抽屉原理公式及例题
抽屉原理公式

抽屉原理公式
抽屉原理是一种概率统计学的原理,它指的是从一个抽屉中任意抽取一个物体的概率等于抽到此物体的概率与总数相等。
抽屉原理的公式为:
P(A)=P(A|B)*P(B)
其中,P(A)是抽到A物体的概率,P(A|B)是在B物体被抽出的情况下,抽出A物体的概率,P(B)是抽出B物体的概率。
抽屉原理在日常生活中有着广泛的应用,比如你从一个抽屉中抽取一个黑色的物体,那么抽到黑色物体的概率就等于所有物体中黑色物体的数量与总数的比例。
此外,抽屉原理也可以应用于一些概率统计学的问题,比如一个抽屉里有N个物体,现在要求从这N个物体中抽出2个,那么根据抽屉原理,抽到这2个物体的概率就等于每个物体被抽出来的概率相乘。
因此,可以用抽屉原理解决一些概率问题。
此外,抽屉原理还可以用于计算一些组合问题,比如抽屉里有N 个物体,要计算出从中抽出2个不同的物体的组合数,可以用抽屉原理,即N*(N-1),即N的阶乘减1。
总而言之,抽屉原理是一种有效的概率统计学原理,在日常生活和
统计学问题中都有着广泛的应用,它可以帮助我们精确地计算出各种概率和组合问题。
抽屉原理例题

抽屉原理例题
抽屉原理(也称为鸽巢原理)是数学中的一个基本原理,它在许多领域都有广泛应用。
简而言之,抽屉原理指出,当n+1
个物体放入n个抽屉中时,至少存在一个抽屉中放有至少两个物体。
以下是一个抽屉原理的实际例子:
假设有一所学校有30个班级,每个班级有30个学生。
现在要将这些学生按照年龄分别放入不同的班级。
根据抽屉原理,我们可以得出结论:至少有两个班级的学生年龄相同。
为了证明这个结论,我们可以设定每个班级代表一个抽屉,30个学生代表30个物体。
由于学生数量超过了班级数量,根据抽屉原理,至少有一个班级中会有两个或更多个学生的年龄相同。
这个例子说明了抽屉原理在实际中的应用。
无论是年龄还是其他属性,当数量超过容器的容量时,必然会出现某些容器内包含了相同的属性。
抽屉原理在计算机科学、概率论、组合数学等领域都有重要的应用。
抽屉原理精解

第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。
通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。
四年级抽屉原理初步主要内容及解题思路

四年级抽屉原理初步主要内容及解题思路四年级抽屉原理初步主要内容及解题思路一、抽屉原理研究对象:放苹果最多的抽屉研究方法:平均分核心思想:使最多的至少计算公式:苹果数÷抽屉数=?1)有余数苹果数÷抽屉数=商...余数➢有一个抽屉至少有商+1个苹果2)无余数苹果数÷抽屉数=商➢有一个抽屉至少有商个苹果问法:1)放苹果最多的抽屉至少有()个苹果;2)总有一个抽屉至少有()个苹果;3)至少有一个抽屉至少有()个苹果;题型:1)求商;2)求苹果数,至少几个苹果才能保障有一个抽屉至少有a个苹果苹果数=抽屉数×(a-1)+13)构造抽屉区分苹果和抽屉,通常情况下,苹果数>抽屉数二、最不利原则关键字:“保证...至少...”;“至少...才能保证...”从最不利的情况考虑,考虑最倒霉的情况。
生活中,我们常常会遇到求最大值或最小值的问题,解答这类问题,常常需要从最糟糕的情况出发解决问题,这就是最不利原则。
做题时,当题目遇到“保证”等文字时,我们就一定要从最坏的角度出发,直到最终满足要求为止。
【举例】比如,小明买了7个肉包,8个素包,那么他吃几个包子,才能保证他一定能吃到肉包?这个时候我们想,他可能吃第一个包子就吃到了肉包,这个很幸运,但是我们能说他一定这么幸运吗?当然不能。
他那一天就是十分倒霉,吃一个是素包,再吃一个还是素包,再吃一个仍然是素包,直到吃完所有的8素包,还是没吃到肉包,生活中是有可能会出现这个情况的,但是这个时候,如果小明再吃1个包子,一定吃到的是肉包。
所以我们要保证小明一定吃到肉包,需要他吃8+1=9(个)。
所以,对于这种“保证”类的问题,我们就从最倒霉,最坏的角度出发,直到最终达到要求为止。
【典型例题】类型一:抽屉原理例:有10个苹果,放进9个抽屉里,一定有个抽屉至少有两个苹果,对吗?【分析】对的。
10个苹果要放进9个抽屉里,每个放一个这样还剩下一个,随便放进那个抽屉里,这样就可以找到一个抽屉至少有2个苹果。
抽屉原理教师讲解及练习市公开课获奖课件省名师示范课获奖课件

练习
1. 一幅扑克牌有54张,至少要抽取几张牌, 方能确保其中至少有2张牌有相同旳点数? 【解析】 点子页数1为1(A)、2、3、4、5、6、7、8、9、 10、11(J)、12(Q)、13(K)旳牌各取1张,再 取大王、小王各1张,一共15张,即15个抽 屉子页。3这么,假如任意再取1张旳话,它旳点数 必为1~13中旳一种,于是有2张点数相同.
(二)利用最值原了解题
将题目中没有阐明旳量进行极限讨论,将复 杂旳题目变得非常简朴,也就是常说旳极限 思想“任我意”措施、特殊值措施.
子页1
子页3
模块一、利用抽屉原理公式解题
(一)直接利用公式进行解题 (1)求结论 【例1】 6只鸽子要飞进5个笼子,每个笼子 里都必须有1只,一定有一1种笼子里有2只鸽 子.对吗? 【解析】把鸽笼看作“抽屉”,把鸽子看作 “苹果”,6/5=1…1,1+1=2(只),也就 是一定有一种笼子里有2只鸽子.
(二)构造抽屉利用公式进行解题
【例9】在一只口袋中有红色、黄色、蓝色球 若干个,小聪和其他六个小朋友一起做游戏 ,每人能够从口袋中随意取出2个球,那么不 论怎样挑选,总有两个小朋友取出旳两个球 旳子页颜1色完全一样.为何?
【解析】可能情况有6种,把6种搭配方式看 成子页63个“抽屉”,把7个小朋友看成7个“苹果 ”,根据抽屉原理,至少有两个人挑选旳颜 色完全一样.
⑵假如在这n个小朋友中,每位小朋友都至少遇到一 种熟人,这么熟人数目只有n-1种可能:1,2,3, ……,n-1,也是n-1种情况。根据抽屉原理,至少 有子两页1个小朋友,他们遇到旳熟人数目相等. 总之, 必有两个小朋友遇到旳熟人数目相等.
子页3
处理抽屉原理类型旳题目关键:题目中有抽 屉时,找准题目中旳“抽屉‘、”苹果“, 然后利用抽屉原理公式处理问题;没有抽屉 旳要发明抽屉。
抽屉原理公式及例题

抽屉原理公式及例题抽屉原则一:如果把n+1个物体放在n个抽屉里;那么必有一个抽屉中至少放有2个物体..例:把4个物体放在3个抽屉里;也就是把4分解成三个整数的和;那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式;我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体;也就是说必有一个抽屉中至少放有2个物体..
抽屉原则二:如果把n个物体放在m个抽屉里;其中n>m;那么必有一个抽屉至少有:①k=n/m +1个物体:当n不能被m整除时..
②k=n/m个物体:当n能被m整除时..
理解知识点:表示不超过X的最大整数..
键问题:构造物体和抽屉..也就是找到代表物体和抽屉的量;而后依据抽屉原则进行运算..
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个;若蒙眼去摸;为保证取出的球中有两个球的颜色相同;则最少要取出多少个球
解:把3种颜色看作3个抽屉;若要符合题意;则小球的数目必须大于3;故至少取出4个小球才能符合要求..
例2.一幅扑克牌有54张;最少要抽取几张牌;方能保证其中至少有2张牌有相同的点数
解:点数为1A、2、3、4、5、6、7、8、9、10、11J、12Q、13K的牌各取1张;再取大王、小王各1张;一共15张;这15张牌中;没有两张的点数相同..这样;如果任意再取1张的话;它的点数必为1~13中的一个;于是有2张点数相同..。
奥数-18抽屉原理+答案

请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。
初中数学竞赛:抽屉原理(含例题练习及答案)

初中数学竞赛:抽屉原理把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。
一般地,我们将它表述为:第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
使用抽屉原理解题,关键是构造抽屉。
一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。
例1从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:(1)有2个数互质;(2)有2个数的差为50;(3)有8个数,它们的最大公约数大于1。
证明:(1)将100个数分成50组:{1,2},{3,4},…,{99,100}。
在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。
(2)将100个数分成50组:{1,51},{2,52},…,{50,100}。
在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。
(3)将100个数分成5组(一个数可以在不同的组内):第一组:2的倍数,即{2,4,…,100};第二组:3的倍数,即{3,6,…,99};第三组:5的倍数,即{5,10,…,100};第四组:7的倍数,即{7,14,…,98};第五组:1和大于7的质数即{1,11,13,…,97}。
第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。
例2求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。
证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。
得到500个余数r1,r2,...,r500。
由于余数只能取0,1,2, (499)499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理公式及例题标准化管理部编码-[99968T-6889628-J68568-1689N]
抽屉原理公式及例题
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:表示不超过X的最大整数。
键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。
例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?
解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。
这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。