抽屉原理doc
抽屉原理(小升初)

第8讲抽屉原理一、基础知识1、抽屉原理:把多于N个的苹果放进N个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果.2、抽屉原理的一般表达:把多于M×N个苹果随意放到N个抽屉里,至少有一个抽屉里有(M+1)个或(M+1)个以上的苹果.3、在有些问题中,”抽屉”和”苹果”不是很明显的,需要精心制造”抽屉”和”苹果”如何制造”抽屉”和”苹果”可能是很困难的,一方面需要认真分析题目中的条件和问题,另一方面需要多做一些题积累经验.4、利用抽屉原理解题时要注意区分哪些是“抽屉”哪些是“元素”然后按以下步骤解答:a、构造抽屉,指出元素。
b、把元素放入(或取出)抽屉。
C、说明理由,得出结论。
二、典型例题例题1:某校六年级有学生367人,请问有没有两个学生的生日是同一天为什么例题2:某班学生去买语文书、数学书、外语书。
买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)例题3:一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。
问最少要摸出多少只手套才能保证有3副同色的多少只才能保证其中至少有2双不同袜子例题4:任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么例题5:能否在图29-1的5行5列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线AD、BC上的各个数的和互不相同例6、一次数学竞赛,有75人参加,满分20分,参赛者得分都是整数,75人的总分是980分,问至少有几个人得分相同例7、一个自然数除以n的余数可能是0、1、2、3、…..n-1,把这n种情况看作n个抽屉,把(n+1)个自然数反复如n个抽屉中去,则必有一个抽屉中有两个数,这两个数的余数相同,则它们的差一定能被n整除,也就是n的倍数。
随堂练习:1、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子。
抽屉原理

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果。
这一现象就是我们所说的“抽屉原理”。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。
”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。
它是组合数学中一个重要的原理。
目录常见形式第一抽屉原理第二抽屉原理应用整除问题面积问题染色问题狄利克雷原则含义表现形式例证练习一般表述及意义抽屉问题经典练习系列之一系列之二系列之三系列之四常见形式第一抽屉原理第二抽屉原理应用整除问题面积问题染色问题狄利克雷原则含义表现形式例证练习一般表述及意义抽屉问题经典练习系列之一系列之二系列之三系列之四展开编辑本段常见形式第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
抽屉原理[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2 把多于mn+1(m乘以n加一)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能原理3 把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
.原理1 2 3都是第一抽屉原理的表述第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能应用应用抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
抽屉原理(中)

一、抽屉原理美国一家杂志上曾刊登这样一副漫画:三只鸽子同时往两个鸽笼里飞。
这是一副含义深刻的漫画,它有趣的揭示了抽屉原理:三只鸽子同时飞进两个鸽笼里,则一定有一只鸽笼里至少飞进两只鸽子。
抽屉原理俗称鸽笼原理,最先是由19世纪的德国数学家狄利克雷(P.G.Dirichlet 1805--1859)运用于解决数学问题的,所以抽屉原理又叫狄利克雷原理。
1.抽屉原理(1)第一抽屉原理设有m 个元素分属于n 个集合(其两两的交集可以非空),且m kn >(m n k ,,均为正整数),则必有一个集合中至少有1k +个元素。
(2)第二抽屉原理设有m 个元素分属于n 个两两不相交的集合,且m kn <(m n k ,,均为正整数),则必有一个集合中至多有1k -个元素。
(3)无限的抽屉原理设有无穷多个元素分属于n 个集合,则必有一个集合中含有无穷多个元素。
2.平均值原理设12n a a a ∈R ,,,,且 ()12121||n n n A a a a G a a a n=+++ , 则12n a a a ,,,中必有一个不大于A ,亦必有一个不小于A ;12||||||n a a a ,,,中必有一个不大于G ,亦有一个不小于G 。
3.面积重叠原理n 个平面图形12n A A A ,,,的面积分别为12n S S S ,,,,将它们以任意方式放入一个面积为S 的平面图形A 内。
7抽屉原理与极端原理(1)若12n S S S S +++> ,则存在1i j n <≤≤,使图形i A 与j A 有公共内点;(2)若12n S S S S +++< , 则A 存在一点,不属于图形12n A A A ,,,中的任意一个。
以上命题用反证法很容易证明,大家可以自行完成。
一般来说,适合应用抽屉原理解决的数学问题具有如下特征:新给的元素具有任意性.如1n +个苹果放入n 个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原理解决的数学问题还应搞清三个问题: (1)什么是“苹果”? (2)什么是“抽屉”? (3)苹果、抽屉各多少? 用抽屉原理解题的本质是把所要讨论的问题利用抽屉原理缩小范围,使之在一个特定的小范围内考虑问题,从而使问题变得简单明确. 用抽屉原理解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律.关键是构造适合的抽屉,抽屉之间可以有公共部分,亦可以没有公共部分。
抽屉原理(高中)

抽屉原理一.抽屉原理的各种形式:抽屉原理1:n +1 个元素分成n 类,至少有1类中的元素不止1个.抽屉原理2:n ·m +1个元素分成n 类,至少有1类中的元素不止m +1个.即:k 个元素分成n 类,至少有1类中的元素不止⎣⎡⎦⎤k -1n +1个.(k ,n ∈N*)抽屉原理3:n 个数之和为m ,则其中必有一数≥m n ,也必有一数≤m n .抽屉原理4 把一个无限集A 分成有限个集合的并集,即A i ⊂A ,且i =1∪nA i =A ,A i ∩A j =∅(i ,j =1,2,……,n ;i ≠j ).则至少有一个A 的子集A k (1≤k ≤n ),它有无限多个元素.例1.把大小两个圆盘各划分成2n 个相等的扇形格,在每格都用黑、白两色之一涂色,使两盘总计,黑格与白格都各有2n 格.然后把两个圆盘的圆心固定于同一点,并让小盘在上成为一个转盘.试证:可将小盘转到某一适当位置,使两个圆盘上的格子对齐,并使二盘对应格子颜色不同的不少于n 对.证明:让小盘逐格转动,每次都记下颜色不同的格子对齐的数目,当转动了2n -1次后,小盘转动了一周,共记了2n 次.于是,小盘上每个格子都与大盘上的每个格子对齐一次.设小盘上有k 个黑格,2n -k 个白格,则大盘上有2n -k 个黑格,k 个白格.颜色不同的格子对齐的数目为k 2+(2n -k )2=4n 2+2k 2-4nk =2(k -n )2+2n 2≥2n 2.∴至少有一次转动对齐后,使二盘对应格子颜色不同的数目≥⎣⎡⎦⎤2n 2-12n +1=n .例2.从1,2,3,…,3n (n ≥2)这3n 个正整数中任意取出n +2个数,求证:其中必有两个数,其差大于n 而小于2n .解:设取出的最大的数为k ,则把取出的数都加上 3n -k ,这样做不会影响它们之间的差.此时最大数为3n ,如果在取出的数中有一个在n 与2n 间(满足n+1≤x ≤2n -1的数),则这数与3n 即为所求.若无任何数在此二数之间,则作抽屉(1,2n ),(2,2n +1),(3,2n +2),…,(n ,3n -1),共n 个抽屉,除去3n 这个数外,还有n +1 个数,于是必有两个数落入同一抽屉,此二数即满足要求.例3.任取一个正实数a ,求证:在a ,2a ,3a ,…,(n -1)a 这n -1个数中,至少有一个数,它与最接近的整数之差不超过1n. 解:取这n -1个数的小数部分{a },{2a },{3a },…,{(n -1)a },则此n -1个数都在区间[0,1)内,把区间[0,1)分成n 个小区间,每个区间的长都为1n :[0,1n ),[1n ,2n ),…,[n -1n,1). 若此n -1个数中有某一个落入头尾两个区间之一,则原数即与最近的整数相差不超过1n.此n -1个数不可能没有任何一个落入头尾两个区间中,因若此n -1个数中没有任何一个落入头尾两个区间,则此n -1个数必落入了其余n -2 个区间内,于是必有两个数落入同一区间,设为{ta },{sa },(1≤t <s ≤n -1),此时|(s -t )a |<1n,而0<s -t <n -1,令k =s -t ,于是必有{ka }落入头尾两个区间之一.故证.例4.M 是1985个不同的正整数的集合,M 中每个数的质因数都小于26,求证:从M 中一定可以选出四个不同的数,使它们的积等于一个完全四次方数.解:M 中的任一个数的质因子只能是2、3、5、7、11、13、17、19、23这9个数中的某些数.设a ∈M ,则按这9个质因子的指数为奇或为偶可把所有1985个数分成29=512类,由抽屉原理,任取513个M 中的数必有两个数属于同一类,于是可得(1985-511)÷2=737对数,每对数都属于同一类,于是,这737对数中,每对两数的乘积都是完全平方数,即每个质因子的指数都是偶数.即每个质因子的指数除以4后的余数都只能是0或2,再按这9个质因子的指数是0或2把这737个数分类,又可得512类,现在737个数放入这512类,必有两数同一类,此二数的乘积就是完全四次方数,而乘得此二数的原来4个数即为所求.例5.6个代表队共有1978名运动员,编上号码1,2,3,…,1978号,证明至少有一个运动员,他的号码等于其两个队友号码的和或者等于某一个队友号码的两倍.解:不妨设第1个代表队人数最多,则其人数≥[1978-16]+1=330人,设其中最大的号码为a 1,用a 1减其它329个号码,得到的差如果在此329个数中,则命题已成立.如果这329个差都不是第一个代表队的号码,那么不妨设其中有[329-15]+1=66个号码在第二个队中,同样设这66个号码最大的为b 1,用它减其余65个号码,差b 1-b i =(a 1-a t )-(a 1-a s )=a s -a t 如果在第一或第二个队的号码中,则命题已证,若不在,则此65个数必有[65-14]+1=17人同一队,设为第三队,又设其中最大者为c 1,用c 1减其余16个数,其差c 1-c i =(b 1-b i )-(b 1-b j )=b j -b i ,而b j -b i =(a 1-a t )-(a 1-a s )=a s -a t ,若在第一,二,三队的号码中,则命题可证,依此类推,若无,则[16-13]+1=6,[5-12]+1=3个,其差或是前面某队的号码,或是第6队的号码,问题总能成立.例6.S 是{1,2,3,…,1989}的一个子集,而且S 中任两个数的差不能是4或7,那么S 中最多可有多少个元素?(1989年第七届美国数学邀请赛)解:取前11个自然数1、2、3、4、5、6、7、8、9、10、11,排成一个圈:1、5、9、2、6、10、3、7、11、4、8.这样排好后,任意相邻两数都不能同时被取出,否则其差为4或7.而在这11个数中任取6数,就会在上面这个圈中取出了相邻的两个数,于是这11个数中,最多只能取出5个满足要求的数.例如,取1,3,4,6,9这五个数满足要求.1989=11×180+9,于是把这1989个数从1开始每连续11个数为一组,每组都取出5个数:11k +1,11k +3,11k +4,11k +6,11k +9(k =0,1,2,…,180)共取出181×5=905个数.即S 中最多可有905个元素.当取出的数超过905个时,总有某组数中取出的数超过6个,于是就会出现差为4或7的两个数.从而905为所求.例7.一位棋手参加11周(77天)的集训,每天至少下1盘棋,每周至多下12盘棋,证明这个棋手必在连续的几天内恰好下了21盘棋.解:这名棋手在77天内最多下了11×12=132盘棋.不妨记他从开始起第n 天共下了a n 盘棋,则有a 1<a 2<…<a 77.再取77个数:a 1+21,a 2+21,…,a 77+21,这样共得77×2=154个数.但这些数最大 不超过132+21=153. 于是必有两个数相等,这就是说,必有a i +21=a j (i <j ),即从第i +1天起,到第j 天这连续j -i 天中,这名棋手共下了21盘棋.例8.设有小数A =0.a 1a 2a 3…,如果a i +2是a i +1+a i 的个位数字(i =1,2,3,…),求证:A 是有理数. 解:把a i ,a i +1组成一组:(a i ,a i +1),(i =1,2,3,…),则所有这些组只有以下100种可能的取法:(0,0),(0,1),(0,2),…,(0,9);(1,0),(1,1),(1,2),…,(1,9);…(9,0),(9,1),(9,2),…,(9,9).而取(a 1,a 2),(a 2,a 3),…,(a 100,a 101),(a 101,a 102)这101组,于是必有两组相同,设为(a i ,a i+1),(a i ,a j+1),(i <j ).于是可得a i +2=a j +2,a i +3=a j +3,…,即A 为循环小数,故A 为有理数.例9.已知菲波拉契数列0,1,1,2,3,5,8,13,21,……(从第三项起,每项都等于它的前面两项的和).试问,它的前100000001项中,是否有某一项的末四位数字全为0?(不算第1项)分析:添一项可以看作0000,考虑每一项的末四位数字,末四位数字共有104种,(从0000到9999),而每项的末四位数字都是由其前面两项的末四位数字求和而得出.解:记每一项a i 的末四位数字为x i ,由于该数列的每一项都是其前两项的和,由于x i 有104种,x i+1也有104种,所以有序数对(x i ,x i+1)共有108种,但对于每一项都有一个有序数对(x i ,x i +1)与之对应:(x 0,x 1),(x 1,x 2),…,(x 100000000,x 100000001),共有100000001个数对,从而必有两个数对完全一样,设(x i ,x i +1)与(x j ,x j +1)相同(i <j ).则有x i = x j ,x i +1= x j +1,由于x i -1= x i +1- x i , x j -1= x j +1- x j ,故又有x i -1=x j -1,这样又有(x i -1,x i )=(x j -1,x j ),(x i -2,x i -1)=(x j -2,x j -1),…,直至(x 0,x 1)与(x j -i ,x j -i +1),即x j -i 与x 0相同,即a j -i 的末四位数字全是0.事实上该数列的7501项的末四位全是0.当两项相邻时的情况.例10.设m 、n 都是自然数,任给一个有nm +1项的数列(该数列各项互不相等)a 1,a 2,……,a nm +1证明可以从中选出m +1项,按原来的顺序组成递增数列或选出n +1项按原来的顺序组成递减数列. 说明:先举一个例说明:m =n =2,在一个5项的数列1,8,3,2,5中,可以选出一个3项的递增数列:1,3,5;但未能选出3项的递减数列来.解:对于mn +1项的数列a 1,a 2,…,a nm +1中每一项a i ,都可以从这项开始向后找出以该项为首项的项数最多的递增数列来,设这样的数列有x i 项,同时也能找出以该项为首项的项数最多的递减数列来,设这样的数列有y i 项,这样,对于每一项a i ,都有一对数(x i ,y i )与之对应,这就得到了mn +1个数对(可以看成是mn +1个坐标).如果所有x i 都不大于m ,所有y i 都不大于n ,即x i =1,2,…,m ;且y i =1,2,…,n .于是这样的数对只能有nm 种,将每一种都看成是一个抽屉,但共有nm +1个数对,于是根据抽屉原理,必有2个数对落入同一抽屉.设为a i 与a j ,(i <j ),它们都对应着坐标(h ,k ),这表示从这两个数中的任一个开始,可以向后找出h 项组成递增数列,也可向后找出k 项组成递减数列.若a i <a j ,则从a j 起共有h 项组成递增数列,但加上a i 后应有h +1项,即与a i 对应的数不应为h ,同样若a i >a j ,也将引出矛盾.这说明必有某个x i 满足x i >m ,或者某个y i 满足y i >n 命题得证.例11.设实数x 1,x 2,x 3,…,x n 满足x 12+x 22+x 32+…+x n 2=1证明对每一个整数k ≥2,存在不全为0的整数a 1,a 2,…,a n ,满足|a i |≤k -1,(i =1,2,…,n )使|a 1x 1+a 2x 2+…+a n x n |≤(k -1)n k n -1. 证明:对于|a i |≤k -1,有(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2)≤a 12+a 22+…+a n 2≤(k -1)2+(k -1)2+…+(k -1)2=n (k -1)2.所以, |a 1x 1+a 2x 2+…+a n x n |≤(k -1)n . ⑴现在取{a 1,a 2,…,a n } {0,1,2,…,k -1},则共可有k n 种取法,其每一种取法都满足⑴式.把区间[0,(k -1)n ]分成k n -1等份,每份长为(k -1)n k n -1.则k n 个数落入此区间内,必有二数落入同一份内.设为a '1x 1+a '2x 2+…+a 'n x n 与a "1x 1+a "2x 2+…+a "n x n ,则它们的差:(a '1-a "1)x 1+(a '2-a "2)x 2+…+(a 'n -a "n )x n = a 1x 1+a 2x 2+…+a n x n .必满足|a i |≤k -1 (i =1,2,…,n ),且|a 1x 1+a 2x 2+…+a n x n |≤(k -1)n k n -1. 例12.一个棱柱以五边形A 1A 2A 3A 4A 5及B 1B 2B 3B 4B 5分别为上下底,这两个多边形的每一条边及线段A i B j (i ,j =1,2,3,4,5)均涂上红色与绿色,每个以棱柱的顶点为顶点,以涂色线段为边的三角形都有两边颜色不同.求证:上底与下底10条边的颜色相同.证明:首先证明此棱柱的上底面的棱颜色相同.否则必有两条相邻边颜色不同.不妨设A 1A 5为红,A 1A 2为绿.5条线段A 1B i (i =1,2,3,4,5)中必有3条同色.设有3条同为红色.这3条红色的线段中,总有两条是向相邻的两个顶点引出的,例如A 1B 1、A 1B 2都为红色.于是在△A 1B 1B 2中B 1B 2必为绿色.又在△A 1A 5B 1及△A 1A 5B 2中,A 5B 1及A 5B 2均必为绿色.这样就得△A 5B 1B 2全为绿色.矛盾.这说明上底面的5条棱同色.同理,下底面的5棱也同色. 下面再证明,上下底面10条棱颜色全同.反设上底面5条棱钱红,下底面5条棱全绿.由上证,A 1B 1、A 1B 2不能全红,但也不能全绿,故必一红一绿,设A 1B 1红,则A 1B 2绿,同理得,A 1B 3红,A 1B 4绿,A 1B 5红,此时,△A 1B 1B 5又出现上证情况.故得证.练习题 1. 在3×4(cm )的长方形中,放置6个点,试证:可以找到两点,其距离不超过 5 cm .解 先把长方形分成5个区域(如图),根据抽屉原理,必有两个点在同一个区域内,因而它们的距离不超过 5 cm .2.⑴ 是否存在由10个正整数组成的集合A ,使A 的任一6元子集的元素和都不能被6整除?⑵ 对于任一由11个正整数组成的集合A ,证明:一定可以找到它的一个6元子集,其和能被6整除.⑴解:取A ={1,7,13,19,25,6,12,18,24,30},则A 的任一六元子集的元素和都不能被6整除.⑵证明:对于任一元素都是正整数的11元集A ,总可以把这11个元配成5组,每组二个数的奇偶性相同,于是同组两数的和为偶数,这样就得到5个偶数和.这5个偶数mod 3后,如果有3个数mod 3互不同余,则此三数的和被3整除;如果这样的3个数不存在,即mod 3后只有至多两个剩余类,则其中必有1类中至少有3个数,则此三个数的和被3整除.于是取加得这三个数的原来的六个数,其和被6整除.3.把大小圆盘各划分成n 个相等的扇形格,各依次填上实数a 1、a 2、…、a n 及b 1、b 2、…、b n ,然后把把两圆盘圆心重叠做成转盘,试证:若a 1+a 2+…+a n <0,b 1+b 2+…+b n <0,则必可以使转盘转到某个适当位置,使大小圆盘对应扇形上两个数的乘积的和为一个正数.证明:让小盘逐格转动,每次都记下大小圆盘对应扇形上两个数的乘积的和,这样转过n 次后,共得B 1B 2B 3B 4B 5A 5A 4A 3A 2A 1B 1B 2B 3B 4B 5A 5A 4A 3A 2A1到了n 个和.由于大盘上的每个数字都要与小盘上的每个数字对应一次,故乘积a i b j (i ,j =1,2,3,…,n )在这n 个和中都出现一次且只出现一次,故这n 个和的总和=(a 1+a 2+…+a n )( b 1+b 2+…+b n )>0.∴这n 个和不可能都小于≤0,即其中至少有一个和为正数.4.已知自然数n (n >1),用小于n 的自然数组成两个数组,每组内的数都各自两两不同,但两组间的数不一定全不同.证明:若两组数的总个数不小于n ,那么,一定可以从每一组中各选一个数,其和为n .证明:设所组成的两个数组分别为A ={a 1、a 2、…、a k }及B ={b 1、b 2、…、b h }.其中各个a i 互不相同,各个b j 也互不相同.且k +h ≥n .现取一数组C ={c 1,c 2,…,c h },使c j =n -b j ,于是各c j 均为小于n 的正数,也互不相同.由于数组{ a 1、a 2、…、a k ,c 1,c 2,…,c h }的元素都为小于n 的正整数,但k +h ≥n .从而必有某个c j =a i ,于是a i +b j =n .5.给定13个不同的实数a 1,a 2,…,a 13,求证:存在两个实数a i ,a j ,(i ≠j ),满足0< a i -a j 1+a i a j <2- 3 2+ 3. 证明:令tan θi =a i (-π2 <θi <π2,i =1,2,…,13), 则有tan(θi -θj )= a i -a j 1+a i a j <2- 3 2+ 3 =1- 3 2 1+ 3 2 = 1-cos π6 1+cos π6 =tan π12 . 故只要把这13个角按从大到小排列,并把区间(-π2 ,π2)分成12等分,则总有一个区间内落入了二个所给的角θi ,θj ,(θi >θj ),这两个角对应的实数即为所求.6.在[1,1000]内任取n 个互不相等的数a 1,a 2,…,a n ,为了总可以找到两个数a i ,a j (1≤i <j ≤n ),使得0<a i -a j <1+3∛____a i a j成立,试确定n 的最小值并证明之.解:设a i >a j ,且 0<∛__a i -∛__a j <1,于是,立方之,得0<a i -a j -3∛____a i a j (∛__a i -∛__a j )<1.∴ 0< a i -a j <1+3∛____a i a j (∛__a i -∛__a j )<1+∛____a i a j .如果取n =10,可令a i =i 3,此时当i >j 时,a i -a j =i 3-j 3=(i -j )3+3ij (i -j )≥1+3ij =1+∛____a i a j 当取n =11,及区间[i 3,(i +1)3],(i =1,2,…,9).于是这11个数中必有两个数落入同一区间.由于这些区间共有10个端点,故这11个数不可能只取这9个区间的端点值i 3,于是必存在两个数落入同一区间且其中至少有一个数不是区间的端点.则此二数满足要求.7.证明:存在着绝对值都小于一百万,不全为0的三个整数a ,b ,c ,使|a + 2 b + 3 c |<10-11.证明:令A ={x ∈N |0≤x <106}.M ={ r +s 2 +t 3 | r ,s ,t ∈A }.d =(1 + 2 + 3 )·106.若x ∈M ,则x ∈[0,d ].把区间[0,d ]分成1018-1个长度为l =d 1018-1 的子区间. 由抽屉原理,M 中1018个数中必有两个数同在某个子区间内,此二数之差<l <1071018-1 <10-11. 即此二数之差满足要求.8.我们称A 1,A 2,…,A n 为集合A 的一个n 划分,如果⑴ A 1∪A 2∪…∪A n =A ;⑵ A i ∩A j =Ø,1≤i <j ≤n .求最小的正整数m ,使得对A ={1,2,…,m }的任意一个14划分A 1,A 2,…,A 14,一定存在某个集合A i (1≤i ≤14),在A i 中有两个元素a ,b 满足b <a ≤43b .(中国西部2001数学奥林匹克) 分析:14个集合相当于14个抽屉,取15个数,则必有一个抽屉中有两个数.若15个数中任意两个的数都满足b <a ≤43b ,则可求出最小的m 值. 解:取b ,b +1,b +2,…,b +14,共15个数.若b +14b ≤43,即得b ≤42.即至少取42+14=56个数,就可保证对A 的任一划分满足要求.当m ≥56时,取出其中42,43,…,56,共15个数,则根据抽屉原理,必有两数b ,a (42≤b <a ≤56)在同一划分中,由于1<a b ≤5642 = 43 ,即b <a ≤43b 成立. 若m <56.取A i ={a |a ≡i (mod 14),0<a <56},则对于A i 中任意两个数c ,d (c <d ),显然,c ≤42.故d c≥c +14c =1+14c >1+1442 =43,即此时不存在满足要求的划分.。
抽屉原理

一.第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。
原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
二.第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
例1:400人中至少有2个人的生日相同.例2:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.例3: 从任意5双手套中任取6只,其中至少有2只恰为一双手套。
例4:从任意5双手套中任取6只,其中至少有2只恰为一双手套。
例5:从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。
三.抽屉原理与整除问题整除问题:把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。
(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。
例1 证明:任取8个自然数,必有两个数的差是7的倍数。
四.经典练习:1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色不相同,则最少要取出多少个球?解析:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于7,故至少取出8个小球才能符合要求。
抽屉原理

抽屉原理抽屉原理,又叫狄利克雷抽屉原理,它是一个重要而又基本的数学原理。
抽屉原理(一):把多于n 个的元素,按任一确定的方式分成n 个集合,那么存在一个集合中至少含有两个元素。
抽屉原理(二):把多于m ×n 个元素分成n 个集合,那么一定有一个集合中至少有m +1个元素。
抽屉原理(三):把m 1+m 2+…+m n +k (k ≥1)个元素分成n 个集合,那么,存在一个i ,在第i 个集合中至少有m i +1个元素。
应用抽屉原理来解题,首先要审题,即要分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,恰当地设计抽屉,这是应用抽屉原理解题的关键。
一、分割图形造“抽屉”例1.在边长为1的等边三角形内(包括边界),任意选定10个点,求证:至少有三个点,它们两两之间的距离不大于12. 证明:如右图,等边三角形ABC 三边中点为D 、E 、F ,DE 、EF 、FD 把边长为1的三角形分成了四个边长为12的正三角形.10个点都在这四个正三角形“抽屉”中,根据抽屉原理(二),至少有三个点落入同一个区域里,此三个点可连成一个三角形,任意两点之间的距离不大于12.例2.在边长为1的正方形内,任意给定5个点,试证:其中必有两个点,它们之间的距离不超过22. 例3.在3×4的长方形中,放置6个点.试证:可以找到两个点,它们的距离不大于5.例4.在半径为1的圆内任给6个点.求证:其中必有两个点,它们之间的距离不超过1.例5.在直径为5的圆中放入10个点.求证:其中必有两个点,它们之间的距离小于2.二、利用余数造“抽屉”例6.求证:任意互异的8个整数中,一定存在6个整数x 1,x 2,x 3,x 4,x 5,x 6,使得(x 1−x 2)(x 3−x 4)(x 5−x 6) 恰是105的倍数.分析:105=3×5×7,而3、5、7两两互质,所以只要能找到两个数,比如x1,x2,使得x1−x2是7的倍数,同理x3−x4是5的倍数,x5−x6是3的倍数,题目即得证.证明:根据抽屉原理(一),在任意8个整数中,必有两个整数被7除同余,那么,它们的差一定是7的倍数.假设这两个数为x1,x2,使得x1−x2=7k1.在余下的6个数中,必有两个数被5除同余,这两个数的差一定是5的倍数,假设两数为x3,x4,则有x3−x4=5k2.在余下的4个数中,必有两个整数被3除所得余数相同,那么它们的差一定是3的倍数,假设两数为x5,x6,则有x5−x6=3k3.(x1−x2)(x3−x4)(x5−x6)=7k1∙5k2∙3k3=105×(k1∙k2∙k3)所以,从任意8个互异的整数中,一定可以找到6个数x1,x2,x3,x4,x5,x6,使得(x1−x2)(x3−x4)(x5−x6)恰是105的倍数.例7.求证:在任给的52个整数中,必有两个数,它们的差恰是100的倍数.例8.求证:从任意n个自然数a1,a2,a3,…,a n中,总可以找到若干个数,它们的和是n的倍数.三、竞赛题选例例9.时钟的表盘上按标准的方式标着1、2、3、4……、11、12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同。
抽屉原理和容斥原理

I .抽屉原则10个苹果放入9个抽屉中,无论怎么放,一定有一个抽屉里放了2个或更多个苹果.这个简单的事实就是抽屉原则.由德国数学家狄利克雷首先提出来的.因此,又称为狄利克雷原则.将苹果换成信、鸽子或鞋,把抽屉换成信筒、鸽笼或鞋盒,这个原则又叫做信筒原则、鸽笼原则或鞋盒原则.抽屉原则是离散数学中的一个重要原则,把它推广到一般情形就得到下面几种形式: 原则一:把m 个元素分成n 类(m >n ),不论怎么分,至少有一类中有两个元素. 原则二:把m 个元素分成n 类(m >n )(1)当n |m 时,至少有一类中含有至少n m个元素; (2)当n |m 时,至少有一类中含有至少[nm]+1个元素.其中n m 表示n 是m 的约数,n m 表示n 不是m 的约数,[n m ]表示不超过nm的最大整数.原则三:把1221+-+++n m m m 个元素分成n 类,则存在一个k ,使得第k 类至少有k m 个元素. 原则四:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素. 以上这些命题用反证法极易得到证明,这里从略.一般来说,适合应用抽屉原则解决的数学问题具有如下特征:新给的元素具有任意性.如10个苹果放入9个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原则解决的数学问题还应搞清三个问题: (1)什么是“苹果”?(2)什么是“抽屉”? (3)苹果、抽屉各多少?用抽屉原则解题的本质是把所要讨论的问题利用抽屉原则缩小范围,使之在一个特定的小范围内考虑问题,从而使问题变得简单明确. 用抽屉原则解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律. 用抽屉原则解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律. 用抽屉原则解题的关键是利用题目中的条件构造出与题设相关的“抽屉”. Ⅱ. 容斥原则 当我们试图对某些对象的数目从整体上计数碰到困难时,考虑将整体分解为部分,通过对每个部分的计数来实现对整体的计数是一种明智的选择.将整体分解为部分也就是将有限集X 表示成它的一组两两互异的非空真子集A 1,A 2,…A n 的并集,即},,,{.2121n n A A A A A A X ==ϕ集合叫做集合X 的一个覆盖.一个特殊情况是,集族ϕ中的任意两个集合都不相交,这时我们称集族ϕ为集合X 的一个(完全)划分.如ϕ为集合X 的划分,则对集合X 的计数可通过熟知的加法公式||||||||||321n A A A A X ++++= ①进行,但是,要找到一个划分并且其中所有子集易于计数的有时并非易事. 我们可以考虑通过对任意的集族中的子集的计数来计算|X|,当集族ϕ中至少存在两个集合的交非空时,我们称这个覆盖为集合X 的不完全划分. 对于集合X 的不完全划分,显然有有||||||||21n A A A X +++< ②因为在计算|A i |时出现了对某些元素的重复计数,为了计算|X|,就得将②式右边重复计算的部分减去,如果减得超出了,还得再加上,也就是说我们要做“多退少补”的工作.完成这项工作的准则就是容斥原理. 是十九世纪英国数学家西尔维斯提出的. 容斥原理有两个公式. 1.容斥公式定理1 设则为有限集,),,2,1(n i A i =∑∑=≤<≤=-=-++-=ni nj i i ni n j i ii ni A A A AA 11111||)1(|||||| ③证明:当,/,/,,1221121B A A B A A B A A n ='='== 设时由加法公式有|||||||||)||(||)||(|||||||||||,||||||,|||||2121212121212211A A A A B B A B A B A A B A A A A A B A A B A -+=+-+-=++'+'=''==+'=+'结论成立.若n =k 时结论成立,则由∑∑∑=≤<≤=+=-+=+=+=+=+=-+-++-=-+=-+=ki kj i ki i k i ki k j i i i i ki k i ki k i ki k i k i i k i A A A A A A A A A A A A A A A 1111111111111111||||)1(|||||)(||||||)(|||||||∑≤<≤+=+++-+-+ki i k i ki kk j k i k A A A A A A A 111111|)(|)1(|)()(||∑∑+=+≤<≤+=-++-=111111||)1(||||k i k j i i k i kj i iA A A A知,1+=k n 时结论成立.由归纳原理知,对任意自然数n ,公式③成立. 公式③称为容斥公式,显然它是公式①的推广.如果将i A 看成具有性质i P 的元素的集合,那么n A A A X 21=就是至少具有n个性质n P P P ,,,21 之一的元素的集合. 因此,容斥公式常用来计算至少具有某几个性质之一的元素的数目.数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。
抽屉原理

抽屉原理(又名鸽笼原理)什么是“抽屉原理”?举个简单例子来说明:把3个苹果分放在2个抽屉里,必定有1个抽屉里放了2个或2个以上苹果。
这就是“抽屉原理”。
道理很简单,谁都能理解,很容易用反证法证明。
用数学语言表达如下:抽屉原理一:把多于n个物体(n为正整数),放到n个抽屉里,必定有1个抽屉里放2个或2个以上的物体。
抽屉原理二:把多于m×n个物体(m、n为正整数),放到n个抽屉里,必定有1个抽屉里放m+1个或m+1个以上的物体。
以上原理是德国数学家狄利克雷首先发现的,所以也叫狄利克雷原理。
它是一个重要而又基本的数学原理。
应用它可以解决一些有趣的看起来相当复杂的问题。
举两个简单的例子:1.第四次人口普查表明,我国50岁以下的人口已经超过8亿。
试证明:在我国至少有2人的出生时间相差不超过2秒钟。
解:50年的秒数约等于15.8亿秒,设2秒为1个抽屉,抽屉总数小于8亿个,所以至少有2人的出生时间相差不超过2秒钟。
2.某工厂生产一种天平托盘1000付,要求每付两个托盘的重量相差≤1毫克,而该厂的冲床设备生产的产品重量误差是±5毫克,问该厂用这种冲床设备,至少要生产多少个托盘才能配出1000付符合要求的托盘?解:设10个重量相差为1毫克以内的抽屉:(-5<-4),(-4<-3),(-3<-2)……(+3<+4),(+4≤+5)。
最差的情况是每一个抽屉都是奇数,那么有10个托盘不能配对,所以只要生产2010个合格托盘,就能配出1000付符合要求的托盘。
以下几道题,请读者自己解:1.证明:在25人中,至少有3人属相相同。
2.6个小朋友,每人至少有1本书,一共有20本书,试证明:至少有2个小朋友有相同数量的书。
(提示:如果每人的书数量都不相同,至少要21本书。
)3.在2行5列的2×5的方格子中,随意用红、绿两种颜色染上,证明:不管怎样染,至少有两列着色完全相同.关于抽屉原理关于整除问题a.任意n+1个自然数中,总有两个自然数的差是n的倍数例1:任取8个自然数,必有两个数的差是7的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5数火箭第六讲抽屉原理
把3本书分给了2个人,会出现什么现象? 把4根骨头分给3只小狗,会出现什么现象?把8之鸽子放入7只笼子,会出现什么现象?
这些简单的道理同学们都能理解,如果把条件中那些被分配的对象都想象成苹果,而把接受它们的对象都想象成抽屉,那么我们就可以象匈牙利的数学家那样,得出一个重要的原理——抽屉原理(鸽笼原理)抽屉原理是众人皆知的一个原理:把N+1个的苹果放进N个抽屉里,那么至少有一个抽屉里有两个或以上的苹果。
抽屉原理解题的一般步骤:
①确定将什么看成“苹果”,这是应用抽屉原理的前提;
②确定将什么看成“抽屉”,这是应用抽屉原理的关键;
③只要苹果多,抽屉少,由抽屉原理就可得到有关结论。
抽屉原理一:苹果:用于分配的对象,抽屉:用于接收分配的对象
1、把5支笔放入4个文具盒。
苹果()抽屉()
2、把15朵花放入12个花盆苹果()抽屉()
3、14个同学过生日苹果()抽屉()
4、13个同学的属相苹果()抽屉()
如果把N+1个苹果分配给N个抽屉,那么至少有2个苹果放进了同1个抽屉里。
苹果分配给抽屉,N+1和N的关系,至少有2个在一起
抽屉原理一:说明题。
例一:1、姐姐有5颗奶糖,把她们分给4个弟弟。
会出现什么情况
2、刘大爷把自己家的50头牛送给了全村的49户农民。
会出现什么情况
练习一
1、证明:13个同学中,至少有2个同学出生在同一个月里.
2、证明:把10个乒乓球放入8个盒子,至少有两个乒乓球放入了同一个盒子。
抽屉原理二:(求结论数)
例二:把30个苹果放进12个抽屉里,)那么至少有多少个苹果被放进了同一个抽屉?
总结:把A个苹果放进B个抽屉里(A> B),那么至少有结论个苹果在同一个抽屉里:
A÷B = 商…余数
(1)当余数 = 0时,结论=商
(2)(2)当余数 > 0时,结论=商+1(跟余数是多少没有关系)
练习二
1、五年级共有48个人,问至少有几个人在同一月出生.
2、19枝铅笔放入4个铅笔盒里,至少有多少支铅笔放入了同一个盒里?
3、58个弹珠分给8个同学至少有几个弹珠被分给了同一个同学?
4、一班有30个女同学,问至少有几个女孩子出生在同一月?
抽屉原理三:(求苹果数)
例三: 把一些玩具分给20名小朋友,为了保证有1名小朋友至少得到4件玩具,至少要准备多少玩具?
总结:苹果数=抽屉数×(保证数-1)+1
练习三:
1、把一些苹果放入3抽屉中,为了保证总有1个抽屉存在至少4个苹果。
至少需要多少个苹果?
2、把一些乒乓球放在6个盒子里,为了保证总有1个盒子里至少放了5个乒乓球。
至少需要多少个?
3、把一些水果糖分给8个小朋友,为了保证总有1个小朋友至少分到7颗,至少需要多少颗?
抽屉原理四:(求抽屉数)
例四:有91个苹果分给幼儿园大班的小朋友,不管怎么分其中总有人至少分得4个苹果。
这个班的小朋友最多有几人?
总结:抽屉数=(苹果数-1)÷(保证数-1)
练习四:
1、把46本书分给一群小朋友,不管怎么分其中总有人至少分到6本书。
这些小朋友最多有多少人?
2、把81张邮票分给一群小朋友,不管怎么分其中总有人至少分到5张,这些小朋友最多有多少人?
3、把151桃给一群猴子,不管怎么分其中总有人至少分到31个,这些猴子最多有多少只?
抽屉原理的运用
1、有红球12个、白球10个、黑球15个混合放在布袋里,至少要摸出多少个小球才能保证有1个白球?
变型1:为了保证摸到2个白球,至少要摸出多少个球?
变型2:为了保证摸到2个颜色相同的小球,至少要摸出多少个小球?
变型3:为了保证摸到4个颜色相同的小球,至少要摸出多少个小球?变型4:为了保证摸到2个颜色不同的小球,至少要摸出多少个小球?
2、学校开设了音乐、美术、体育和科技4个兴趣小组。
每位同学任意参加两个小组的活动,问至少有几个同学参加活动,就能保证有5个同学参加的小组相同?
3、有5个小朋友,每人都从装有许多黑白围棋的口袋中随意摸出3枚棋子。
证明:这5人中至少有两个摸出的棋子的颜色的配组是一样的。
4、学校买来红、黄、蓝三种颜色的球。
规定每位学生最多可以借两个不同颜色的球,那么,至少有几个学生借球,就可以保证必有4位学生借的球颜色完全一致?
5、某袋内有70个球,其中20个是红球,20个是绿球,20个是黄球,其余是黑球和白球。
为了确定取出的球中至少包含10个同色的球,至少要从袋中取出几个球?
思考题:1、有黑色,白色,黄色的手套各4双,不看的情况下随意取,(1)要保证能拿出1双手套,至少要拿出多少只手套?(2)要保证能拿出1双白色手套,至少要拿多少只手套?
5数火箭第六次抽屉原理课后作业姓名:
一、旧知复习。
1、把七个数从小到大排列,其平均数是60,前四个数的平均数是53,后四个数的平均数是61,中间一个数是多少?
2、有一条山路,一辆汽车上山时每小时行60千米,下山时从原路返回每小时行100千米,汽车上、下山的平均速度是多少?
3、二年级有56人报名参加数学、语文竞赛,竞赛当天有2人因事缺席,其中语数获优的有25人,数学获优的有37人,问语文获优的有多少人?
4、某校外语教研组共有32名懂英语的教师,56名懂法语的教师,两种语言都懂得有18人,两种语言都不懂的有4人,该教研组一共有多少名教师?
5、在一个正方形的小花园周围,环绕着宽4米的水池,水池的面积为160平方米,正方形花园面积是多少平方米?
6、一个正方形,如果长增加3厘米,宽增加4它的面积增加47平方厘米。
求原正方形的面积。
(画出图形)二、小升初考题链接
1、900015092,读作(),省略万位后的尾数约(),改写成万做单位的数是()。
2、小明从一楼走楼梯到六楼用10分钟,那么走楼梯到九楼还需()分钟。
3、、在a÷b=5……3中,把a,b同时扩大3倍,商是,余数是。
4、把三个边长都是5厘米的正方形拼成一个长方形,这个长方形的周长是;面积是。
5、有甲乙两数的差是19.8,若将甲数的小数点向右移动一位就等于乙数,那么甲、乙两数分别是多少?
6、晶晶上楼,从第一层走到第三层需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第一层走到第六层需要走多少级台阶?
7、已知甲乙丙丁四个数的和是92,且甲=乙-2=丙÷2=丁×2,求甲乙丙丁四个数各是多少?(提示和倍问题,画线段分析)
8、两辆汽车从A地开往B地,甲车每小时行64千米,乙车每小时行80千米,甲车开出1.5小时后,乙车才开出,结果两车同时到达B地,这时乙车行了多少小时?
9、A、B两人同时从东村去西村,A每分钟行60米,B每分钟行50米,出发10分钟后A因有事返回东村,在东村耽误4分钟后又立即向西村走去,最后两人同时达到西村,东、西两村的距离是多少?
三、新知操练
1、四(1)班有15位同学在同一年出生,试说明:他们中至少有2人的属相相同。
2、386人中至少有两个人的生日在同一天对吗?为什么?
3、五年级一班共有学生54人,他们年龄都相同。
请你用抽屉原理说明,至少有两个小朋友出生在同一周内。
4、26枝铅笔放入8个铅笔盒里,至少有多少支铅笔放入了同一个盒里?
5、45个皮球分给8个同学至少有几个皮球被分给了同一个同学?
6、一副扑克去掉两个王,最少摸出几张才能保证有两张扑克的花色一样?
7、把一些棋子放在7个盒子里,为了保证总有1个盒子里至少放了6颗棋子,至少需要多少颗?
8、一个布袋里装有红、黄、蓝三种颜色的小球,在看不见的情况下,至少摸出多少个球,才能保证有4个小球的颜色相同?9、把43张卡片分给一群小朋友,不管怎么分其中总有人至少分到7张,这些小朋友最多有多少人?
10、把121条鱼分给一群猫,不管怎么分其中总有猫至少分到21个,这些猫最多有多少只?
11、有三种图书,科技书,文艺书,故事书。
每位同学可任意借两本不同的书,问至少多少位同学借书,才能保证其中必有4个借的书类型相同?
12、五年级二班有43名同学,他们都订阅了《作文辅导报》《学习报》《少年文艺报》中的一种或几种。
那么至少其中有多少名学生订的报刊的种类是完全相同?
13、若干名小朋友购买单价为3元和5元的两种商品,每人至少买一件,但每人购买的商品总金额不得超过11元,小明说:小朋友中至少有三人购买的商品的数量完全相同。
问至少有多少名小朋友?(十中小升初考试原题)。