江西财大08-09概率论与数理统计期末试卷B答案

合集下载

《概率论与数理统计》期末考试试题B卷答案

《概率论与数理统计》期末考试试题B卷答案

华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。

答案错选或未选者,该题不得分。

每小题2分,共10分。

)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。

答案错选或未选者,该题不得分。

每小题2分,共10分。

概率论与数理统计(B)卷参考答案

概率论与数理统计(B)卷参考答案

商学院课程考核试卷参考答案与评分标准 (B )卷课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部各本科专业 考核学期: 一、填空(每小题3分,共30分)1.0.2;2. 0.4(2/5);3. 916; 4.(0.5,2); 5.2;6. 13;7. 7;8. 16; 9. 45; 10.32。

二、单项选择(每小题3分,共15分)1. C .;2. A .;3. B .;4. A .;5. D .。

三、计算题(第1题10分,其余5小题每题9分,共55分)1. 设A A ,分别表示生产情况正常和不正常,B 表示产品为次品。

那么8.0)(=A P ,2.0)(=A P ;03.0)|(=A B P ,2.0)|(=A B P 2分(1)由全概率公式064.02.02.003.08.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P ; 6分(2)由Bayes 公式375.0064.003.08.0)()|)(()|(=⨯==B P A B A P B A P 10分2.(1)由于1)(,0)0(=+∞=F F ,可得1,1-==B A⎩⎨⎧≤>-=-01)(2x x e x F x3分 (2)21)1()1(}11{--=--=<<-e F F X P6分 (3)⎩⎨⎧≤>='=-02)()(2x x e x F x f x9分 3. (1)14),(==⎰⎰+∞∞-+∞∞-cdxdy y x f ,所以,4=c 3分(2)324)(112==⎰⎰ydy dx x X E ;324)(121==⎰⎰dy y xdx Y E944)(10212==⎰⎰dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov9分4.先求他等车超过10分钟的概率}10{1}10{≤-=>X P X P251100511--=-=⎰e dx e x 3分 所以Y 服从5=n ,2-=e p 的二项分布,),5(~2-e B Y 6分52)1(1}0{1}1{---==-=≥e Y P Y P9分5. 似然函数∑=--=--==∏ni i i x n n n ni x in ex x x e x x x x L 11211121)();,,,(ααλαλααλλαλ 3分 ∑∑==--++=ni i ni ix xn n L 11ln )1(ln ln ln αλαλλ5分 令:0ln 1=-=∑=ni i x nd L d αλλ7分得λ的极大似然估计为:∑==ni i x n1ˆαλ9分6. 这是正态总体方差未知的条件下,均值的区间估计问题 2分08.0,5.1,35===s x nμ的95%置信区间为:⎪⎪⎭⎫ ⎝⎛+-n s t x n s t x )34(,)34(025.0025.0 6分 )5275.1,4725.1(3508.00322.25.1,3508.00322.25.1=⎪⎪⎭⎫⎝⎛⨯+⨯-= 9分。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

数理统计练习 一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。

2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。

3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。

4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1, 则=λ___1____。

5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 , 成功次数的方差的值最大,最大值为 25 。

6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。

7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。

8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2X -Y +5,则Z ~ N(-2, 25) 。

10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。

1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。

2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。

3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。

4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。

2008-2011江西财经大学概率论与数理统计期末试卷及答案

2008-2011江西财经大学概率论与数理统计期末试卷及答案

2008-2011江西财经大学概率论与数理统计期末试卷及答案江西财经大学2009-2010第二学期期末考试试卷试卷代码:03054C 授课课时:64 考试用时:150分钟 课程名称:概率论与数理统计 适用对象:2010本科试卷命题人 徐晔 试卷审核人 何明【本次考试允许带计算器。

做题时,需要查表获得的信息,请在试卷后面附表中查找】 一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每小题3分,共15分)1. 设A 和B 是任意两事件,则=))()((B A B A B A Y Y Y _________2. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>-=303271)(3x x x x F ,则=<<)52(X P _________3. 设随机变量)2,1(~,)1,2(~N Y N X ,且X 与Y 相互独立,则~42+-=Y X Z _________4. 设随机变量X 和Y 的数学期望分别为2和1,方差分别为1和4,而相关系数为5.0,则根据切比雪夫不等式≤≥--}61{Y X P _________5. 设总体X 的密度函数为⎪⎩⎪⎨⎧<<-=其他01)(bx a a b x f ,而n x x x ,,,21Λ为来自总体X 样本),,,(21b x x x a n <<Λ,则未知参数a 最大似然估计值为_________,未知参数b 最大似然估计值为_________二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。

答案选错或未选者,该题不得分。

每小题3分,共15分)1.设B A ,为两个随机事件,且1)(,0)(=>B A P B P ,则必有( ))(}{)()(}{)()(}{)()(}{)(B P B A P D A P B A P C B P B A P B A P B A P A ==>>Y Y Y Y2. 设随机变量()2,~σμN X ,而n X X X ,,,21Λ为来自总体X 的样本,样本均值和样本修正方差分别为X 和2*S ,1+n X 是对X 的又一独立样本,则统计量11+-=*+n n S X X Y n 是( ) )(A 服从()1,0N 分布 )(B 服从)1(-n t 分布)(C 服从)(2n χ分布 )(D 服从)1,(+n n F 分布3. 设4321,,,X X X X 为来自总体),(~2σμN X 的样本,0≠=μEX ,02≠=σDX ,从无偏性、有效性考虑总体均值μ的最好的点估计量是( ))(A 432141414141X X X X +++ )(B 212121X X +)(C432171717372X X X X +++ )(D 321313131X X X ++4.在假设检验中,原假设0H ,备择假设1H ,显著性水平α,则检验的功效是指( ) )(A 为假}接受00|{H H P (B )为假}拒绝00|{H H P)(C 为真}接受00|{H H P )(D 为真}拒绝00|{H H P 5. 设),,,(21n X X X Λ为来自正态总体),(2σμN 的样本,μ已知,未知参数2σ的置信度α-1的置信区间为( ))(A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--∑∑=-=)()(,)()(221222112n X n X n i i n i i ααχμχμ )(B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==∑∑)()(,)()(221122212n X n X ni i n i i ααχμχμ )(C ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----∑∑=-=)1()(,)1()(221222112n X n X n i i n i i ααχμχμ )(D ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==∑∑)1()(,)1()(221122212n X n X ni i n i i ααχμχμ三、计算题(要求在答题纸上写出主要计算步骤及结果。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。

从该批产品中随机抽查5个,计算至少有一个不合格品的概率。

解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。

不合格品的概率为 0.1,合格品的概率为 0.9。

则没有不合格品的概率为 (0.9)^5。

至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。

4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。

解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。

一个骰子点数大于3的概率为 3/6 = 1/2。

两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。

至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。

以上是《概率分析与数理统计》期末考试的部分试题及解答。

希望对你有帮助!。

《概率论与数理统计》期末考试试题(B)及解答

《概率论与数理统计》期末考试试题(B)及解答
《概率论与数理统计》课程期末考试试题(B)
专业、班级:姓名:学号:
题号










十一
十二
总成绩
得分
一、单项选择题(每题3分共15分)
(1)
(2)
(3)
连续随机变量X的概率密度为
则随机变量X落在区间(0.4, 1.2)内的概率为( ).
(A) 0.64 ; (B) 0.6; (C) 0.5; (D) 0.42.
解:
八、(6分)
解:
九、(10分)
解:
(1) =
=
(2)关于 的边缘分布:
=
同理关于 的边缘分布:
=
(3)因为
所以 与 相互独立。
十、(8分)
解:
因为 ,所以 与 是相关的。
十一、(7分)
解:
十二、(5分)
解:
共8页第8页
六、(8分)已知甲、乙两箱装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品,从甲箱中任取3件产品放入乙箱后,求乙箱中次品件数的分布律及分布函数 .
七、(7分)设随机变量 的密度函数为
求随机变量的函数 的密度函数 。
八、(6分)现有一批钢材,其中80%的长度不小于3m,现从钢材中随机取出100根,试用中心极限定理求小于3m的钢材不超过30的概率。(计算结果用标准正态分布函数值表示)
(4)
(5)
二、填空题(每空2分共12分)
(1)
(2)
(3)
(4)
三、(7分)已知 ,条件概率 .
四、(9分).设随机变量 的分布函数为 ,
求:(1)常数 , ;(2) ;(3)随机变量 的密度函数。

大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

08-09学年第二学期期末考试试卷评分标准
一.填空题 1. 4/7
2. (,)(,)F b c F a c - 1
3. -7 13
4.
3 5. 0.5
二.单项选择题 BCCAB
三计算题
解:设B 表示事件“顾客买下该箱产品” i A 表示“箱中次品数位0件,1件,2件”
0,1,2i = 依题意知: 01
2
()0.8,()0.1,()0.1,
P A P A P A === 44
1918012442020412
(|)1,(|),(|)519
C C P B A P B A P B A C C =====
根据全概公式: 2
448
()()(|)0.9432475i
i
i P B i P A P B A ===
==∑
根据逆概公式 095
(|)0.8482112
P A B == 四.计算题:
解:
五、计算题
解: Z 的分布律为
故 115
EZ =- 六.计算题
解:(1)设样本12(,,,)n X X X 的一组观测值为11,,,,n x x x 则似然函数为:
1(1),01
()()0,n
i i i i x x L f x θθθ=⎧∏+<<==⎨

∏其他 当
01i x <<时,对数似然函数为:
1
ln ()ln(1)ln n
i i L n x θθθ==++∑

ln ()
0d L d θθ
=
(解得: 1
1n
i
i n
x
θ
==--∑
未知参数的最大似然估计量: 1
1n
i
i n
X
θ
==--∑
(2) 由 12EX θθ+=+ 得矩估计量 211X θ
-=- 七.计算题:
解:方差2
σ未知 ,估计正态总体均值μ的置信区间 因为
~(1)T t n =
- (4分)
由于 *
15,425.0,8.488,n x s === 由t 分布临界值可查得临界值 12
(1(14) 2.145t
n α
-
-=0.975)=t (5分)
所以μ的置信度为0.95
的置信区间为(425.0 2.145 2.306-+即(420.3,429.7),于是在置信水平0.95下每包糖果平均重量μ的0.95的置信区间为(420.3,429.7) (10分)
八.计算题 解:
检验2
2
2
2
012112:,:H H σσσσ≤>等价于检验2
2
2
2
012112:,:H H σσσσ=> (2分)
构造统计量 *
1*2
~(251,251S F F S =--)
(4分)
0H 的拒绝域: 0.95{(24,24)},W F F =>查表得:0.95(24,24
1.98F =) (6分)
由样本数据算的:*10.95*2 6.27
2.104(24,24) 1.982.98
S F F S ===>= (8分)
拒绝o H ,认为新工艺比老工艺精度高。

(10分)
九.计算题
1
6834.4,7210.9,6891.4,1.008316.16429.37xx yy xy L L L ββ
=====-
(7分)
(2)
01:0
0.9817
H L βρ==
= (8分)
查表得:0.050.05(8)0.632,||(8)
λρλ=> (9分)
拒绝0H ,即认为消费支出域城市家庭收入之间存在线性相关关系。

(10分)。

相关文档
最新文档