北师大版最新中考数学模拟试卷(含答案) (53)

合集下载

北师大版(2024)年中考数学模拟试卷三(含答案解析)【可编辑打印】

北师大版(2024)年中考数学模拟试卷三(含答案解析)【可编辑打印】

那么m + n的结果( )
A .只有一个确定的值
B .有两个不同的值
C .有三个不同的值
D .有三个以上不同的值
7 .若线段 a ,b,c 组成直角三角形,则它们的比为( )
A .2∶3∶4
B .3∶4∶6
C .4∶6∶7
D .7∶24∶25
8
.如图,△
A0B和△
BCD均为等腰直角三角形,且顶点
A 、C
B .1
C .-1
D .2
10 .如图,AB 为⊙O 的直径,BC ,CD 是⊙O 的切线,切点分别为点 B,D ,点 E 为线段 OB 上的一
个动点,连接 OD ,CE ,DE ,已知 AB =2
5
,BC =2,当 CE+DE 的值最小时,则
CE DE
的值为
(
)
A. 9
10
B. 2
3
C. 5
3
D .2 5
A .x=2
B .x=-2
C .x=4
D .x=-4
4 .已知关于 x 的方程(m﹣2)x|m|﹣3x﹣4 =0 是一元二次方程,则( )
A .m≠±2
B .m = ﹣2
C .m =2
D .m = ±2
5 .如图,△ABC 中,∠ABC =45°, BC =4,tan∠ACB =3,AD⊥BC 于 D,若将△ADC 绕点 D 逆
25.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为 1000m2 的空地进行绿化,
一部分种草,剩余部分栽花,设种草部分的面积为 x(m2),种草所需费用 y1(元)与 x(m2 )的函数
x (0 ≤ 关系式为 y1 = k2x b(600

2024年中考数学模拟考试试卷-有答案(北师大版)

2024年中考数学模拟考试试卷-有答案(北师大版)

2024年中考数学模拟考试试卷-有答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下面几何体都是由5个棱长1dm的小正方体搭建的.从左面看,与其它三个不同的是( )2.水是生命之源,水以多种形态存在,固态的水即我们熟知的冰,气态的水即我们所说的水蒸气,水分子的半径约为0.0000000002m.将数据0.0000000002用科学记数法表示正确的是( )A.0.2x10-9B.2x10-10C.2x1010D.2x10-93.如图,已知AB∥CD,DE⊥AC,垂足为E,∠D=30°,则∠A的度数为()A.30°B.120°C.150° D .40°4.有理数a,b,c在数轴上的对应点如图所示,则化简代数式|a-b|-|a+b|+|b-c|的结果是()A.2a-b+cB.b-cC.b+cD.-b-c5.四幅作品分别代表"立春""立夏""芒种""大雪",其中既是轴对称图形,又是中心对称图形的是( )6.如果两点A(1,y1)和B(2,y2)都在反比例函数y=kx(k≠0)的图象上,有下列几种结论:①y2<y1<0;②y1<y2<0;③y1>y2>0;④y2>y1>0,其中可能正确的结论有()A.1种B.2种C.3种 D .4种7.象棋起源于中国,在中国有着悠久的历史.一个不透明的盒子里装有2个卒和1个兵(卒为黑色,兵为红色),每个棋子除颜色外都相同,从中随机摸出一个棋子(无法凭借触感得知棋子上的字),记下颜色后放回,再从中随机摸出一个棋子,则两次摸到相同颜色的棋子的概概率为()A.49B.12C.23D.598.某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变.在使杠杆平衡的情况下,小康通过改变动力臂L,测量出相应的动力F数据如表.请根据表中数据规律探求,当动力臂L 长度为2.0m时,所需动力最接近( )A.302NB.300NC.150ND.120N 9.如图,在△ABC 中,AB=AC ,∠A=36°,如下作图:①以点B 为圆心,适当长为半径作弧,分别交BA ,BC 于点M 、N;②分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧在△ABC 内部交于点P ; ③作射线BP 交AC 于点D.根据以上作图,判断下列结论正确的有( ) ①∠C=2∠A ;②AD=BC ;③BC 2=CD ·AB ;④CD=√5-12AD.A.①②B.①②③C.①②④D.①②③④ 10.对于二次函数y=ax 2+bx+c ,规定函数y={ax 2+bx +c (x ≥0)﹣ax 2-bx -c (x <0)是它的相关函数.已知点M 、N 的坐标分别为(﹣12,1)、(92,1),连接MN ,若线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象有两个公共点,则n 的取值范围是( ) A.﹣3<n ≤﹣1或1<n ≤54 B.-3<n<-1或1<n ≤54 C.n ≤-1或1<n ≤54 D.-3<n<-1或n ≥1二.填空题:本题共6小题,每小题4分,共24分. 11.因式分解:9+a 2-6a= 。

(北师大版)中考数学模拟考试试卷-带答案

(北师大版)中考数学模拟考试试卷-带答案

(北师大版)中考数学模拟考试试卷-带答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.9的平方根是()A.3B.-3C.±3D.√32.下列是描述小明和小颖在同一盏路灯下影子的图片,其中合理的是( )3.2023年10月26日,神舟十七号载人飞船发射取得圆满成功.在发射过程中,神舟十七号的飞行速度约为450000米/分,把"450000"用科学记数法表示应为( )A.4.5x105B.4.5x106C.45x104D.0.45x1064.下列式子计算正确的是()A.m+m=m2B.(-3m)2=6m2C.(m+2n)2=m2+4n2D.(m+3n)(m-3n)=m2-9n25.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.有理数a、b在数轴上的对应位置如图所示,下列选项正确的是()A.a﹣b>0B.a+b<0C.ab>0D.|a|<|b|7.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。

两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.129.如图.在平行四边形ABCD中,CD=4,∠B=60°,BE:EC=2:1,依据尺规作图的痕痕迹,则平行四边形ABCD的面积为( )A.12B.12√2C.12√3D.12√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.若分式3有意义,则x的值可以是.(写出一个即可)x+113.已知整数m满足√3<m<√15,则m的最大值是。

2024年中考数学模拟考试试卷-带答案(北师大版)

2024年中考数学模拟考试试卷-带答案(北师大版)

2024年中考数学模拟考试试卷-带答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图中六棱柱的左视图是()2.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种.3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为()A.14x107B.1.4x108C.0.14x109D.1.4x1093.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示的方式放置,其中∠A=30°,∠ACB=90°,若∠1=45°,则∠2的度数为()A.30°B.25°C.20°D.15°4.下列运算错误的是( )A.(a2)³=a6B.a7÷a³=a4C.a³·a6=a9D.a2+a3=a55.下列运动项目图标中,既是轴对称图形又是中心对称图形的是( )6.若点(-2,y1)、(-1,y2)、(3,y3)在反比例函数y=kx(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.为了缓解中考备考压力,增加学习兴趣,李老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字"中""考""必""胜";转盘二被三等分,分别写有汉字"我""必""胜",将两个转盘转动一次(当指针指向区域分界线时,不作数,重新转动),若得到"必""胜"两字,则获得游戏一等奖,请求出获得游戏等奖的概率()A.12B.14C.16D.1129.如图,在半径为10的扇形AOB中,∠AOB=90°,C是AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π9.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在△ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠ADB的度数为( )A.36°B.54°C.72°D.108°10.定义:将平面直角坐标系中中横坐标与纵坐标均为整数的点叫作格点,如(-2,1),(2,0)等均为格点.如图,在平面直角坐标系xOy中,直线l:y=a(x+2)(a>0)与x轴交于点A,与抛物线E:y=ax2(a>0)交于B,C两点(B在C的左边).直线l与抛物线E所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,则a的取值范围是()A.132<a≤7 B.193<a≤203C.132<a≤203或a=7 D.a=7二.填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:x2+6x+9= .12.一个不透明的盒子中装有若干个红球和6个白球,这些球除颜色外均相同.经多次摸球试验后发现,摸到白球的频率稳定在0.25左右,则盒子中红球的个数约为.13.若√7<a<√10,且a为整数,则a的值为.14.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为(结果保留π).15.如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,分别将Rt△ABC的三边分别沿箭头方向平移2个单位长度并适当延长,得到△A1B1C1,则△A1B1C1的面积为。

2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列立体图形中,俯视图是三角形的是( )2."两岸猿声啼不住,轻舟已过万重山."2023年8月29日,某手机共售出约160万台,将数据1600000用科学记数法表示应为( )A.0.16x107B.1.6x106C.1.6x107D.16x1063.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35,则∠2的度数为( )A.35°B.55°C.65°D.70°4.如图,数轴上点A,B,C分别表示数x,x+y,y,且AB<BC,则下列结论正确的是()A.x+y>0B.xy>0C.|x|-y>0D.|x|<|y|5.下列图形中,既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.3a+2b=5abB.-5y+3y=2yC.7a+a=8D.3x2y-2yx2=x2y7.我校举办的"强基计划五大学科展示汇"吸引了众多学生前来参观,如图所示的是该展览馆出入口的示意图,A,B是入口,C,D,E是出口.小颖从A入口进,从C出口出的概率为()A.15B.16C.12D.138.在同一平面直角坐标系中,函数y=-k(x-1)(k≠0)与y=kx(k≠0)的图象可能是( )9.如图,在△ABC中,∠A=36°,AB=AC,以点B为圆心任意长为半径画弧,分别交AB、BC于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点O ,连接BO ,并延长交AC 于点D .若AB=2,则CD 的长为( )A.√5-1B.3-√5C.√5+1D.3+√510.约定:若函数图象至少存在不同的两点关于原点对称,则把该函数称为"黄金函数",其图象上关于原点对称的两点叫做一对"黄金点".若点A(1,m),B(n ,-4)是关于x 的"黄金函数"y=ax 2+bx+c(a ≠0)上的一对"黄金点",且该函数的对称轴始终位于直线x=2的右侧,则有结论:①a+c=0;②b=4;③14a+12b+c<0:④-1<a<0.其中结论正确的是( )A.①②③B.①③④C.①②④D.②③④ 二.填空题:本题共6小题,每小题4分,共24分. 11.因式分解:4m 2-9= .12.江豚素有"水中大熊猫"之称,为了解洞庭湖现有江豚数量,考察队先从湖中捕捞10头江豚并做上标记,然后放归湖内.经过一段时间与群体充分混合后,再从中多次捕捞全部计数后放回,并算得平均每32头江豚中有2头有标记,则估计洞庭湖现有江豚数量约为 头.13.根据物理学规律,如果把一个物体从地面以10m/s 的速度竖直上抛(如图所示),那么物体经过x s 离地面的高度(单位:m )为10x -4.9x 2.根据上述规律,该物体落回地面所需要的时间x 约为 s.(结果保留整数)14.如图,已知正六边形ABCDEF,⊙O 是此正六边形的外接圆.若AB=2,则阴影部分的面积 为 .15.11月10日晚,"深爱万物"--2023深圳人才嘉年华活动正式启动,千余架无人机在深圳人才公园上空上演"天空之舞",为人才喝彩、向人才致敬.如图所示的平面直角坐标系中,线段OA ,BC 分别表示1号、2号无人机在队形变换中飞行高度y 1,y 2(米)与飞行时间x (秒)的函数关系,其中y 2=-4x+150,线段OA 与BC 相交于点P ,AB ⊥y 轴于点B ,点A 的横坐标为25,则在第 秒时1号和2号无人机在同一高度.16.如图所示,正方形ABCD 的边长为3,点E 在AD 上(不与点A ,D 重合),连接BE ,交对角线AC 于点H ,将△ABE 沿BE 折叠,点A 的对应点为F ,延长EF 交CD 于点G ,连接BG 和CH ,则以下结论中:①∠EBG=45°;②当AE=1时,DG=CG;③S △BED =12S 正方形ABCD ;④GH=BH. 所有正确结论的序号是 。

(北师大版)中考数学模拟考试卷-带答案

(北师大版)中考数学模拟考试卷-带答案

(北师大版)中考数学模拟考试卷-带答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.2023年济南(泉城)马拉松于10月29日成功举办.图①是此次泉城马拉松男子组颁奖现场示意图.图②是领奖台的示意图,则此领奖台的主视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。

可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.如图:AD∥BC、BD平分∠ABC,若∠ADB=35°,则∠4的度数为()A.35°B.70°C.110°D.120°5.我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.若0<m<n,则直线y=-5x+m直线y=-x+n的交点()A.第一象限B.第二象限C.第三象限(x-2)D.第四象限8.某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,弧AB、弧CD所在圆的圆心为点O,点C、D分别在OA和OB上.已知消防车道宽AC=4m,∠AOB=120°,则弯道外边缘AB的长与内边缘CD的长的差为()A.4π3m B.8π3m C.16π3m D.32π3m9.反比例函数y=ax(a≠0)与一次函数y=ax﹣a在同一坐标系中的图象可能是()A. B. C. D.10.如图,在正方形ABCD中,AB=√2,点E、F分别是DC和BC边上的动点,且始终保持EF=BF+DE,连接AE与AF,分别交DB干点N、M,过点A作AH⊥EF于点M.下列结论:①∠EAF45°:② ∠BAF=∠HAF;③AH=√2;④∠DNE=67.5°;⑤DN2+BM2=NM2,其中结论正确的序号是()A.①③④B.①②③⑤C.②④⑤D.①②③④二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式a2-4b2= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.13.已知一元二次方程x2-5x+2m=0有一个根为2,则另一根为.14.我国是世界上最早制造使用水车的国家,如图是水车舀水灌溉示意图,水车轮的辐条(圆的半径)将圆平均分为12个格,半径04长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次昌满河水在点/处离开水面,逆时针旋转上升至轮子上方8处时,斗口开始翻转向下,将水倾入木樁,由木槽导入水果,进而灌溉,那么水斗从4处(舀水)转动到B处(倒水)所经过的路程是米,(结果保留π)15.如图的曲边三角形可按下述方法作出:作等边三角形ABC,以三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是曲边三角形,若等边三角形ABC的边长为2,则这个曲边三角形的面积是。

(完整)北师大版中考数学模拟试题及答案,推荐文档

(完整)北师大版中考数学模拟试题及答案,推荐文档

九年级中考模拟测试题(一)一、填空题(每题3分,共24分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,xy 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q ,则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(每题3分,共24分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r2+π B 、r c r +π C 、r c r +2π D 、22rc r+π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a的取值范围是( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是( )A 、51<<x B 、135<<x C 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( ) A 、%2x B 、%21x + C 、%%)1(x x •+ D 、%%)2(x x •+ 三、解答题17.(6分)化简:2222111x x x x x x-+-÷-+18. (6分)解分式方程:2412-=+-x x x19.(10分)如图,在梯形纸片ABCD 中,AD//BC ,AD >CD ,将纸片沿过点D的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C ′E .求证:四边形CDC ′E 是菱形.20、(10分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及A DEB C C ′ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。

(北师大版)中考数学模拟考试试卷-含答案

(北师大版)中考数学模拟考试试卷-含答案

(北师大版)中考数学模拟考试试卷-含答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________(满分150分时间120分钟)一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.图中立体图形的俯视图是( )2.如图,平行于主光轴MN的光线AB和CD经过凹透镜的折射后,折射光线BE、DF的反向延长线交于主光轴MN上一点P.若∠ABE=160°,∠CDF=150°,则∠EPF的度数是()A.20°B.30°C.50°D.70°3."燕山雪花大如席,片片吹落轩辕台."这是诗仙李白眼里的雪花,单个雪花的重量其实很轻,只有0.00003kg左右,0.00003用科学记数法可表示为( )A.3×10﹣5B.3x10-4C.0.3x10-4D.0.3x10-54.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°5.下列校徽的图案是轴对称图形的是()6.实数a、b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是()A.|a|<|b|B.2a>2bC.ab>0D.a<-17.春节期间,琪琪和乐乐分别从A,B,C三部春节档片中随机选择一部观看,则琪琪和乐乐选择的影片相同的概率为()A.12B.13C.16D.19 8.小明在化简分式3nm -2n +2m -n2n -m的过程中,因为其中一个步骤的错误,导致化简结果是错误的,小明开始出现错误的那一步编号是( )A.①B.②C.③D.④9.如图,在平行四边形ABCD 中,BC=2AB=8,连接BD ,分别以点B 、D 为国心,大于12BD 长为半径作弧,两弧交于点E 和点F ,作直线EF 交AD 于点I ,交BC 于点H 、点H 恰为BC 的中点,连接AH ,则AH 的长为( )A.4√3B.6C.7D.4√510.二次函数y=ax 2+bx+c(a,b,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:且当x=-12时,与其对应的函数值y>0,有下列结论:①abc<0;②m=n;③-2和3是关于x 的方程ax 2+bx+c=t 的两个根;④a<83,其中正确结论的个数是( )A.1B.2C.3D.4二.填空题(本大题共6个小题,每小题4分,共24分) 11.分解因式:xy -y 2= .12.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向平行四边形ABCD 内部投掷飞镖,飞镖恰好落在阴影区域的概率为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列实数是无理数的是()A.B.C.0 D.﹣1.0101012.(3分)鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×1093.(3分)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6 D.x6÷x2=x44.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.5.(3分)对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解6.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°7.(3分)已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n 与反比例函数y=的图象可能是()A. B.C.D.8.(3分)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个9.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.(3分)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)分解因式:ab2﹣9a=.12.(3分)若y=+﹣6,则xy=.13.(3分)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.(3分)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.(3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.(3分)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.18.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD 于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.19.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.20.(8分)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.21.(9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O 的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.23.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(12分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C 点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP =S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.2017年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•鄂州)下列实数是无理数的是()A.B.C.0 D.﹣1.010101【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,0,﹣1.0101是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)(2017•鄂州)鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2.3亿用科学记数法表示为:2.3×108.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•鄂州)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6 D.x6÷x2=x4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2x,不符合题意;B、原式=x2﹣2x+1,不符合题意;C、原式=﹣8x6,不符合题意;D、原式=x4,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•鄂州)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.【分析】根据俯视图中每列正方形的个数,再画出从正面,左面看得到的图形即可.【解答】解:该几何体的左视图是:.故选:D.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.5.(3分)(2017•鄂州)对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解【分析】确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断.【解答】解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,3故选A.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(3分)(2017•鄂州)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°【分析】先根据EC=EA.∠CAE=30°得出∠C=30°,再由三角形外角的性质得出∠AED的度数,利用平行线的性质即可得出结论.【解答】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.【点评】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.7.(3分)(2017•鄂州)已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.【分析】观察二次函数图象可得出m>0、n<0,再根据一次函数图象与系数的关系结合反比例函数的图象即可得出结论.【解答】解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.故选C.【点评】本题考查了二次函数图象与系数的关系、一次函数图象与系数的关系以及反比例函数的图象,观察二次函数图象找出m>0、n<0是解题的关键.8.(3分)(2017•鄂州)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】①由当t=0时y=1400,可得出打电话时,小东和妈妈的距离为1400米,结论①正确;②利用速度=路程÷时间结合小东的速度,可求出小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③由t的最大值为27,可得出小东打完电话后,经过27min到达学校,结论③正确;④根据路程=2400+小东步行的速度×(27﹣22),即可得出小东家离学校的距离为2900m,结论④正确.综上即可得出结论.【解答】解:①当t=0时,y=1400,∴打电话时,小东和妈妈的距离为1400米,结论①正确;②2400÷(22﹣6)﹣100=50(m/min),∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③∵t的最大值为27,∴小东打完电话后,经过27min到达学校,结论③正确;④2400+(27﹣22)×100=2900(m),∴小东家离学校的距离为2900m,结论④正确.综上所述,正确的结论有:①②③④.故选D.【点评】本题考查了一次函数的应用,观察图形,逐一分析四条结论的正误是解题的关键.9.(3分)(2017•鄂州)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【解答】解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1∴2b﹣c=2,故①正确;故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(3分)(2017•鄂州)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【分析】如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB 于H,EK⊥AB于K.作BT⊥AD于T.由△BCF≌△GDF,推出BC=DG,BF=FG,由△FBC≌△FBH,△FAH≌△FAD,推出BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,可得(x+4)2=42+(4﹣x)2,推出x=1,推出BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,根据AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,可得42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由此求出y即可解决问题.【解答】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH ⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②由①②可得y=,=×5×=,∴S△ABE故选D.【点评】本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题.二、填空题(每小题3分,共18分)11.(3分)(2017•鄂州)分解因式:ab2﹣9a=a(b+3)(b﹣3).【分析】根据提公因式,平方差公式,可得答案.【解答】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.12.(3分)(2017•鄂州)若y=+﹣6,则xy=﹣3.【分析】根据分式有意义的条件即可求出x与y的值.【解答】解:由题意可知:,解得:x=,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣3【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.13.(3分)(2017•鄂州)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为2.【分析】因为众数为3,表示3的个数最多,因为2出现的次数为二,所以3的个数最少为三个,则可设a,b,c中有两个数值为3.另一个未知数利用平均数定义求得,从而根据中位数的定义求解.【解答】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+2+2+3+3+c)=2,解得c=0,将这组数据按从小到大的顺序排列:0、1、2、2、3、3、3,位于最中间的一个数是2,所以中位数是2,故答案为:2.【点评】本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•鄂州)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为8π.【分析】根据题意可以去的圆锥的母线长,然后根据圆锥的侧面展开图是一个扇形,由扇形的面积公式S=lr即可解答本题.【解答】解:圆锥的主视图如右图所示,直径BC=8,AD=6,∴AC==2,∴圆锥的侧面积是:=8π,故答案为:8π.【点评】本题考查圆锥的计算,解答本题的关键是明确题意,知道圆锥的侧面展开图是扇形和扇形的面积计算公式.15.(3分)(2017•鄂州)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC 的面积分成1:2的两部分,则k的值为﹣4或﹣8.【分析】过C作CE⊥AB于E,根据∠ABC=60°,AB=4,BC=2,可求得△ABC 的面积,再根据点D将线段AC分成1:2的两部分,分两种情况进行讨论,根据反比例函数系数k的几何意义即可得到k的值.【解答】解:如图所示,过C作CE⊥AB于E,∵∠ABC=60°,BC=2,∴Rt△CBE中,CE=3,又∵AC=4,∴△ABC的面积=AB×CE=×4×3=6,连接BD,OD,∵直线BD将△ABC的面积分成1:2的两部分,∴点D将线段AC分成1:2的两部分,当AD:CD=1:2时,△ABD的面积=×△ABC的面积=2,∵AC∥OB,∴△DOA的面积=△ABD的面积=2,∴|k|=2,即k=±4,又∵k<0,∴k=﹣4;当AD:CD=2:1时,△ABD的面积=×△ABC的面积=4,∵AC∥OB,∴△DOA的面积=△ABD的面积=4,∴|k|=4,即k=±8,又∵k<0,∴k=﹣8,故答案为:﹣4或﹣8.【点评】本题主要考查了反比例函数与一次函数交点问题,以及反比例函数系数k的几何意义的运用.过反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.解题时注意分类思想的运用.16.(3分)(2017•鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD 的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8.【分析】根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:设平移后的解析式为y=y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8,故答案为:2≤m≤8.【点评】本题考查了二次函数图象与几何变换,利用了矩形性质和二次函数图象上点的坐标特征,平移的性质的应用,把B,D的坐标代入是解题关键.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)(2017•鄂州)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.【分析】先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.【解答】解:原式=(+)÷=•=•=,解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、0、1、2,∵不等式有意义时x≠±1、0,∴x=2,则原式=0.【点评】本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.18.(8分)(2017•鄂州)如图,将矩形ABCD沿对角线AC翻折,点B落在点F 处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.【分析】(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE ﹣S△AEF=×4×8﹣×4×3=10.【点评】本题考查了翻折变换﹣折叠的性质,全等三角形的判定和性质,矩形的性质,勾股定理,三角形面积的计算,熟练掌握折叠的性质是解题的关键.19.(8分)(2017•鄂州)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为144°;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有1人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.【分析】(1)用“经常参加”所占的百分比乘以360°计算得到“经常参加”所对应的圆心角的度数;先求出“经常参加”的人数,然后减去其它各组人数得出喜欢足球的人数;进而补全条形图;(2)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(3)先利用树状图展示所有12种等可能的结果数,找出选中的两个项目恰好是“乒乓球”、“篮球”所占结果数,然后根据概率公式求解.【解答】解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.20.(8分)(2017•鄂州)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,解得:k>;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.21.(9分)(2017•鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.【分析】(1)设DE=x,可得EF=DE﹣DF=x﹣2,从而得AF==(x﹣2),再求出CD==x、BC==2,根据AF=BD可得关于x的方程,解之可得;(2)延长NM交DB延长线于点P,知AM=BP=3,由(1)得CD=x=2、BC=2,根据NP=PD且AB=MP可得答案.【解答】解:(1)如图,设DE=x,∵AB=DF=2,∴EF=DE﹣DF=x﹣2,∵∠EAF=30°,∴AF===(x﹣2),又∵CD===x,BC===2,∴BD=BC+CD=2+x由AF=BD可得(x﹣2)=2+x,解得:x=6,∴树DE的高度为6米;(2)延长NM交DB延长线于点P,则AM=BP=3,由(1)知CD=x=×6=2,BC=2,∴PD=BP+BC+CD=3+2+2=3+4,∵∠NDP=45°,且MP=AB=2,∴NP=PD=3+4,∴NM=NP﹣MP=3+4﹣2=1+4,∴食堂MN的高度为1+4米.【点评】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.22.(9分)(2017•鄂州)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.【分析】(1)连接OA、OE交BC于T.想办法证明OE⊥BC即可;(2)由ED、EA的长是一元二次方程x2﹣5x+5=0的两根,可得ED•EA=5,由△BED∽△AEB,可得=,推出BE2=DE•EA=5,即可解决问题;(3)作AH⊥OM于H.求出AH、BH即可解决问题;【解答】(1)证明:连接OA、OE交BC于T.∵AM是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴=,∴BE2=DE•EA=5,∴BE=.(3)作AH⊥OM于H.在Rt△AMO中,∵AM=6,sin∠M==,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD==,∴OH=1,AH=2.BH=2,∴AB===2.【点评】本题考查切线的性质、解直角三角形、勾股定理、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.23.(10分)(2017•鄂州)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.【解答】解:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,因为x为偶数,所以当销售单价定为80﹣6=74元或80﹣8=72时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.【点评】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.24.(12分)(2017•鄂州)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP =S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.。

相关文档
最新文档