最新北师大版九年级中考数学模拟试题以及答案

合集下载

最新北师大版九年级中考数学模拟试题以及答案

最新北师大版九年级中考数学模拟试题以及答案

九年级中考数学模拟试题一、选择题(共15小题,每小题3分,满分45分)1、﹣12的绝对值是( )A .12B .-12C .D .2、如图,直线a ∥b ,直线c 与a ,b 相交,∠1=65°,则∠2=( )A .115°B .65°C .35°D .25°3、2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为( C )A .1.28×103B .12.8×103C .1.28×104D .0.128×1054、下列事件中必然事件的是( )A .任意买一张电影票,座位号是偶数B .正常情况下,将水加热到100℃时水会沸腾C .三角形的内角和是360°D .打开电视机,正在播动画片5、下列各式计算正确的是( )A .3x -2x=1B .a 2+a 2=a 4C .a 5÷a 5=aD .a 3•a 2=a 51121126.下面四个立体图形中,主视图是三角形的是( )7、化简5(2x -3)+4(3-2x )结果为( )A .2x -3B .2x+9C .8x -3D .18x -38、暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为( )A .B .C .D . 9、如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( )A .B .C .D .310、下列命题是真命题的是( )A .对角线相等的四边形是矩形B .一组邻边相等的四边形是菱形C .四个角是直角的四边形是正方形D .对角线相等的梯形是等腰梯形11、一次函数y=kx+b 的图象如图所示,则方程kx+b=0的解为( )1213161913122A .x=2B .y=2C .x=-1D .y=-112、已知⊙O 1和⊙O 2的半径是一元二次方程x 2-5x+6=0的两根,若圆心距O 1O 2=5,则⊙O 1和⊙O 2的位置关系是( )A .外离B .外切C .相交D .内切13、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )ABC .5D .14、如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向 以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )152A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-1)[来15、如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( )A .y 的最大值小于0B .当x=0时,y 的值大于1C .当x=-1时,y 的值大于1D .当x=-3时,y 的值小于0二、填空题(共6小题,每小题3分,满分18分)16.分解因式:a 2-1= .17.计算:2sin30= .18.不等式组 2x -4<0 x+1≥0 的解集为 .19.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 向右平移得到△DEF ,若平移距离为2,则四边形ABED 的面积等于 .20.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.21.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.三、解答题(共7小题,共57分,解答应写出文字说明,证明过程或演算步骤)22.(1)解不等式3x-2≥4,并将解集在数轴上表示出来.(2)化简:.23.(1)如图1,在▱ABCD 中,点E ,F 分别在AB ,CD 上,AE=CF .求证:DE=BF .(2)如图2,在△ABC 中,AB=AC ,∠A=40°,BD 是∠ABC 的平分线,求∠BDC 的度数.2121224a a a a a --+÷--24.冬冬全家周末一起去济南山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?25.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:(1)300户居民5月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中2.5米3对应扇形的圆心角为度;(3)该小区300户居民5月份平均每户节约用水多少米3?26.如图1,在菱形ABCD中,AC=2,BD=2 3 ,AC,BD相交于点O.(1)求边AB的长;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①判断△AEF是哪一种特殊三角形,并说明理由;②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.27、如图,已知双曲线,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC .(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.k y x28.如图1,抛物线y=ax2+bx+3与x轴相交于点A(-3,0),B(-1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.。

最新北师大版九年级下册数学中考模拟试题以及答案

最新北师大版九年级下册数学中考模拟试题以及答案

九年级中考数学模拟试题一、选择题。

1、下列命题是真命题的是( ) A. 对角线相等的四边形是矩形 B. 对角线互相垂直的四边形是菱形 C. 对角线互相垂直平分的四边形是正方形 D. 对角线互相平分的四边形是平行四边形2、在4×4的正方形的网格中画出了如图所示的格点△ABC ,则tan ∠ABC 的值为( )A 、23 B 、32 C 、13133D 、131323、4、5、《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱2的钱给乙,则乙的钱数也能为50,给甲,则甲的钱数为50;而甲把其3问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()6、如图,在平面直角坐标系中,A(0,23),B(-2,0),C(2,0),过点B作AC的垂直平分线于点D,则点D的坐标为()A、(1,1)B、(1,3)C、(3,1)D、(1,23)7、图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )8、如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()9、10、如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A、2个B、3个C、4个D、5个11、如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内»OB 上一点,∠BMO=120°,则⊙C 的半径长为( )A .6B .5C .3D .32二、填空题。

最新北师大版九年级下册中考数学模拟试卷以及答案

最新北师大版九年级下册中考数学模拟试卷以及答案

九年级中考数学模拟试卷一、选择题。

(共12道选择题,每道选择题只有一个正确答案)1、8的立方根是()A、2B、﹣2C、±2D、2√2、下列三视图中,左视图是圆的是()3、一个数1731,这个数用科学记数法表示是()A、17.31×102B、1.731×103C、173.1×10D、0.1731×1044、如图,已知直线a∥b,把三角尺的顶点放在直线b上,若∠1=42°,则∠2的度数是()A、138°B、132°C、128°D、122°5、下列图形既是中心对称,又是轴对称的是()6、若关于x的方程x2-4x+m=0有两个相等的实数根,则m的值是()。

A、1B、2C、4D、±47、化简:2x-1÷1x-1的结果是()A、2x+1B、2x2-1C、2x-1D、2(x+1)8、一名同学连续一周体温情况如图所示:这名同学这一周体温数据的众数和中位数是()9、10、如图,将周长为7的△ABC沿BC的方向平移2个单位得到△DEF,则四边形ABFD的周长是()。

A、16B、9C、11D、1211、A、23cmB、24cmC、25cmD、26cm12、二、填空题。

(共6道填空题)13、因式分解:a2-4a+a= 。

14、15、当x= ,1x 和3x+1相等。

16、如果一个正多边形的一个内角是135°,则这个正多边形是。

17、18、三、解答题。

19、计算题:|√2-1|+(13)﹣1+(2021-π)-2cos45°20、解不等式:,并求出最大整数解;21、如图,已知矩形ABCD中,对角AC、BD交于点O,AE⊥BD于点E,BF⊥AC于点F,证明:AE=BF;。

最新北师大版九年级下册数学中考模拟试题以及答案

最新北师大版九年级下册数学中考模拟试题以及答案

最新九年级下册数学中考模拟试卷一、选择题。

1,﹣2中,最小的一个实数是()1、在已知实数:﹣1,0,2025A、﹣1B、01C、2025D、﹣22、下列运算正确的是()A、x3+x3=2x6B、a8÷a2=a4C、(a2)3=a6D、3a3?2a2=6a63、在下列图案中,是中心对称图形的是()A、B、C、D、4、某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均没千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A、(1﹣15%)(1+20%)a元B、(1+20%)15%a元C、(1+15%)(1﹣20%)a元D、(1﹣15%)20%a元5、已知△ABC的周长为13,且各边长均为整数,那么这样的等腰△ABC 有()A、3个B、2个C、4个D、5个6、小宇在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号123456产量量172119182019这组数据的中位数为m,樱桃的总产量约为n,则m,n分别是()A、18.5,1900B、19,1900C、19,1850D、18,20007、关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A、B、C、D、8、如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点,在A、P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为()A、13πcmB、14πcmC、16πcmD、15πcm9、当k>时,直线kx﹣y=k与直线ky+x=2k的交点在()A、第一象限B、第二象限C、第三象限D、第四象限10、如图,已知△ABC的面积是12,点E、I分别在边AB、AC上,在BC边上依次作了n个全等的小正方形DEFG,GFMN,…,KHIJ,则每个小正方形的边长为()A、B、C、D、11、如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).有下列结论:①abc>0;②4a﹣2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是(5,0);⑤点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2,其中错误的有()个。

北师大版九年级中考数学模拟试卷(含答案)

北师大版九年级中考数学模拟试卷(含答案)

北师大版九年级中考数学模拟试卷(满分150分 时间120分钟)一.选择题(共40分) 1.2023的相反数是( )A.2023B.12023 C.﹣12023 D.﹣20232.如图四个几何体中,主视图、左视图、俯视图都相同的几何体是( )A. B. C. D. 3.神舟十五号载人飞船,搭载3名航天员于2022年11月29日成功发射,它的飞行速度大 约是474000米/分,这个数字用科学记数法表示为( )A.4.74×105B.4.74×106C.47.4×104D.0.474×1064.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=( ) A.60° B.50° C.40° D.30°(第4题图) (第 6题图) (第7题图) 5.下列标志图中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 6.数a 、b 、c 在数轴上的位置如图所示,其中b 、c 到原点的距离相等,下列式子正确的 是( )A.a+c >0B.a+b >0C.b+c >0D.a -b <07.在如图所示的电路图,当随机闭合开关K 1、K 2、K 3中的任意两个时,能使灯泡发亮的概率为( )A.13 B.12 C.23 D.34 8.计算mm -1+11-m 的结果是( )A.1B.﹣1C.2D.﹣29.如图,在△ABC 中,已知∠B=45°,∠C=30°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若DE=3,则AB 的长为( )A.5√2B.5C.3√6D.4√3(第9题图)10.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点为整点.对于题目:抛物线 y=ax (x -4)+m (a ≠0)与x 轴分别交于M 、N 两点(点M 在点N 的左侧),MN=2,线段 MN 与抛物线围成的封闭区域记作G (包括边界),若区域G 内有6个整点,求a 的取值范围.则( )A.3≤a <4B.﹣4<a ≤﹣3C.﹣4<a ≤﹣3或3≤a <4D.﹣4<a <﹣3或3≤a <4 二.填空题(共24分)11.分解因式:x 2-116= .12.正方形地板由9块边长均相等的小正方形组成,一粒米随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是 。

最新北师大版九年级下册数学中考模拟试题以及答案

最新北师大版九年级下册数学中考模拟试题以及答案

最新九年级下册数学中考模拟试卷一、选择题。

1、计算(﹣3)2等于()A、﹣9B、﹣6C、6D、92、方程﹣=0解是()A、x=B、x=﹣1C、x=D、x=3、如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A、52,53B、8,5C、8,6D、52,524、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A、S3>S2>SB、S1>S3>S2C、S1>S2>S3D、S2>S3>S15、一元二次方程x2+2x﹣6=0的根是()A、x 1=﹣,x2=3B、x 1=0,x2=﹣2C、x 1=x2=D、x 1=,x2=﹣36、当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A、7B、1C、3D、﹣77、如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A、B、C、D、8、如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A、y=x2﹣x+2B、y=x2﹣x﹣2C、y=x2+x﹣2D、y=x2+x+29、如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC 相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A、甲、乙、丙B、甲、丙、乙C、丙、甲、乙D、乙、丙、甲10、如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE 的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A、1B、C、2D、11、如图,直线AB与∠O相切于点A,弦CD∠AB,E,F为圆上的两点,且∠CDE=∠ADF.若∠O的半径为,CD=4,则弦EF的长为()A、2B、5C、4D、612、已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A、3B、4C、5D、6二、填空题。

最新北师大版九年级中考数学模拟试题 以及答案

最新北师大版九年级中考数学模拟试题 以及答案

最新九年级中考数学模拟卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题结出的四个选项中,只有一项是符合题目要求的.)1.5的相反数是()A.1 5B.5C.-1 5D.-52.随着高铁的发展,预计2020年济南西客站客流量特达到2150万人,数字2150用科学记数法表示为()A.0.215×104B.2.15×103C.2.15×104D.21.5×1023.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C、25°D .20°4.如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是( )A .B .C .D .5.下列运算正确的是( ) A . a 2+a =2a 3 B .a 2·a 3=a 6 C .(-2a 3)2=4a 6 D .a 6÷a 2=a 36.京剧脸谱、剪纸等图案蕴含着简洁美、对称美,下列选取的图片中既是轴对称图形又是中心对称图形的是( )第3题图l 2l 121A7.化简22111x x ÷--的结果是( )A .21x +B .2xC .21x -D .2(x +1)8.如图,在6×6方格中有两个涂有阴影的图形M 、N ,①中的图形M 平移后位置如图②所示,以下对图形M 的平移方法叙述正确的是 ( )A .向右平移2个单位,向下平移3个单位B .向右平移1个单位,向下平移3个单位C .向右平移1个单位,向下平移4个单位D .向右平移2个单位,向下平移4个单位9.如图,若一次函数y =-2x +b 的图像交y 轴于点A (0,3),则不等式-2x +b >0的解集为( ) A .x >32第8题图②MNB .x >3C .x <32D .x <310.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和和小睿选到同一课程的概率是( ) A .12B .13C .16D .1911.若关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围是( ) A .k <1 B .k ≤1 C .k >-1 D .k >112.济南大明湖畔的“超然楼”被称作“江北第一楼”.某第9题图校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B 处,测得仰角为60°,若学生的身高忽略不计,3≈1.7,结果精确到1m,则该楼的高度CD为()A.47mB.51mC.53mD.54m13.(2016济南,13,3分)如图,在 ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.15 2B.43 C.215 D.55 第12题图C14.(2016济南,14,3分)定义:点A (x ,y )为平面直角坐标系内的点,若满足x =y ,则把点A 叫做“平衡点”.例如:M (1,1),N (-2,-2)都是“平衡点”.当-1≤x ≤3时,直线y =2x +m 上有“平衡点”,则m 的取值范围是( ) A .0≤m ≤1B .-3≤m ≤1C .-3≤m ≤3D .-1≤m ≤0 15.如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )第13题图F GBD二、填空题:(本大题共6个小题,每小题3分,共18分.) 16.计算:2-1+(-2)2=_______. 17.分解因式:a 2-4b 2=_______.18.某学习小组在“世界读书日”这天统计了本组5名同学在上学期阅读课外书籍的册数,数据是:18,x ,15,16,13.若这组数据的平均数为16,则这组数据的中位数是_______.19.若代数式6x +2与4x的值相等,则x =_______.20.如图,半径为2的⊙O 在第一象限与直线y =x 交于点A ,反比例函数y =kx (x >0)的图象过点A ,则k =_________.第15题图A BC D MNQ21.如图1,在矩形纸片ABCD 中,AB =83,AD =10,点E 是CD 的中点.将这张纸片依次折叠两次:第一次折叠纸片使点A 与点E 重合,如图2,折痕为MN ,连接ME 、NE ;第二次折叠纸片使点N 与点E 重合,如图3,点B 落在B ′处,折痕为HG ,连接HE ,则tan ∠EHG =_______.三、解答题(本大题7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)第21题图1AAB'MNNG第21题图2第21题图3第20题图(1)先化简再求值:a (1-4a )+(2a +1)(2a -1),其中a =4.(2)解不等式组:⎩⎪⎨⎪⎧2x +1≤7 ①3+2x ≥1+x ②(1)如图,在菱形ABCD 中,CE =CF . 求证:AE =AF .(2)如图,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.第23(2)题图PCB 第23(1)题图24.(本小题满分8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价是1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?25.(本小题满分8分)着教育信息化的发展,学生的学习方式日益增多. 教师为了指导学生有幸效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有 人;在扇第25题图1选项DCBA3040人数10205010502050%AB C D第25题图2课外利用网络学习的时间问卷调查表 您好!这是一份关于您平均每周课外利用网络学习时间的问卷调查表,请在表格中选择一项符合您学习时间的选项,在其后空格内打“√”,非常感谢您的合作.形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该校共有1200名学生,请你估计该校学生课外利用网络学习的时间在“A”选项的有多少人?如图1,□OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=m(x>0)的图象经过点A(1,4).x(1)求反比例函数的关系式和点B的坐标;(2)如图2,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP.①求△AOP的面积;②在□OABC的边上是否存在点M,使得△POM是以PO为斜边的直角三角形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分別在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=________度,线段BE、EF、FD之间的数量关系为________;(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF =30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.第27题图3第27题图4ME'FBE第27题图2第27题图1E'CCD28.(本小题满分9分)如图1,抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M . (1)求a 的值和直线AB 的函数表达式;(2)设△PMN 的周长为C 1,△AEN 的周长为C 2,若12C C =65,求m 的値;(3)如图2,在(2)的条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A +23E ′B 的最小值.第28题图1。

最新北师大版九年级中考数学模拟试题以及答案

最新北师大版九年级中考数学模拟试题以及答案

九年级中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣2的绝对值是()A.2 B.﹣2 C.±2 D.22.(4分)如图所示的几何体,其俯视图是()3.(4分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108 B.2.15×107 C.2.15×106 D.21.5×1064.(4分)如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.(4分)古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()6.(4分)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.(4分)下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3 D.(a﹣b)2=a2﹣b28.(4分)如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)9.(4分)若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()10.(4分)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD 长度的最小值为()5B.3C.4D.5A.211.(4分)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A .2.6mB .2.8mC .3.4mD .4.5m12.(4分)已知抛物线y =x2+(2m ﹣6)x+m2﹣3与y 轴交于点A ,与直线x =4交于点B ,当x >2时,y 值随x 值的增大而增大.记抛物线在线段AB 下方的部分为G (包含A 、B 两点),M 为G 上任意一点,设M 的纵坐标为t ,若t ≥﹣3,则m 的取值范围是( )A .m ≥23B .23≤m ≤3 C .m ≥3 D .1≤m ≤3 二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.(4分)分解因式:2a 2﹣ab = .14.(4分)在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是 .15.(4分)代数式1x 3-与代数式3x 2-的值相等,则x = .16.(4分)如图,在正六边形ABCDEF 中,分别以C ,F 为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为 .17.(4分)如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.18.(4分)如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C 恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF=3,则tan ∠B'AC′=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:20.(6分)解不等式组:,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O 的直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:不合格100≤x<120a合格120≤x<140 b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O 相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B 两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?24.(10分)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正k(x>0)的图象与BC,半轴上,顶点B(2,23),反比例函数y=x1.AB分别交于D,E,BD=2(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.25.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE 1∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)=90°,∠ADE=2当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.26.(12分)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B (3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新九年级中考数学测试试卷一、选择题(本大题共12小题,每小题4分,共48分)1、4的算术平方根是()A.2B.-2C.±2D. 22、如图所示的几何体,它的俯视图是()A. B. C. D.3、2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1024、“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A B C D5、如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°6、下列运算正确的是()A.a2+2a=3a3B.(-2a3)2=4a5 1ABC DFC .(a +2)(a -1)=a 2+a -2 D .(a +b )2=a 2+b 27、关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( ) A .m <-12B .m >-12C .m >12D .m <128、在反比例函数y =-2x图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 29、如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1)10、下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理...的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多年份电子书纸质书6234511、如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( ) A .6π-92 3B .6π-9 3C .12π-92 3D .9π412、若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1B .12<m ≤1C .1<m ≤2D .1<m <2AB CDO (A ) ABO二、填空题(本大题共6小题,每小题4分,共24分) 13、分解因式:m 2-4=____________;14、在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是14,则白色棋子的个数是=____________; 15、一个正多边形的每个内角等于108°,则它的边数是=____________;16、若代数式x -2x -4的值是2,则x =____________;17、A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发____________小时后和乙相遇.18、如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=12;④矩形EFGH的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)BF三、解答题(本大题共9小题,共78分)19、计算:2-1+│-5│-sin30°+(π-1)0.20、解不等式组:⎩⎪⎨⎪⎧3x +1<2x +3 ① 2x >3x -12 ②21、如图,在□ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=O D.22、本学期学校开展以“感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?23、如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相较于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.C24、某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图 1 、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=________,b=_______;(2)“D”对应扇形的圆心角为_______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25、如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数y =kx(x >0)的图象恰好经过C 、D 两点,连接AC 、B D . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数y =kx(x >0)的图象上的一个点,若△CMN 是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第25题图 第25题备用图26、在△ABC 中,AB =AC ,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为射线BC 上任意一点,在射线CM 上截取CE =BD ,连接AD 、DE 、AE .(1)如图1,当点D 落在线段BC 的延长线上时,直接写出∠ADE 的度数;(2)如图2,当点D 落在线段BC (不含边界)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB =6,求CF 的最大值.M第26题图1 第26题图227、如图1,抛物线y =ax 2+bx +4过A (2,0)、B (4,0)两点,交y轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、B C .点P 是该抛物线上一动点,设点P 的横坐标为m (m >4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP =45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.第27题图1 第27题图2 第27题图3答案解析一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是()A.2 B.-2 C.±2 D. 2 【答案】A2.(2018济南,2,4分)如图所示的几何体,它的俯视图是()A. B. C. D.【答案】D3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104 B.7.6×103 C.7.6×104 D.76×102【答案】B4.(2018济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A B CD【答案】D5.(2018济南,5,4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°【答案】B6.(2018济南,6,4分)下列运算正确的是()A.a2+2a=3a3 B.(-2a3)2=4a5C.(a+2)(a-1)=a2+a-2 D.(a+b)2=a2+b2【答案】C7.(2018济南,7,4分)关于x的方程3x-2m=1的解为正数,则m 的取值范围是()A.m<-12B.m>-12C.m>121ABCDFD .m <12【答案】B8.(2018济南,8,4分)在反比例函数y =-2x图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 2 【答案】C9.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)【答案】C10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不.合理..的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【答案】B11.(2018济南,11,4分)如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )年份电子书纸质书62345A .6π-92 3B .6π-9 3C .12π-92 3D .9π4【答案】A12.(2018济南,11,4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m<2 【答案】B 【解析】解:∵y =mx 2-4mx +4m -2=m (x -2)2-2且m >0,∴该抛物线开口向上,顶点坐标为(2,-2),对称轴是直线x =2.由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意. 方法一:AB CDO (A ) ABO①当该抛物线经过点(1,-1)和(3,-1)时(如答案图1),这两个点符合题意.将(1,-1)代入y =mx 2-4mx +4m -2得到-1=m -4m +4m -2.解得m =1.此时抛物线解析式为y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-2≈0.6,x 2=2+2≈3.4.∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-1)、(2,-2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大,】答案图1(m =1时) 答案图2( m =12时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2-4mx +4m -2得到0=0-4m +0-2.解得m =12.此时抛物线解析式为y =12x 2-2x .当x =1时,得y =12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x =3时,得y =12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意, ∴m =12不符合题.∴m >12.综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点,故答案选B .方法二:根据题目提供的选项,分别选取m =12,m =1,m =2,依次加以验证.①当m =12时(如答案图3),得y =12x 2-2x .由y=0得12x2-2x=0.解得x1=0,x2=4.∴x轴上的点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)符合题意.当x=1时,得y=12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x=3时,得y=12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m=12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意,∴m=12不符合题.∴选项A不正确.答案图3( m=12时) 答案图4(m=1时)答案图5(m=2时)②当m=1时(如答案图4),得y=x2-4x+2.由y=0得x2-4x+2=0.解得x1=2-2≈0.6,x2=2+2≈3.4.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.当x=1时,得y=1-4×1+2=-1.∴点(1,-1)符合题意.当x=3时,得y=9-4×3+2=-1.∴点(3,-1) 符合题意.综上可知:当m=1时,点(1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-2) 、(2,-1)都符合题意,共有7个整点符合题意,∴m=1符合题.∴选项B正确.③当m=2时(如答案图5),得y=2x2-8x+6.由y=0得2x2-8x+6=0.解得x1=1,x2=3.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.综上可知:当m=2时,点(1,0)、(2,0)、(3,0)、(2,-2) 、(2,-1)都符合题意,共有5个整点符合题意,∴m=2不符合题.二、填空题(本大题共6小题,每小题4分,共24分)13.(2018济南,13,4分)分解因式:m2-4=____________;【答案】(m+2)(m-2)14.(2018济南,14,4分)在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是14,则白色棋子的个数是=____________;【答案】1515.(2018济南,15,4分)一个正多边形的每个内角等于108°,则它的边数是=____________; 【答案】516.(2018济南,16,4分)若代数式x -2x -4的值是2,则x =____________;【答案】617.(2018济南,17,4分)A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发____________小时后和乙相遇.【答案】165.【解析】y 甲=4t (0≤t ≤4);y乙=⎩⎪⎨⎪⎧2(t -1)(1≤t ≤2)9(t -2)t (2<t ≤4);由方程组⎩⎪⎨⎪⎧y =4ty =9(t -2)解得⎩⎪⎨⎪⎧t =165y =645. ∴答案为165.18.(2018济南,18,4分)如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB =EF ,FG =2,GC =3.有以下四个结论:①∠BGF =∠CHG ;②△BFG ≌△DHE ;③tan ∠BFG =12;④矩形EFGH的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)F【答案】①②④.【解析】设EH =AB =a ,则CD =GH =a . ∵∠FGH =90°,∴∠BGF +∠CGH =90°. 又∵∠CGH +∠CHG =90°,∴∠BGF =∠CHG …………………………………故①正确. 同理可得∠DEH =∠CHG . ∴∠BGF =∠DEH .又∵∠B =∠D =90°,FG =EH ,∴△BFG≌△DHE…………………………………故②正确.同理可得△AFE≌△CHG.∴AF=CH.易得△BFG∽△CGH.∴BFCG =FGGH.∴BF3=2a.∴BF=6a.∴AF=AB-BF=a-6a.∴CH=AF=a-6a.在Rt△CGH中,∵CG2+CH2=GH2,∴32+( a-6a)2=a2.解得a=2 3.∴GH=2 3.∴BF=a-6a= 3.在Rt△BFG中,∵cos∠BFG=BFFG=32,∴∠BFG=30°.∴tan∠BFG=tan30°=33.…………………………………故③正确.矩形EFGH的面积=FG×GH=2×23=43…………………………………故④正确.三、解答题(本大题共9小题,共78分)19.(2018济南,19,6分)计算:2-1+│-5│-sin30°+(π-1)0.解:2-1+│-5│-sin30°+(π-1)0.=12+5-12+1=620.(2018济南,20,6分)解不等式组:⎩⎪⎨⎪⎧3x +1<2x +3 ① 2x >3x -12 ② 解:由① ,得3x -2x <3-1. ∴x <2. 由② ,得 4x >3x -1. ∴x >-1.∴不等式组的解集为-1<x <2.21.(2018济南,21,6分)如图,在□ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且 AE =CF ,连接EF 交BD 于点O . 求证:OB =O D .证明:∵□ABCD 中,∴AD =BC ,AD ∥B C. ∴∠ADB =∠CB D. 又∵AE =CF , ∴AE +AD =CF +B C. ∴ED =F B.又∵∠EOD=∠FOB,∴△EOD≌△FO B.∴OB=O D.22.(2018济南,22,8分)本学期学校开展以“感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?解:(1)设参观历史博物馆的有x人,则参观民俗展览馆的有(150-x)人,依题意,得10x+20(150-x)2000.10x+3000-20x=2000.-10x=-1000.∴x=100.∴150-x=50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000-150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(2018济南,23,8分)如图AB 是⊙O 的直径,PA 与⊙O 相切于点A ,BP 与⊙O 相较于点D ,C 为⊙O 上的一点,分别连接CB 、CD ,∠BCD =60°.(1)求∠ABD 的度数; (2)若AB =6,求PD 的长度.C【解析】解:(1)方法一:连接AD (如答案图1所示). ∵BA 是⊙O 直径,∴∠BDA =90°. ∵⌒BD =⌒BD ,∴∠BAD =∠C =60°.∴∠ABD =90°-∠BAD =90°-60°=30°.CC第23题答案图1 第23题答案图2方法二:连接DA、OD(如答案图2所示),则∠BOD=2∠C=2×60°=120°.∵OB=OD,∴∠OBD=∠ODB=12(180°-120°)=30°.即∠ABD=30°.(2)∵AP是⊙O的切线,∴∠BAP=90°.在Rt△BAD中,∵∠ABD=30°,∴DA=12BA=12×6=3.∴BD=3DA=33.在Rt△BAP中,∵cos∠ABD=ABPB,∴cos30°=6PB=32.∴BP=43.∴PD=BP-BD=43-33=3.24.(2018济南,24,10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图 1 、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=________,b=_______;(2)“D”对应扇形的圆心角为_______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.解:(1)a=36÷0.45=80.b=16÷80=0.20.(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°.(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人). (4)列表格如下:共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:39=13.25.(2018济南,25,10分)如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数y =kx(x >0)的图象恰好经过C 、D 两点,连接AC 、B D . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数y =kx(x >0)的图象上的一个点,若△CMN 是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第25题图第25题备用图【解析】解:(1)将点A(1,0)代入y=ax+2,得0=a+2.∴a=-2.∴直线的解析式为y=-2x+2.将x=0代入上式,得y=2.∴b=2.∴点B(0,2).(2)由平移可得:点C(2,t)、D(1,2+t).将点C(2,t)、D(1,2+t)分别代入y=kx ,得⎩⎪⎨⎪⎧t=k22+t=k1.解得⎩⎪⎨⎪⎧k=4t=2.∴反比例函数的解析式为y=4x,点C(2,2)、点D(1,4).分别连接BC、AD(如答案图1).∵B(0,2)、C(2,2),∴BC∥x轴,BC=2.∵A(1,0)、D(1,4),∴AD⊥x轴,AD=4.∴BC⊥A D.∴S四边形ABDC=12×BC×AD=12×2×4=4.第25题答案图1(3)①当∠NCM=90°、CM=CN时(如答案图2所示),过点C作直线l∥x轴,交y轴于点G.过点M作MF⊥直线l于点F,交x轴于点H.过点N作NE⊥直线l于点E.设点N(m,0)(其中m>0),则ON=m,CE=2-m.∵∠MCN=90°,∴∠MCF+∠NCE=90°.∵NE⊥直线l于点E,∴∠ENC+∠NCE=90°.∴∠MCF=∠EN C.又∵∠MFC=∠NEC=90°,CN=CM,∴△NEC≌△CFM.∴CF=EN=2,FM=CE=2-m.∴FG=CG+CF=2+2=4.∴x M=4.将x=4代入y=4x,得y=1.∴点M(4,1).l第25题答案图2 第25题答案图3②当∠NMC=90°、MC=MN时(如答案图3所示),过点C作直线l ⊥y轴与点F,则CF=x C=2.过点M作MG⊥x轴于点G,MG交直线l与点E,则MG⊥直线l于点E,EG=y C=2.∵∠CMN=90°,∴∠CME+∠NMG=90°.∵ME⊥直线l于点E,∴∠ECM+∠CME=90°.∴∠NMG=∠ECM.又∵∠CEM=∠NGM=90°,CM=MN,∴△CEM≌△MGN.∴CE=MG,EM=NG.设CE=MG=a,则y M=a,x M=CF+CE=2+a.∴点M(2+a,a).将点M(2+a,a) 代入y=4x,得a=42+a.解得a1=5-1,a2=-5-1.∴x M=2+a=5+1.∴点M(5+1,5-1).综合①②可知:点M的坐标为(4,1)或(5+1,5-1).26.(2018济南,26,12分)在△ABC 中,AB =AC ,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为射线BC 上任意一点,在射线CM 上截取CE =BD ,连接AD 、DE 、AE .(1)如图1,当点D 落在线段BC 的延长线上时,直接写出∠ADE 的度数;(2)如图2,当点D 落在线段BC (不含边界)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB =6,求CF 的最大值.M第26题图1第26题图2 【解析】解:(1) ∠ADE =30°.(2) (1)中的结论是否还成立证明:连接AE(如答案图1所示).∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.又∵∠ACM=∠ACB,∴∠B=∠ACM=30°.又∵CE=BD,∴△ABD≌△ACE.∴AD=AE,∠1=∠2.∴∠2+∠3=∠1+∠3=∠BAC=120°.即∠DAE=120°.又∵AD=AE,∴∠ADE=∠AED=30°.答案图 1 答案图2(3) ∵AB=AC,AB=6,∴AC=6.∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF ∽△AC D.∴AD AC =AF AD.∴AD 2=AF ·A C .∴AD 2=6AF .∴AF =AD 26.∴当AD 最短时,AF 最短、CF 最长.易得当AD ⊥BC 时,AF 最短、CF 最长(如答案图2所示),此时AD =12AB =3.∴AF 最短=AD 26=326=32. ∴CF 最长=AC - AF 最短=6-32=92.27.(2018济南,27,12分)如图1,抛物线y =ax 2+bx +4过A (2,0)、B (4,0)两点,交y 轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、B C .点P 是该抛物线上一动点,设点P 的横坐标为m (m>4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP =45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.第27题图 1 第27题图 2第27题图3 【解析】解:(1)将点A (2,0)和点B (4,0)分别代入y =ax 2+bx +4,得⎩⎪⎨⎪⎧0=4a +2x +40=16a +4b +4.解得⎩⎪⎨⎪⎧a =12b =-3.∴该抛物线的解析式为y=12x 2-3x +4. 将x =0代入上式,得y =4.∴点C (0,4),OC =4.在Rt △AOC 中,AC =OA 2+OC 2=22+42=2 5.设直线AC 的解析式为y =kx +4,将点A (2,0)代入上式,得0=2k +4.解得k =-2. ∴直线AC 的解析式为y =-2x +4.同理可得直线BC 的解析式为y =-x +4. 求tan ∠ACB 方法一:过点B 作BG ⊥CA ,交CA 的延长线于点G (如答案图1所示),则∠G =90°.∵∠COA =∠G =90°,∠CAO =∠BAG ,∴△GAB ∽△OA C.∴BG AG =OC OA =42=2.∴BG =2AG . 在Rt △ABG 中,∵BG 2+AG 2=AB 2,∴(2AG )2+AG 2=22.AG =255.∴BG =455,CG =AC +AG =25+255=125 5.在Rt △BCG 中,tan ∠ACB =BG CQ =455 1255=13.第27题答案图1 第27题答案图2求tan ∠ACB 方法二:过点A 作AE ⊥AC ,交BC 于点E (如答案图2所示),则k AE ·k AC=-1.∴-2k AE =-1.∴k AE =12.∴可设直线AE 的解析式为y =12x +m .将点A (2,0)代入上式,得0=12×2+m .解得m =-1.∴直线AE 的解析式为y =12x -1.由方程组⎩⎪⎨⎪⎧y =12x -1y =-x +4解得⎩⎪⎨⎪⎧x =103y =23.∴点E (103,23).∴AE =⎝ ⎛⎭⎪⎪⎫2-1032+⎝ ⎛⎭⎪⎪⎫0-232=23 5. 在Rt △AEC 中,tan ∠ACB =AE AC =23525=13.求tan ∠ACB 方法三:过点A 作AF ⊥BC ,交BC 点E (如答案图3所示),则k AF ·k BC=-1.∴-k AF =-1.∴k AF =1.∴可设直线AF 的解析式为y =x +n .将点A (2,0)代入上式,得0=2+n .解得n =-2.∴直线AF 的解析式为y =x -2.由方程组⎩⎪⎨⎪⎧y =x -2y =-x +4 解得⎩⎪⎨⎪⎧x =3y =1 .∴点F (3,1).∴AF =(3-2)2+(1-0)2=2,CF =(3-0)2-(1-4)2=3 2.在Rt △AEC 中,tan ∠ACB =AF CF =232=13.第27题答案图3(2)方法一:利用“一线三等角”模型将线段AC 绕点A 沿顺时针方向旋转90°,得到线段AC ′,则AC ′=AC ,∠C ′AC =90°,∠CC ′A =∠ACC ′=45°.∴∠CAO +∠C ′AB =90°. 又∵∠OCA +∠CAO =90°, ∴∠OCA =∠C ′A B .过点C ′作C ′E ⊥x 轴于点E .则∠C ′EA =∠COA =90°. ∵∠C ′EA =∠COA =90°,∠OCA =∠C ′AB ,AC ′=AC , ∴△C ′EA ≌△AO C .∴C ′E =OA =2,AE =OC =4. ∴OE =OA +AE =2+4=6. ∴点C ′(6,2).设直线C ′C 的解析式为y =hx +4.将点C ′(6,2)代入上式,得2=6h +4.解得h =-13.∴直线C ′C 的解析式为y =-13x +4.∵∠ACP=45°,∠ACC′=45°,∴点P在直线C′C上.设点P的坐标为(x,y),则x是方程12x2-3x+4=-13x+4的一个解.将方程整理,得3x2-14x=0.解得x1=163,x2=0(不合题意,舍去).将x1=163代入y=-13x+4,得y=209.∴点P的坐标为(163,209).第27题答案图4 第27题答案图5(2)方法二:利用正方形中的“全角夹半角”模型.过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC 是正方形.应用“全角夹半角”可得AK=OA+HK.设K(4,h),则BK=h,HK=HB-KB=4-h,AK=OA+HK=2+(4-h)=6-h.在Rt△ABK中,由勾股定理,得AB2+BK2=AK2.∴22+h 2=(6-h)2.解得h=83.∴点K(4,83 ).设直线CK的解析式为y=hx+4.将点K(4,83)代入上式,得83=4h+4.解得h=-13.∴直线CK的解析式为y=-13x+4.设点P的坐标为(x,y),则x是方程12x2-3x+4=-13x+4的一个解.将方程整理,得3x2-14x=0.解得x1=163,x2=0(不合题意,舍去).将x1=163代入y=-13x+4,得y=209.∴点P的坐标为(163,209).(3)四边形ADMQ是平行四边形.理由如下:∵CD∥x轴,∴y C=y D=4.将y=4代入y=12x2-3x+4,得 4=12x2-3x+4.解得x1=0,x2=6.∴点D(6,4).根据题意,得P (m ,12m 2-3m +4),M (m ,4),H (m ,0).∴PH =12m 2-3m +4),OH =m ,AH =m -2,MH =4.①当4<m <6时(如答案图5所示),DM =6-m∵△OAN ∽△HAP ,∴ON PH =OAAH .∴ON12m 2-3m +4=2m -2. ∴ON =m 2-6m +8m -2=(m -4)(m -2)m -2=m -4.∵△ONQ ∽△HMP ,∴ON HM =OQ HQ .∴ON 4=OQm -OQ.∴m -44=OQm -OQ.∴OQ =m -4.∴AQ =OA -OQ =2-(m -4)=6-m . ∴AQ = DM =6-m .又∵AQ ∥DM ,∴四边形ADMQ 是平行四边形.第27题答案图6 第27题答案图7 ②当m >6时(如答案图6所示),同理可得:四边形ADMQ是平行四边形.综合①、②可知:四边形ADMQ是平行四边形.。

相关文档
最新文档