1与抛物线相交于另一点Q,求的值;(2)若直线l2与抛物线C相交于A,B两点,与圆M:(x-a)2+y2=1相交于D,E两点,O为坐标原点,OA⊥OB,试问:是否存在实数a,使得DE的长为定值?若存在,求出a的值;若不存在,请说明理由.解析(1)∵点P(2,t),∴2+=,解得p=1,故抛物线C的方程为y2=2x,当x=2时,t=2,∴l1的方程为y=x+,与抛物线方程y2=2x联立可得x Q=,又∵|QF|=x Q+,|PF|=x P+,∴==.(2)设直线AB的方程为x=ty+m,代入抛物线方程可得y2-2ty-2m=0,设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=-2m,①由OA⊥OB得(ty1+m)(ty2+m)+y1y2=0,整理得(t2+1)y1y2+tm(y1+y2)+m2=0,②将①代入②解得m=2,∴直线l2:x=ty+2,∵圆心到直线l2的距离d=,∴|DE|=2,显然当a=2时,|DE|=2,为定值.[]8.(2017广东广州12月联考,20)已知点A(x1,y1),B(x2,y2)是抛物线y2=8x上相异的两点,且满足x1+x2=4.(1)若直线AB经过点F(2,0),求|AB|的值;(2)是否存在直线AB,使得线段AB的中垂线交x轴于点M,且|MA|=4?若存在,求直线AB的方程;若不存在,说明理由.解析(1)解法一:若直线AB的斜率不存在,则直线AB的方程为x=2,由解得或不妨令A(2,4),B(2,-4),所以|AB|=8.若直线AB的斜率存在,则可设直线AB的方程为y=k(x-2),由消去y得k2x2-(4k2+8)x+4k2=0,故x1+x2==4,方程无解.所以|AB|=8.解法二:易知点F(2,0)为抛物线的焦点.因为直线AB过抛物线y2=8x的焦点F(2,0),所以根据抛物线的定义得|AF|=x1+2,|BF|=x2+2.所以|AB|=|AF|+|BF|=x1+x2+4=8.(2)不存在.假设存在直线AB符合题意,易知直线AB的斜率存在,设直线AB的方程为y=kx+b(k≠0).由消去y得k2x2+(2kb-8)x+b2=0(*).故x1+x2=-=4.所以b=-2k.所以x1x2==.所以|AB|=·==.因为y1+y2=k(x1+x2)+2b=4k+2b=,所以线段AB的中点C的坐标为.所以线段AB的中垂线方程为y-=-(x-2),即x+ky-6=0.令y=0,得x=6,所以点M的坐标为(6,0).所以点M到直线AB的距离d=|CM|==.因为|MA|2=+|CM|2,所以(4)2=+,解得k=±1.当k=1时,b=2;当k=-1时,b=-2.把和分别代入(*)检验,得Δ=0,不符合题意. 所以直线AB不存在.。

[精品]2019高考数学一轮复习第九章平面解析几何9.8圆锥曲线的综合问题练习理

[精品]2019高考数学一轮复习第九章平面解析几何9.8圆锥曲线的综合问题练习理

(1) 求直线 FM的斜率 ;
(2) 求椭圆的方程 ;
(3) 设动点 P 在椭圆上 , 若直线 FP 的斜率大于 , 求直线 OP(O为原点 ) 的斜率的取值范围 .
2 22
2
22
2
解析 (1) 由已知有 =, 又由 a =b +c , 可得 a =3c ,b =2c .
设直线 FM的斜率为 k(k>0), 则直线 FM的方程为 y=k(x+c). 由已知 , 有 +=, 解得 k=. (2) 由 (1) 得椭圆方程为 +=1, 直线 FM的方程为 y=(x+c), 两个方程联立 , 消去 y, 整理得 3x2 +2cx-5c 2=0, 解得 x=-c 或 x=c.
A.2 B.3 C. D.
答案 B 5.(2015 江苏 ,12,5 分) 在平面直角坐标系 xOy中 ,P 为双曲线 x2-y 2=1 右支上的一个动点 . 若点 P到直线 x-y+1=0 的距
离大于 c 恒成立 , 则实数 c 的最大值为
.
答案 6.(2016 山东 ,21,14 分) 平面直角坐标系 xOy 中 , 椭圆 C:+=1(a>b>0) 的离心率是 , 抛物线 E:x 2=2y 的焦点 F 是 C 的一
设 A(x 1,y 1),B(x 2,y 2),D(x 0,y 0).
联立
2
2
3
4
得 (4m +1)x -4m x+m-1=0.
由 Δ >0, 得 0<m<(或 0<m2<2+),(*)
且 x1+x2=, 因此 x 0=.
推荐下载

2019版高考一轮复习数学(文理通用):第一部分 基础与考点过关 第九章 平面解析几何

2019版高考一轮复习数学(文理通用):第一部分 基础与考点过关 第九章 平面解析几何

, 第九章 平面解析几何)第1课时 直线的倾斜角与斜率(对应学生用书(文)121~122页、(理)126~127页)1. (原创)设m 为常数,则过点A (2,-1),B (2,m )的直线的倾斜角是 W. 答案:90°解析:因为过点A (2,-1),B (2,m )的直线x =2垂直于x 轴,故其倾斜角为90°. 2. (必修2P 80练习1改编)若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 W.答案:1解析:由1=4-mm +2,得m +2=4-m ,解得m =1.3. (原创)若直线l 的斜率k 的变化范围是[-1,3],则它的倾斜角的变化范围是 W.答案:⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π解析:由-1≤k ≤3,即-1≤tan α≤3,∴ α∈⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π.4. (必修2P 80练习6改编)已知两点A (4,0),B (0,3),点C (8,a )在直线AB 上,则a = W.答案:-3解析:由k AB =k BC 得3-4=a -38,解得a =-3.5. (必修2P 80练习4改编)若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为 W.答案:-32解析:设直线上任一点为(x ,y ),平移后的点为(x -2,y +3),利用斜率公式得直线l 的斜率为-32.1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°;直线的倾斜角α的取值范围是[0,π)W.2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式为k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°W.[备课札记], 1 直线的倾斜角和斜率之间的关系), 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x -y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为 W.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝ ⎛⎭⎪⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝ ⎛⎭⎪⎫π2,π,α2>α1.tan α3=k 3=-13<0, 所以α3∈⎝ ⎛⎭⎪⎫π2,π,α3>α1,而-12<-13,正切函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练已知经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 的值为 W.答案:-3解析:由2y +1-(-3)4-2=2y +42=y +2=tan 3π4,得y +2=-1,所以y =-3., 2 求直线的倾斜角和斜率) , 2) 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α, 由题意可知tan 2α=34,∴ 2tan α1-tan 2α=34. 整理得3tan 2α+8tan α-3=0,解得tan α=13或tan α=-3.∵ tan 2α=34>0,∴ 0°<2α<90°,∴ 0°<α<45°,∴ tan α>0,故直线l 的斜率为13.变式训练如图,已知直线l1的倾斜角α1=30°,直线l1⊥l2,求直线l1,l2的斜率.解:直线l1的斜率k1=tan α1=tan 30°=3 3.∵直线l2的倾斜角α2=90°+30°=120°,∴直线l2的斜率k2=tan 120°=tan(180°-60°)=-tan 60°=- 3.,3求直线的倾斜角和斜率的取值范围),3)已知两点A(-3,4),B(3,2),过点P(1,0)的直线l与线段AB 有公共点.(1)求直线l的斜率k的取值范围;(2)求直线l的倾斜角α的取值范围.解:如图,由题意可知,k PA=4-0-3-1=-1,k PB=2-03-1=1.(1)要使直线l与线段AB有公共点,则直线l的斜率k的取值范围是(-∞,-1]∪[1,+∞).(2)由题意可知,直线l的倾斜角介于直线PB与PA的倾斜角之间.又PB的倾斜角是45°,PA的倾斜角是135°,所以α的取值范围是[45°,135°].变式训练若直线mx+y+1=0与连结点A (-3,2),B (2,3)的线段相交,求实数m的取值范围.解:直线的斜率为k=-m,且直线经过定点P(0,-1),因为直线PA,PB的斜率分别为-1,2,所以斜率k的取值范围是(-∞,-1]∪[2,+∞),即实数m的取值范围是(-∞,-2]∪[1,+∞).1. 已知A(-1,23),B(0,3a),C(a,0)三点共线,则此三点所在直线的倾斜角α的大小是W.答案:120°解析:若a =0,则点B ,C 重合,不合题意.由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1,所以B (0,3).此三点所在直线的斜率k AB =3-230+1=-3,即tan α=- 3.又0°≤α<180°,所以α=120°.2. 直线xcos α+3y +2=0的倾斜角的取值范围是 .答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π解析:由直线的方程可知其斜率k =-cos α3∈⎣⎡⎦⎤-33,33.设直线的倾斜角为θ,则tanθ∈⎣⎡⎦⎤-33,33,且θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π. 3. 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx的最大值和最小值.解:如图,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3可知,点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.4. 已知直线kx +y -k =0与射线3x -4y +5=0(x ≥-1)有交点,求实数k 的取值范围.解:kx +y -k =0⇒k (x -1)+y =0,直线过定点(1,0)⇒由题意作图可得:由题意可看出: k ∈⎝⎛⎭⎫-∞,-34∪⎣⎡⎭⎫14,+∞.(或者由两直线方程联立,消去y 得x =4k -53+4k ≥-1,即4k -14k +3≥0⇒k ≥14或k <-34)1. 已知x 轴上的点P 与点Q (-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为 W.答案:(-23,0)解析:设P (x ,0),由题意得k PQ =tan 30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则它们的大小关系为 W.答案:k 1<k 3<k 2解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3. 已知函数f (x )=asin x -bcos x.若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为 W.答案:3π4解析:由f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知,函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以-b =a ,所以直线ax -by +c =0的斜率为ab =-1.设直线ax -by +c =0的倾斜角为α,则tan α=-1,因为α∈[0,π),所以α=3π4,即直线ax -by +c =0的倾斜角为3π4.4. 若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 W.答案:⎝ ⎛⎭⎪⎫π6,π2解析:如图,直线l :y =kx -3过定点P (0,-3).又A (3,0),所以k PA =0-(-3)3-0=33,所以直线l 的斜率范围为⎝⎛⎭⎫33,+∞,由于直线的倾斜角的取值范围为[0,π),所以满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tan α(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).第2课时 直线的方程(对应学生用书(文)123~124页、(理)128~129页)1. (必修2P 82练习1(1)~(4)改编)过点P (-2,0),且斜率为3的直线的方程是 W.答案:y =3x +6解析:设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0,∴ b =6,故y =3x +6.2. (必修2P 87练习4改编)如果ax +by +c =0表示的直线是y 轴,则系数a ,b ,c 满足条件 W.答案:a ≠0且b =c =0解析:ax +by +c =0表示的直线是y 轴,即x =0,∴ b =c =0,a ≠0.3. (必修2P 87练习1改编)直线x 3-y4=1在两坐标轴上的截距之和为 W.答案:-1解析:令x =0,得y =-4;令y =0,得x =3.故直线在两坐标轴上的截距之和为-4+3=-1.4. (必修2P 85练习4改编)下列说法中正确的是 W.(填序号) ① 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; ② 经过定点A (0,b )的直线都可以用方程y =kx +b 表示;③ 不经过原点的直线都可以用方程x a +yb=1表示;④ 经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.答案:④ 解析:对于①②,斜率有可能不存在,对于③,截距也有可能为0. 5. (必修2P 85练习2(2)(3)改编)若一直线经过点P (1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是 W.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P (1,2),故由两点式得直线方程为y +12+1=x -01-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 当x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1W. (2) 当x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1W. (3) 当x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0W. (4) 当x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0W. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式., 1 求直线方程), 1) 已知直线l 过点P (5,2),分别求满足下列条件的直线方程. (1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,直线l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设直线方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上,直线l 的方程为2x -5y =0或x +2y -9=0. (2) 显然直线与坐标轴不垂直.∵ 直线l 经过点P (5,2),且能与坐标轴围成三角形,∴ 可设直线l 的方程为y -2=k(x -5)(k ≠0),则直线在x 轴上的截距为5-2k,在y 轴上的截距为2-5k ,由题意,得12|5-2k |·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练求过点(-3,4),且在两坐标轴上的截距之和为12的直线方程.解:由题设知截距不为0,设直线方程为x a +y 12-a =1,又直线过点(-3,4),从而-3a +412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. , 2 含参直线方程问题), 2) 已知直线l :kx -y +1+2k =0 (k ∈R ). (1) 求证:直线l 过定点;(2) 若直线不经过第四象限,求k 的取值范围;(3) 若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程. (1) 证明:直线l 的方程是k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴ 无论k 取何值,直线l 总经过定点(-2,1).(2) 解:由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎨⎧-1+2kk ≤-2,1+2k ≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k ≥0.(3) 解:由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎨⎧-1+2kk <0,1+2k>0,解得k>0. ∵ S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪-1+2k k ·|1+2k|= 12·(1+2k )2k =12·⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k>0且4k =1k ,即k =12,∴ S min =4,此时l :x -2y +4=0.变式训练已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1) 求实数m 的取值范围;(2) 若直线l 的斜率不存在,求实数m 的值;(3) 若直线l 在x 轴上的截距为-3,求实数m 的值; (4) 若直线l 的倾斜角是45°,求实数m 的值.解:(1) 当x ,y 的系数不同时为零时,方程表示一条直线,令m 2-2m -3=0,解得m =-1或m =3;令2m 2+m -1=0解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞).(2) 由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3) 依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4) 因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以当直线l 的倾斜角为45°时,m =43., 3 直线方程的综合应用), 3) 为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图,建立平面直角坐标系,则E (30,0),F (0,20),∴ 线段EF 的方程为x 30+y20=1(0≤x ≤30).在线段EF 上取点P (m ,n ), 作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S ,则S =PQ·PR =(100-m )(80-n ).又m 30+n20=1(0≤m ≤30),∴ n =20⎝⎛⎭⎫1-m 30. ∴ S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30).∴ 当m =5时,S 有最大值,∴ 当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点距AD 边5 m 时,草坪面积最大.备选变式(教师专享)如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO =45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解:以l 1为x 轴,l 2为y 轴,建立平面直角坐标系,则O (0,0),P (3,2). (1) 由∠BAO =45°知,OA =OB ,可设A (a ,0),B (0,a )(a >0),直线l 的方程为x a +ya=1.∵ 直线l 过点P (3,2),∴ 3a +2a =1⇒a =5,即OA =5千米. (2) 设A (a ,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1.∵ 直线l 过点P (3,2),∴ 3a +2b =1,b =2aa -3(a >3).从而S △ABO =12a ·b =12a ·2a a -3=a 2a -3,令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9,故有S △ABO =t 2+6t +9t =t +9t +6(t >0).设f (t )=t +9t +6,可证f (t )在(0,3)上单调递减,在(3,+∞)上单调递增,∴ 当t =3时,f (t )min =f (3)=12,此时a =6,b =4,直线l 的方程为x 6+y4=1,即OA =6千米,OB =4千米.1. 若直线(2m 2+m -3)x +(m 2-m )y =4m -1 在x 轴上的截距为1,则实数m 的值是 W.答案:2或-12解析:令y =0,则(2m 2+m -3)x =4m -1, ∴ x =4m -12m 2+m -3=1,∴ m =2或-12.2. 若方程(a 2-a -2)x +(a 2+a -6)y +a +1=0表示垂直于y 轴的直线,则a 为W.答案:-1解析:因为方程表示垂直于y 轴的直线,所以a 2-a -2=0且a 2+a -6≠0,解得a =-1.3. 已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.当OA +OB 取得最小值时,直线l 的方程是 W.答案:x +y -2=0解析:设A (a ,0),B (0,b )(a>0,b>0),直线l 的方程为x a +yb=1,已知直线l 过点M (1,1),则OA +OB =a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.4. 已知直线l 过点(0,5),且在两坐标轴上的截距之和为2,则直线l 的方程为 W.答案:5x -3y +15=0解析:∵ 直线过点(0,5),∴ 直线在y 轴上的截距为5. ∵ 在两坐标轴上的截距之和为2,∴ 直线在x 轴上的截距为-3.∴ 直线l 的方程为x -3+y5=1,即5x -3y +15=0.5. 已知在△ABC 中,A (1,-4),B (6,6),C (-2,0).求(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程和截距式方程.解:(1) 平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.1. 若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足条件 W.答案:m ≠1解析:2m 2+m -3,m 2-m 不能同时为0.2. 若直线(2t -3)x +2y +t =0不经过第二象限,则t 的取值范围是 W.答案:⎣⎡⎦⎤0,32 解析:直线方程可化为y =⎝⎛⎭⎫32-t x -t 2,由题意得⎩⎨⎧32-t ≥0,-t2≤0,解得0≤t ≤32.3. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点 . 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0, 整理得(x +2)m -(x +y -1)=0,则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3.4. 已知直线x +2y =2与x 轴、y 轴分别相交于A ,B 两点.若动点P (a ,b )在线段AB 上,则ab 的最大值为 W.答案:12解析:由题意知A (2,0),B (0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2].又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2].又a 2+b ≥2ab 2,所以1≥2ab2,解得0≤ab ≤12,当且仅当a 2=b =12,即P ⎝⎛⎭⎫1,12时,ab 取得最大值12. 5. 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1),Q 2(a 2,b 2)(a 1≠a 2)的直线方程.解:由题意,知P (2,3)在已知直线上,∴ ⎩⎪⎨⎪⎧2a 1+3b 1+1=0,2a 2+3b 2+1=0,∴ 2(a 1-a 2)+3(b 1-b 2)=0,即b 1-b 2a 1-a 2=-23,∴ 所求直线方程为y -b 1=-23(x -a 1),∴ 2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.[备课札记]第3课时 直线与直线的位置关系(对应学生用书(文)125~126页、(理)130~131页)1. (原创)“a =3”是“直线ax +3y =1与直线x +y =1平行”的 条件. 答案:充要解析:若a =3,直线ax +3y =1与直线x +y =1显然平行;若直线ax +3y =1与直线x+y =1平行,由a 1= 31 ≠ 11,易得a =3.2. (必修2P 93练习6改编)过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为 W.答案:2x +y -1=0解析:设直线方程为2x +y +c =0,又直线过点P (-1,3),则-2+3+c =0,c =-1,即所求直线方程为2x +y -1=0.3. (必修2P 95练习3改编)若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k = W.答案:-12解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =-2,∴ 点(-1,-2)在x +ky =0上,即-1-2k =0,∴ k =-12.4. (必修2P 105练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a = W.答案:2-1解析:由题意知|a -2+3|2=1,∴ |a +1|= 2.又∵ a >0,∴ a =2-1.5. (必修2P 106习题10改编)与直线7x +24y =5平行,并且距离等于3的直线方程是 W.答案:7x +24y +70=0或7x +24y -80=0解析:设直线方程为7x +24y +c =0,则d =|c +5|242+72=3,∴ c =70或-80.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有惟一解,则两条直线相交,此解就是交点坐标W.若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数组解,则两条直线重合W.3. 几种距离(1) 两点间的距离: 平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式: d (A ,B )=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B 2.(3) 两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4. 常见的三大直线系方程(1) 与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2) 与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R ). (3) 过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 中心对称(1) 点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2) 直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.6. 轴对称(1) 点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连结P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,A (y 1-y 2)=B (x 1-x 2),可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A ≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A|=|B|,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2) 直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[备课札记], 1 两直线的平行与垂直), 1) 已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1) l 1⊥l 2,且直线l 1过点(-3,-1);(2) l 1∥l 2,且坐标原点到这两条直线的距离相等.解:(1) ∵ l 1⊥l 2,∴ a (a -1)-b =0. ∵ 直线l 1过点(-3,-1), ∴ -3a +b +4=0.故a =2,b =2.(2) ∵ 直线l 2的斜率存在,l 1∥l 2,∴ 直线l 1的斜率存在.∴ k 1=k 2,即ab =1-a.∵ 坐标原点到这两条直线的距离相等,∴ l 1,l 2在y 轴上的截距互为相反数,即4b=b.故a =2,b =-2或a =23,b =2.变式训练已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2),分别在下列条件下求a 的值:(1) l 1∥l 2; (2) l 1⊥l 2.解:设直线l 2的斜率为k 2,则k 2=2-(a +2)1-(-2)=-a3.(1) 若l 1∥l 2,则直线l 1的斜率k 1=-a3.又k 1=2-a a -4,则2-a a -4=-a3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2) 若l 1⊥l 2.① 当k 2=0时,此时a =0,k 1=-12,不符合题意.② 当k 2≠0时,直线l 2的斜率存在,此时k 1=2-aa -4.由k 2k 1=-1,得-a 3·2-aa -4=-1,解得a =3或a =-4.经检验,当a =3或a =-4时,l 1⊥l 2. , 2 两直线的交点), 2) 已知△ABC 的顶点B (3,4),AB 边上的高CE 所在直线方程为2x +3y -16=0,BC 边上的中线AD 所在直线方程为2x -3y +1=0,求AC 的长.解:∵ k CE = -23,AB ⊥CE ,∴ k AB =32, ∴ 直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x -2y -1=0,2x -3y +1=0,解得A (1,1), 设C (a ,b ), 则D ⎝ ⎛⎭⎪⎫3+a 2,4+b 2,∵ C 点在CE 上,BC 的中点D 在AD 上,∴ ⎩⎨⎧2a +3b -16=0,2·3+a 2-3·4+b2+1=0,得C (5,2), 由两点间距离公式得AC 的长为17. 变式训练已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴ l AC :2x +y -11=0.联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴ C (4,3).设B (x 0,y 0),则AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,∴ ⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴ B (-1,-3),∴ k BC =65,∴ 直线BC 的方程为y -3=65(x -4),即6x -5y -9=0., 3 点到直线及两平行直线之间的距离) , 3) 已知点P (2,-1).(1) 求过P 点且与原点距离为2的直线l 的方程;(2) 求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3) 是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1) 过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1), 可见,过P (2,-1)且垂直于x 轴的直线满足条件. 此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2) 过P 点与原点O 距离最大的直线是过P 点且与OP 垂直的直线,由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP =2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3) 不存在.理由:由(2)可知,过P 点不存在到原点距离大于5的直线,因此不存在过P 点且到原点距离为6的直线.备选变式(教师专享)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1) 若点A (5,0)到l 的距离为3,求直线l 的方程; (2) 求点A (5,0)到直线l 的距离的最大值.解:(1) 由直线l 经过直线l 1与l 2交点知,其直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.∵ 点A (5,0)到直线l 的距离为3, ∴|10+5λ-5|(2+λ)2+(1-2λ)2=3,即2λ2-5λ+2=0,∴ λ=2或λ=12,∴ 直线l 的方程为x =2或4x -3y -5=0.(2) 设直线l 1与l 2的交为P ,由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得P (2,1),如图,过点P 作任一直线l ,设d 为点A 到l 的距离,则d ≤PA (当l ⊥PA 时等号成立). ∴ d max =PA =(5-2)2+(0-1)2=10., 4 对称问题), 4) 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A (-1,-2)对称的直线l′的方程. 解:(1) 设A′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413. ∴ A ′⎝⎛⎭⎫-3313,413. (2) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,解得N (4,3).∵ m ′经过点N (4,3),∴ 由两点式得直线m′的方程为9x -46y +102=0.(3) 设P (x ,y )为l′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P′(-2-x ,-4-y ).∵ P ′在直线l 上,∴ 2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.备选变式(教师专享) 光线通过点A (2,3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.解:设点A (2,3)关于直线l 的对称点为A′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1,解得A′(-4,-3).由于反射光线经过点A′(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1-3-1=x -1-4-1,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝⎛⎭⎫-23,-13. 所以入射光线所在直线的方程为y -3-13-3=x -2-23-2,即5x -4y +2=0.1. (2016·上海卷文)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距.解析:利用两平行线间距离公式得d =|-1-1|22+12=255.2. 将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m ,n )重合,则m +n 的值是 W.答案:345解析:点(0,2)与点(4,0)关于y -1=2(x -2)对称,则点(7,3)与点(m ,n )也关于y -1=2(x -2)对称,则⎩⎨⎧n +32-1=2⎝ ⎛⎭⎪⎫m +72-2,n -3m -7=-12,解得⎩⎨⎧m =35,n =315.∴ m +n =345.3. 已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是 .答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.4. 在平面直角坐标系中,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 W.答案:(2,4)解析:设P 为平面上一点,则由三角形两边之和大于第三边知PA +PC ≥AC ,PB +PD ≥BD ,所以四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4).5. △ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.解:可以判断A 不在所给的两条高所在的直线上,则可设AB ,AC 边上的高所在直线的方程分别为2x -3y +1=0,x +y =0,则可求得AB ,AC 边所在直线的方程分别为y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,x -y +1=0.由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得B (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得C (-2,-1), 所以BC 边所在直线的方程为2x +3y +7=0.1. 在平面直角坐标系xOy 中,直线l :(2k -1)x +ky +1=0,则当实数k 变化时,原点O 到直线l 的距离的最大值为 W.答案:5解析:直线l 过定点P (1,-2),原点O 到直线l 的距离的最大值即为OP =12+(-2)2= 5.2. 若过点P (1,2)作一直线l ,使点M (2,3)和点N (4,-1)到直线l 的距离相等,则直线l 的方程为 W.答案:2x +y -4=0或x +2y -5=0解析:当直线l 经过MN 的中点时,其方程为x +2y -5=0;当过M ,N 两点的直线平行于直线l 时,直线l 的方程为2x +y -4=0.3. 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是 W.答案:⎝⎛⎭⎫-16,12 解析:由方程组⎩⎨⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴ 交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1. ∵ 交点位于第一象限,∴ ⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.∴ 实数k 的取值范围是⎝⎛⎭⎫-16,12. 4. 已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为 W.答案:-3或13解析:(解法1)在直线l 上任取一点P (x ,y ),点P 到直线l 1和直线l 2的距离相等.|2x -y -2|22+(-1)2=|x +2y -1|12+22,整理得,直线l 的方程为3x +y -3=0或x -3y -1=0,所以直线l 的斜率为-3或13.(解法2)设l 1的倾斜角为α.因为l 1⊥l 2,所以l 的倾斜角为α±π4,所以直线l 的斜率为tan ⎝ ⎛⎭⎪⎫α±π4.因为tan α=2,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtan π4=-3,tan ⎝ ⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αtanπ4=13,所以直线l 的斜率为-3或13.1. 在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2. 运用公式d =|C 1-C 2|A 2+B 2求两平行直线间的距离时,一定要把x ,y 项系数化为相等的系数.3. 对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.[备课札记]第4课时 圆 的 方 程(对应学生用书(文)127~128页、(理)132~133页)1. (必修2P 111练习4改编)圆x 2+y 2-4x +6y =0的圆心坐标是 W. 答案:(2,-3)解析:由(x -2)2+(y +3)2=13知,圆心坐标为(2,-3). 2. (必修2P 111习题7改编)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为 W.答案:(x -2)2+y 2=10解析:设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴ 圆心为(2,0),半径为10,∴ 圆C 的标准方程为(x -2)2+y 2=10. 3. (必修2P 111练习6改编)经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程为 W.答案:x 2+y 2-7x -3y +2=0解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.将A ,B ,C 三点代入,整理得方程组⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,∴ 所求圆的一般方程为x 2+y 2-7x -3y +2=0. 4. 已知点P (1,1)在圆x 2+y 2-ax +2ay -4=0的内部,则a 的取值范围是 W. 答案:(-∞,2)解析:由圆的一般方程知a ∈R ,因为点P 在圆内,所以1+1-a +2a -4<0,解得a<2. 5. (原创)已知实数x ,y 满足x 2+(y +3)2=4,则(x -3)2+(y -1)2的最大值为 W.答案:49解析:(x -3)2+(y -1)2表示圆x 2+(y +3)2=4上一动点P (x ,y )到点(3,1)的距离d 的平方,因为圆心(0,-3)到点(3,1)的距离为5,所以d 的最大值为5+2=7,所以d 2的最大值为49.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径W.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r>0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2W.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r W. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F 4. (1) 当D 2+E 2-4F>0时,该方程表示以⎝⎛⎭⎫-D 2,-E22圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1) 若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2W. (2) 若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2W. (3) 若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2W. [备课札记]1 确定圆的方程) 1) 求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:(解法1)设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝⎛⎭⎫-D 2,-E2,∴ k CB =6+E 28+D2. ∵ 圆C 与直线l 相切,∴ k CB ·k l =-1,即6+E 28+D 2·⎝⎛⎭⎫-13=-1 ①.又有(-2)2+(-4)2-2D -4E +F =0 ②, 又82+62+8D +6E +F =0 ③.联立①②③,可得D =-11,E =3,F =-30, ∴ 所求圆的方程为x 2+y 2-11x +3y -30=0. (解法2)设圆的圆心为C ,则CB ⊥l ,可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0 ①. 由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1). 又k AB =6+48+2=1,∴ AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0 ②.由①②联立,解得⎩⎨⎧x =112,y =-32.即圆心坐标为⎝⎛⎭⎫112,-32. ∴ 所求圆的半径r =⎝⎛⎭⎫112-82+⎝⎛⎭⎫-32-62=1252, ∴ 所求圆的方程为⎝⎛⎭⎫x -1122+⎝⎛⎭⎫y +322=1252.变式训练圆经过点A (2,-3)和B (-2,-5). (1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解:(1) 要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5.(2) 因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此,所求的圆的方程为(x +1)2+(y +2)2=10.备选变式(教师专享)已知一圆的圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分,求圆的方程. 解:如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB =120°,而圆心O (0,0)到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6, 所以所求圆的方程为x 2+y 2=36.,2 与参数有关的圆方程问题), 2) 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于l :x +2y -5=0的对称点也在圆上,求实数a 的值; (2) 求圆心C 到直线ax +y -a 2=0的距离的取值范围. 解:(1) 将圆C 的方程配方得(x -a )2+(y +1)2=a 2-a.由题意知圆心C (a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7. (2) 由圆方程可知, a 2-a >0,解得a >1或a <0. 由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离 d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1).变式训练已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为 W.答案:37解析:作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域边界的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37. 备选变式(教师专享)设△ABC 顶点坐标为A (0,a ),B (-3a ,0),C (3a ,0),其中a>0,圆M 为△ABC 的外接圆.(1) 求圆M 的方程;(2) 当a 变化时,圆M 是否过某一定点,请说明理由.解:(1) 设圆M 的方程为x 2+y 2+Dx +Ey +F =0. ∵ 圆M 过点A (0,a ),B (-3a ,0),C (3a ,0) ∴ ⎩⎪⎨⎪⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a ,∴ 圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2) 圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0.。

2019高考数学文一轮分层演练:第9章平面解析几何 章末总结 Word版含解析

2019高考数学文一轮分层演练:第9章平面解析几何 章末总结 Word版含解析

章末总结一、选择题1.(必修2 P110B组T5改编)已知A(1,2),B(3,4),点P在x轴的负半轴上,O为坐标原点,若△P AB的面积为10,则|OP|=()A.9B.10C.11 D.12解析:选C .设P (m ,0)(m <0),P 到直线AB 的距离为d , 因为|AB |=(3-1)2+(4-2)2=22, 由S △P AB =10得12×22×d =10.所以d =52. 又直线AB 的方程为x -y +1=0, 所以|m +1|2=52.解得m =-11或m =9(舍去), 所以|OP |=|m |=11.选C . 2.(必修2 P 133A 组T 8改编)Rt △ABC 中,|BC |=4,以BC 边的中点O 为圆心,半径为1 的圆分别交BC 于P ,Q ,则|AP |2+|AQ |2=( )A .4B .6C .8D .10解析:选D .法一:特殊法.当A 在BC 的中垂线上时, 由|BC |=4,得|OA |=2.所以|AP |2+|AQ |2=2|AP |2=2(12+22)=10.选D .法二:以O 为原点,BC 所在的直线为x 轴,建立直角坐标系,则B (-2,0),C (2,0),P (-1,0),Q (1,0)设A (x 0,y 0),由AB ⊥AC 得 y 0x 0+2·y 0x 0-2=-1. 即x 20+y 20=4.所以|AP |2+|AQ |2=(x 0+1)2+y 20+(x 0-1)2+y 20 =2(x 20+y 20)+2=2×4+2=10.即|AP |2+|AQ |2=10.故选D . 3.(选修1-1 P 35例3改编)如图,AB 是椭圆C 长轴上的两个顶点,M 是C 上一点,∠MBA =45°,tan ∠MAB =13,则椭圆的离心率为 ( )A .22 B .32 C .33D .63解析:选D .以AB 所在的直线为x 轴,AB 的中点为原点建立平面直角坐标系(图略),可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).则直线MA ,MB 的方程分别为y =13(x +a ),y =-x +a .联立解得M 的坐标为⎝⎛⎭⎫a 2,a 2,所以⎝⎛⎭⎫a 22a 2+⎝⎛⎭⎫a 22b 2=1,化简得a 2=3b 2=3(a 2-c 2),所以c 2a 2=23,所以c a =63.故选D . 4.(选修1-1 P 61例4改编)过抛物线y 2=8x 的焦点F 的直线l 与抛物线交于A ,B 两点,与抛物线准线交于C 点,若B 是AC 的中点,则|AB |=( )A .8B .9C .10D .12解析:选B .设A ,B 在准线上的射影分别为D ,E ,且设AB =BC =m ,直线l 的倾斜角为α.则BE =m |cos α|,所以AD =AF =AB -BF =AB -BE =m (1-|cos α|), 所以|cos α|=AD AC=m (1-|cos α|)2m .解得|cos α|=13.由抛物线焦点弦长公式|AB |=2p sin 2α得|AB |=81-19=9.故选B .或:由|cos α|=13得tan α=±22.所以直线l 的方程为y =±22(x -2),代入y 2=8x 得8(x 2-4x +4)=8x ,即x 2-5x +4=0.所以x A +x B =5,则|AB |=x A +x B +4=9.故选B . 二、填空题5.(选修1-1 P 54B 组T 1改编)与椭圆x 249+y 224=1有公共焦点,一条渐近线方程为4x +3y=0的双曲线方程为__________________.解析:由于椭圆x 249+y 224=1的焦点为(±5,0),所以可设双曲线方程为 x 2a 2-y 2b 2=1(a >0,b >0), 所以a 2+b 2=25.① 由渐近线方程4x +3y =0得 b a =43,② 联立①②解得a =3,b =4,故双曲线方程为x 29-y 216=1.答案:x 29-y 216=16.(选修1-1 P 68A 组T 5改编)已知α∈(0,π),若曲线C :x 2+y 2 cos α=1的离心率为22,则α=________.解析:由题意知,曲线C 为椭圆, 所以cos α∈(0,1),且C 的焦点在y 轴上. 所以a 2=1cos α,b 2=1,c 2=a 2-b 2=1cos α-1.由e =22得c 2a 2=12,即1cos α-11cos α=12.所以cos α=12,所以α=π3.答案:π3三、解答题7.(选修1-1 P 36练习T 3改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为22,过F 1的直线交椭圆于E ,F 两点,且△EFF 2的周长为8. (1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,若直线l 经过点B 且垂直于x 轴,点Q 是椭圆上异于A ,B 的一个动点,直线AQ 交l 于点M ,过点M 垂直于QB 的直线为m ,求证:直线m 过定点,并求出定点的坐标.解:(1)由椭圆的定义知|EF 1|+|EF 2|=2a ,|FF 1|+|FF 2|=2a ,又已知△EFF 2的周长为8,所以4a =8,故a =2.又e =c a =22,故c =2,所以b 2=2,故椭圆C 的方程为x 24+y 22=1.(2)由题意A (-2,0),B (2,0),直线l :x =2,显然直线AQ 的斜率存在且不为0,设为k ,则直线AQ 的方程为y =k (x +2).联立方程组⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),可得点Q ⎝ ⎛⎭⎪⎫2-4k22k 2+1,4k 2k 2+1.联立方程组⎩⎪⎨⎪⎧y =k (x +2),x =2,可得点M (2,4k ).又B (2,0),则k BQ =4k2k 2+12-4k22k 2+1-2=-12k ,所以k m =2k , 故直线m 的方程为y -4k =2k (x -2),即y =2kx , 所以直线m 过定点(0,0).8.(选修1-1 P 64A 组T 2(1)、P 41练习T 3(1)改编)已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),过点F 作直线l 交抛物线C 于A ,B 两点.椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32. (1)分别求抛物线C 和椭圆E 的方程;(2)经过A ,B 两点分别作抛物线C 的切线l 1,l 2,切线l 1与l 2相交于点M .证明:AB ⊥MF . 解:(1)由已知抛物线C :x 2=2py (p >0)的焦点为F (0,1),可得抛物线C 的方程为x 2=4y .设椭圆E 的方程为x 2a 2+y2b 2=1(a >b >0),半焦距为c .由已知得:⎩⎪⎨⎪⎧b =1,c a =32,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,所以椭圆E 的方程为x 24+y 2=1.(2)证明:显然直线l 的斜率存在,否则直线l 与抛物线C 只有一个交点,不符合题意. 故可设直线l 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y 并整理得x 2-4kx -4=0,所以x 1x 2=-4.因为抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以过抛物线C 上A ,B 两点的切线方程分别是y -y 1=12x 1(x -x 1),y -y 2=12x 2(x -x 2),即y =12x 1x -14x 21,y =12x 2x -14x 22,解得两条切线l 1,l 2的交点M 的坐标为⎝⎛⎭⎫x 1+x 22,x 1x 24,即M ⎝⎛⎭⎫x 1+x 22,-1, 所以FM →·AB →=⎝⎛⎭⎫x 1+x 22,-2·(x 2-x 1,y 2-y 1)=12(x 22-x 21)-2⎝⎛⎭⎫14x 22-14x 21=0. 所以AB ⊥MF .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10讲 圆锥曲线中的范围、最值问题范围问题[典例引领](2018·云南第一次统一检测)已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1→·PF 2→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.【解】 (1)依题意,设椭圆E 的方程为y 2a 2+x 2b2=1(a >b >0),半焦距为c .因为椭圆E 的离心率等于223,所以c =223a ,b 2=a 2-c 2=a29.因为以线段PF 1为直径的圆经过F 2, 所以PF 2⊥F 1F 2.所以|PF 2|=b 2a.因为9PF 1→·PF 2→=1, 所以9|PF 2→|2=9b4a 2=1.由⎩⎪⎨⎪⎧b 2=a 299b 4a2=1,得⎩⎪⎨⎪⎧a 2=9b 2=1,所以椭圆E 的方程为y 29+x 2=1.(2)因为直线x =-12与x 轴垂直,且由已知得直线l 与直线x =-12相交,所以直线l 不可能与x 轴垂直, 所以设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m 9x 2+y 2=9,得(k 2+9)x 2+2kmx +(m 2-9)=0.因为直线l 与椭圆E 交于两个不同的点M ,N , 所以Δ=4k 2m 2-4(k 2+9)(m 2-9)>0, 即m 2-k 2-9<0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2kmk 2+9.因为线段MN 被直线2x +1=0平分, 所以2×x 1+x 22+1=0,即-2km k 2+9+1=0. 由⎩⎪⎨⎪⎧m 2-k 2-9<0-2km k 2+9+1=0,得⎝ ⎛⎭⎪⎫k 2+92k 2-(k 2+9)<0. 因为k 2+9>0,所以k 2+94k2-1<0,所以k 2>3,解得k >3或k <- 3. 所以直线l 的倾斜角的取值范围为⎝⎛⎭⎪⎫π3,π2∪⎝ ⎛⎭⎪⎫π2,2π3.解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T为椭圆上任意一点,直线TA ,TB 的斜率之积为-34.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP →·OQ →+MP →·MQ →的取值范围.解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0),设直线TA 的斜率为k 1,直线TB 的斜率为k 2, 则k 1=y x +4,k 2=yx -4. 由k 1k 2=-34,得y x +4·y x -4=-34,整理得x 216+y 212=1.故椭圆C 的方程为x 216+y 212=1.(2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2),直线PQ 与椭圆方程联立,得⎩⎪⎨⎪⎧x 216+y 212=1y =kx +2,消去y ,得(4k 2+3)x 2+16kx -32=0.所以x 1+x 2=-16k 4k 2+3,x 1x 2=-324k 2+3.从而,OP →·OQ →+MP →·MQ →=x 1x 2+y 1y 2+[x 1x 2+(y 1-2)(y 2-2)]=2(1+k 2)x 1x 2+2k (x 1+x 2)+4=-80k 2-524k 2+3=-20+84k 2+3. 所以-20<OP →·OQ →+MP →·MQ →≤-523.当直线PQ 的斜率不存在时,OP →·OQ →+MP →·MQ →的值为-20. 综上,OP →·OQ →+MP →·MQ →的取值范围为⎣⎢⎡⎦⎥⎤-20,-523.最值问题(高频考点)圆锥曲线中的最值问题是每年高考的热点,常涉及不等式,函数的值域问题,综合性比较强,解法灵活多变.主要命题角度有: (1)利用三角函数的有界性求最值; (2)数形结合利用几何性质求最值; (3)建立目标函数求最值; (4)利用基本不等式求最值.[典例引领]角度一 利用三角函数的有界性求最值过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( ) A .2B. 2C .4D .2 2【解析】 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ,则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 【答案】C角度二 数形结合利用几何性质求最值已知椭圆C :x 24+y 23=1的右焦点为F ,P 为椭圆C 上一动点,定点A (2,4),则|PA |-|PF |的最小值为________.【解析】 如图,设椭圆的左焦点为F ′,则|PF |+|PF ′|=4, 所以|PF |=4-|PF ′|,所以|PA |-|PF |=|PA |+|PF ′|-4.当且仅当P ,A ,F ′三点共线时,|PA |+|PF ′|取最小值|AF ′|=(2+1)2+16=5,所以|PA |-|PF |的最小值为1. 【答案】1角度三 建立目标函数求最值(2017·高考浙江卷)如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值. 【解】 (1)设直线AP 的斜率为k , k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1). (2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |= 1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减, 因此当k =12时,|PA |·|PQ |取得最大值2716.角度四 利用基本不等式求最值(2018·太原模拟)已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. 【解】 (1)由题意,c =1,b 2=3, 所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,Δ=288,设C (x 1,y 1),D (x 2,y 2),x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|=2(x 1+x 2)2-4x 1x 2=247. (2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0; 当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0),联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1),消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0,Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 1+x 2)+2k |=12|k |3+4k2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3⎝ ⎛⎭⎪⎫当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3.圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.已知中心在原点O ,焦点在x 轴上的椭圆,离心率e =12,且椭圆过点⎝ ⎛⎭⎪⎫1,32.(1)求该椭圆的方程;(2)椭圆的左、右焦点分别为F 1,F 2,过F 2的直线l 与椭圆交于不同的两点A ,B ,则△F 1AB 的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.解:(1)由题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0).则⎩⎪⎨⎪⎧c a =12,1a 2+94b 2=1,a 2=b 2+c 2,解得a 2=4,b 2=3. 所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),不妨设y 1>0,y 2<0,设△F 1AB 的内切圆的半径为R , 易知△F 1AB 的周长为4a =8,则S △F 1AB =12(|AB |+|F 1A |+|F 1B |)R =4R ,所以当S △F 1AB 取得最大值时,R 取得最大值,△F 1AB 的内切圆的面积取得最大值. 由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,得(3m 2+4)y 2+6my -9=0,所以y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.则S △F 1AB =12|F 1F 2|·(y 1-y 2)=12m 2+13m 2+4, 令 m 2+1=t ,则m 2=t 2-1(t ≥1), 所以S △F 1AB =12t 3t 2+1=123t +1t(t ≥1),令f (t )=3t +1t (t ≥1),则f ′(t )=3-1t2,当t ≥1时,f ′(t )≥0,f (t )在[1,+∞)上单调递增, 有f (t )≥f (1)=4, 所以S △F 1AB ≤3,即当t =1,即m =0时,S △F 1AB 取得最大值,最大值为3, 由S △F 1AB =4R ,得R max =34,所以所求内切圆面积的最大值为916π.故△F 1AB 的内切圆面积的最大值为916π,此时直线l :x =1.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.圆锥曲线中常见最值的解题方法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.求解范围、最值问题的两个易错点 (1)求范围问题要注意变量自身的范围;(2)利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.1.如图,抛物线W :y 2=4x 与圆C :(x -1)2+y 2=25交于A ,B 两点,点P 为劣弧AB ︵上不同于A ,B 的一个动点,与x 轴平行的直线PQ 交抛物线W 于点Q ,则△PQC 的周长的取值范围是( )A .(10,14)B .(12,14)C .(10,12)D .(9,11)解析:选C.抛物线的准线l :x =-1,焦点(1,0), 由抛物线定义可得|QC |=x Q +1,圆(x -1)2+y 2=25的圆心为C (1,0),半径为5,可得△PQC 的周长=|QC |+|PQ |+|PC |=x Q +1+(x P -x Q )+5=6+x P ,由抛物线y 2=4x 及圆(x -1)2+y 2=25可得交点的横坐标为4,即有x P ∈(4,6), 可得6+x P ∈(10,12),故△PQC 的周长的取值范围是(10,12).故选C.2.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF →=λFB→(λ>1),则λ的值为________.解析:根据题意设A (x 1,y 1),B (x 2,y 2),由AF →=λFB →,得⎝ ⎛⎭⎪⎫p 2-x 1,-y 1=λ⎝ ⎛⎭⎪⎫x 2-p 2,y 2,故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝ ⎛⎭⎪⎫x -p 2,联立直线与抛物线方程,消元得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1·y 2=-p 2,(y 1+y 2)2y 1·y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,故λ=4.答案:43.已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4且过点(2,-2).(1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.解:(1)椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距是4,所以焦点坐标是(0,-2),(0,2),2a =2+0+2+(2+2)2=42,所以a =22,b =2, 即椭圆C 的方程是y 28+x 24=1.(2)若直线l 垂直于x 轴,则点E (0,22),F (0,-22), OE →·OF →=-8.若直线l 不垂直于x 轴,不妨设l 过该椭圆的上焦点,则l 的方程为y =kx +2,设点E (x 1,y 1),F (x 2,y 2),将直线l 的方程代入椭圆C 的方程得到(2+k 2)x 2+4kx -4=0, 则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k2,所以OE →·OF →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4=-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8,因为0<202+k 2≤10,所以-8<OE →·OF →≤2,所以OE →·OF →的取值范围是[-8,2].4.设椭圆M :y 2a 2+x 2b2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M 的方程;(2)若直线y =2x +m 交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△PAB 面积的最大值.解:(1)由题可知,双曲线的离心率为2,则椭圆的离心率e =c a =22,由2a =4,c a=22,b 2=a 2-c 2,得a =2,c =2,b =2,故椭圆M 的方程为y 24+x 22=1. (2)不妨设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =2x +m x 22+y 24=1,得4x 2+22mx +m 2-4=0,由Δ=(22m )2-16(m 2-4)>0,得-22<m <2 2. 且⎩⎪⎨⎪⎧x 1+x 2=-22m x 1x 2=m 2-44,所以|AB |=1+2|x 1-x 2| =3·(x 1+x 2)2-4x 1x 2=3·12m 2-m 2+4 =3·4-m 22.又P 到直线AB 的距离为d =|m |3, 所以S △PAB =12|AB |·d =32·4-m 22·|m |3=12⎝ ⎛⎭⎪⎫4-m 22·m 2=122m 2(8-m 2) ≤122·m 2+(8-m 2)2= 2.当且仅当m =±2∈(-22,22)时取等号, 所以(S △PAB )max = 2.1.(2018·合肥质量检测(一))已知点F 为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B 若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.解:(1)由题意,得a =2c ,b =3c ,则椭圆E 为x 24c 2+y 23c2=1.由⎩⎪⎨⎪⎧x 24+y 23=c 2x 4+y 2=1,得x 2-2x +4-3c 2=0.因为直线x 4+y2=1与椭圆E 有且仅有一个交点M ,所以Δ=4-4(4-3c 2)=0⇒c 2=1, 所以椭圆E 的方程为x 24+y 23=1.(2)由(1)得M (1,32),因为直线x 4+y 2=1与y 轴交于P (0,2), 所以|PM |2=54, 当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)×(2-3)=1,所以λ|PM |2=|PA |·|PB |⇒λ=45, 当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +23x 2+4y 2-12=0⇒(3+4k 2)x 2+16kx +4=0, 依题意得,x 1x 2=43+4k 2,且Δ=48(4k 2-1)>0, 所以|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ,所以λ=45(1+13+4k 2), 因为k 2>14,所以45<λ<1. 综上所述,λ的取值范围是[45,1). 2.(2017·高考山东卷)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为2 2. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M ,点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.解:(1)由椭圆的离心率为22,得a 2=2(a 2-b 2).又当y =1时,x 2=a 2-a 2b 2,得a 2-a 2b 2=2, 所以a 2=4,b 2=2,因此椭圆方程为x 24+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=4, 得(2k 2+1)x 2+4kmx +2m 2-4=0,由Δ>0得m 2<4k 2+2. (*)且x 1+x 2=-4km 2k 2+1, 因此y 1+y 2=2m 2k 2+1, 所以D ⎝ ⎛⎭⎪⎫-2km 2k 2+1,m 2k 2+1, 又N (0,-m ), 所以|ND |2=⎝ ⎛⎭⎪⎫-2km 2k 2+12+⎝ ⎛⎭⎪⎫m 2k 2+1+m 2, 整理得|ND |2=4m 2(1+3k 2+k 4)(2k 2+1)2, 因为|NF |=|m |,所以|ND |2|NF |2=4(k 2+3k 2+1)(2k 2+1)2=1+8k 2+3(2k 2+1)2. 令t =8k 2+3,t ≥3.故2k 2+1=t +14, 所以|ND |2|NF |2=1+16t (1+t )2=1+16t +1t+2. 令y =t +1t ,所以y ′=1-1t 2. 当t ≥3时,y ′>0,从而y =t +1t在[3,+∞)上单调递增, 因此t +1t ≥103, 等号当且仅当t =3时成立,此时k =0,所以|ND |2|NF |2≤1+3=4, 由(*)得-2<m <2且m ≠0.故|NF ||ND |≥12, 设∠EDF =2θ,则sin θ=|NF ||ND |≥12, 所以θ的最小值为π6. 从而∠EDF 的最小值为π3,此时直线l 的斜率是0. 综上所述:当k =0,m ∈(-2,0)∪(0,2)时,∠EDF 取到最小值π3.。

相关文档
最新文档