福州大学概率论与数理统计课后习题答案高等教育出版社
概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题问案之阳早格格创做下等培养出版社1.将一枚匀称的硬币扔二次,事变C B A ,,分别表示“第一次出现正里”,“二次出现共部分”,“起码有一次出现正里”.试写出样原空间及事变C B A ,,中的样原面. 解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)}{=C (正,正),(正,反),(反,正)}2.正在掷二颗骰子的考查中,事变D C B A ,,,分别表示“面数之战为奇数”,“面数之战小于5”,“面数相等”,“起码有一颗骰子的面数为3”.试写出样原空间及事变D C B A BC C A B A AB ---+,,,,中的样原面. 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A C B A ,,分别表示某皆会住户订阅日报、早报战体育报.试用C B A ,,表示以下事变:(1)只订阅日报; (2)只订日报战早报;(3)只订一种报; (4)正佳订二种报;(5)起码订阅一种报; (6)不订阅所有报;(7)至多订阅一种报; (8)三种报纸皆订阅;(9)三种报纸不齐订阅.解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或者C B C A B A ++(8)ABC ; (9)C B A ++4.甲、乙、丙三人各射打一次,事变321,,A A A 分别表示甲、乙、丙射中.试道明下列事变所表示的截止:2A ,32A A +,21A A ,21A A +,321A A A ,313221A A A A A A ++.解:甲已打中;乙战丙起码一人打中;甲战乙至多有一人打中或者甲战乙起码有一人已打中;甲战乙皆已打中;甲战乙打中而丙已打中;甲、乙、丙三人起码有二人打中.C B A ,,谦脚Φ≠ABC ,试把下列事变表示为一些互不相容的事变的战:C B A ++,C AB +,AC B -.解:如图:C B A ,,谦脚C B C A +=+,试问B A =是可创造?举例道明. 解:纷歧定创造.比圆:{}5,4,3=A ,{}3=B ,{}5,4=C ,那么,C B C A +=+,然而B A ≠.C B A ,,,试问C B A C B A +-=--)()(是可创造?举例道明. 解:纷歧定创造. 比圆:{}5,4,3=A ,{}6,5,4=B ,{}7,6=C ,那么{}3)(=--C B A ,然而是{}7,6,3)(=+-C B A .8. 设31)(=A P ,21)(=B P ,试便以下三种情况分别供)(A B P : (1)Φ=AB ,(2)B A ⊂,(3)81)(=AB P .解:(1)21)()()()(=-=-=AB P B P AB B P A B P ;(2)61)()()()(=-=-=A P B P A B P A B P ;(3)838121)()()()(=-=-=-=AB P B P AB B P A B P . 9. 已知41)()()(===C P B P A P ,161)()(==BC P AC P ,0)(=AB P 供事变C B A ,,齐不爆收的概率. 解:())(1)(C B A P C B A P C B A P ++-=++==[])()()()()()()(1ABC P BC P AC P AB P C P B P A P +---++-83016116104141411=⎥⎦⎤⎢⎣⎡+---++-= 10.每个路心有黑、绿、黄三色指示灯,假设各色灯的启关是等大概的.一部分骑车通过三个路心,试供下列事变的概率:=A “三个皆是黑灯”=“齐黑”;=B “齐绿”;=C “齐黄”;=D “无黑”;=E “无绿”;=F “三次颜色相共”;=G “颜色齐不相共”;=H “颜色不齐相共”. 解:271333111)()()(=⨯⨯⨯⨯===C P B P A P ;278333222)()(=⨯⨯⨯⨯==E P D P ;91271271271)(=++=F P ;92333!3)(=⨯⨯=G P ;98911)(1)(=-=-=F P H P . 11.设一批产品共100件,其中98件正品,2件次品,从中任性抽与3件(分三种情况:一次拿3件;屡屡拿1件,与后搁回拿3次;屡屡拿1件,与后不搁回拿3次),试供:(1) 与出的3件中恰有1件是次品的概率;(2) 与出的3件中起码有1件是次品的概率. 解:一次拿3件:(1)0588.0310012298==C C C P ; (2)0594.031001982229812=+=C C C C C P ;屡屡拿一件,与后搁回,拿3次:(1)0576.0310098232=⨯⨯=P ; (2)0588.010098133=-=P ;屡屡拿一件,与后不搁回,拿3次:(1)0588.03989910097982=⨯⨯⨯⨯⨯=P ; (2)0594.098991009697981=⨯⨯⨯⨯-=P 9,,2,1,0 中任性选出3个分歧的数字,试供下列事变的概率: {}501与三个数字中不含=A ,{}502或三个数字中不含=A . 解:157)(310381==C C A P ;15142)(31038392=-=C C C A P 或者15141)(310182=-=C C A P 9,,2,1,0 中任性选出4个分歧的数字,估计它们能组成一个4位奇数的概率. 解:9041454102839=-=P P P P 14.一个宿舍中住有6位共教,估计下列事变的概率:(1)6人中起码有1人死日正在10月份;(2)6人中恰有4人死日正在10月份;(3)6人中恰有4人死日正在共一月份;解:(1)41.01211166=-= P ; (2)00061.012116246=⨯= C P ;(3)0073.012116246112== C C P 15.从一副扑克牌(52弛)任与3弛(不沉复),估计与出的3弛牌中起码有2弛花色相共的概率. 解:602.03521392131431314=+= C C C C C C P 或者602.0135211311311334=-= C C C C C P1.假设一批产品中一、二、三等品各占60%,30%、10%,从中任与一件,截止不是三等品,供与到的是一等品的概率.解:令=i A “与到的是i 等品”,3,2,1=i 329.06.0)()()()()(3133131====A P A P A P A A P A A P . 2.设10件产品中有4件分歧格品,从中任与2件,已知所与2件产品中有1件分歧格品,供另一件也是分歧格品的概率.解:令=A “二件中起码有一件分歧格”,=B “二件皆分歧格”511)(1)()()()|(2102621024=-=-==C C C C A P B P A P AB P A B P 3.为了预防不料,正在矿内共时拆有二种报警系统I 战II.二种报警系统单独使用时,系统I 战II 灵验的概率分别0.92战0.93,正在系统I 得灵的条件下,系统II 仍灵验的概率为0.85,供(1) 二种报警系统I 战II 皆灵验的概率;(2) 系统II 得灵而系统I 灵验的概率;(3) 正在系统II 得灵的条件下,系统I 仍灵验的概率.解:令=A “系统(Ⅰ)灵验”,=B “系统(Ⅱ)灵验”则85.0)|(,93.0)(,92.0)(===A B P B P A P (1))()()()(B A P B P B A B P AB P -=-=862.085.0)92.01(93.0)|()()(=⨯--=-=A B P A P B P (2)058.0862.092.0)()()()(=-=-=-=AB P A P AB A P A B P (3)8286.093.01058.0)()()|(=-== B P B A P B A P4. 设1)(0<<A P ,道明事变A 与B 独力的充要条件是 证:⇒:A 与B 独力,A ∴与B 也独力.)()|(),()|(B P A B P B P A B P ==∴)|()|(A B P A B P =∴⇐: 1)(01)(0<<∴<<A P A P 又)()()|(,)()()|(A P B A P A B P A P AB P A B P == 而由题设)()()()()|()|(A P B A P A P AB P A B P A B P =∴=即)]()()[()()](1[AB P B P A P AB P A P -=-)()()(B P A P AB P =∴,故A 与B 独力.5. 设事变A 与B 相互独力,二个事变惟有A 爆收的概率与惟有B 爆收的概率皆是41,供)(A P 战)(B P . 解:41)()(==B A P B A P ,又 A 与B 独力∴41)()](1[)()()(=-==B P A P B P A P B A P 41)](1)[()()()(=-==B P A P B P A P B A P 41)()(),()(2=-=∴A P A P B P A P 即21)()(==B P A P . 6. 道明 若)(A P >0,)(B P >0,则有(1) 当A 与B 独力时,A 与B 相容;(2) 当A 与B 不相容时,A 与B 不独力.道明:0)(,0)(>>B P A P (1)果为A 与B 独力,所以0)()()(>=B P A P AB P ,A 与B 相容.(2)果为0)(=AB P ,而0)()(>B P A P ,)()()(B P A P AB P ≠∴,A 与B 不独力.7. 已知事变C B A ,,相互独力,供证B A 与C 也独力. 道明:果为A 、B 、C 相互独力,∴)(])[(BC AC P C B A P =)()()()]()()([)()()()()()()()()()(C P B A P C P AB P B P A P C P B P A P C P B P C P A P ABC P BC P AC P =-+=-+=-+=B A ∴与C 独力.8. 甲、乙、丙三机床独力处事,正在共一段时间内它们不需要工人照应的概率分别为0.7,0.8战0.9,供正在那段时间内,最多惟有一台机床需要工人照应的概率.解:令321,,A A A 分别表示甲、乙、丙三机床不需要工人照应,那么9.0)(,8.0)(,7.0)(321===A P A P A P 令B 表示最多有一台机床需要工人照应,那么)()(321321321321A A A A A A A A A A A A P B P +++=902.01.08.07.08.02.07.09.08.03.09.08.07.0)()()()(321321321321=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=A A A P A A A P A A A P A A A P 9. 如果形成系统的每个元件能平常处事的概率为)10(<<p p ,(称为元件的稳当性),假设各元件是可平常处事是相互独力的,估计底下各系统的稳当性.解:令A 常处事”i A n i 2,,2,1 =n i A A A P A P 221,,,,)( =相互独力.那么[])()()(22121n n n n A A A A A A P A P +++=][[])2(2)()()()()()(22121122122121n n n n ni i n n i i n i i n n n n n P P P P A P A P A P A A A P A A A P A A A P -=-=-+=-+=∏∏∏=+==++ )]())([()(22211n n n n A A A A A A P B P +⨯⨯++=++ n nni n i i n i i n i ni i n i P P P P A P A P A P A P A A P )2(]2[)]()()()([)(1211-=-=-+=+=∏∏∏==++=+注:利用第7题的要领不妨证 明)(i n i A A ++与)(j n j A A ++j i ≠时独力.系统I 系统II10. 10弛奖券中含有4弛中奖的奖券,每人买买1弛,供(1) 前三人中恰有一人中奖的概率;(2) 第二人中奖的概率.解:令=i A “第i 部分中奖”,3,2,1=i (1))(321321321A A A A A A A A A P ++)()()(321321321A A A P A A A P A A A P ++=)|()|()()|()|()()|()|()(213121213121213121A A A P A A P A P A A A P A A P A P A A A P A A P A P ++=21859410684951068596104=⨯⨯+⨯⨯+⨯⨯=或者213102614==C C C P (2))|()()|()()(1211212A A P A P A A P A P A P +=529410693104=⨯+⨯= 11. 正在肝癌诊疗中,有一种甲胎蛋黑法,用那种要领不妨查看出95%的真正在患者,然而也有大概将10%的人误诊.根据往常的记录,每10 000人中有4人患有肝癌,试供:(1)某人经此考验法诊疗患有肝癌的概率;(2)已知某人经此考验法考验患有肝癌,而他真真是肝癌患者的概率.解:令=B “被考验者患有肝癌”,=A “用该考验法诊疗被考验者患有肝癌”那么,0004.0)(,10.0)|(,95.0)|(===B P B A P B A P (1))|()()|()()(B A P B P B A P B P A P +=10034.01.09996.095.00004.0=⨯+⨯=(2))|()()|()()|()()|(B A P B P B A P B P B A P B P A B P +=0038.01.09996.095.00004.095.00004.0=⨯+⨯⨯= 12. 一大批产品的劣量品率为30%,屡屡任与1件,连绝抽与5次,估计下列事变的概率:(1)与到的5件产品中恰有2件是劣量品;(2) 正在与到的5件产品中已创造有1件是劣量品,那5件中恰有2件是劣量品.解:令=i B “5件中有i 件劣量品”,5,4,3,2,1,0=i (1)3087.0)7.0()3.0()(32252== C B P (2))()()|()|(00202512B P B B P B B P B B P i i === 371.0)7.0(13087.0)(1)(502=-=-= B P B P 13. 每箱产品有10件,其次品数从0到2是等大概的.启箱考验时,从中任与1件,如果考验是次品,则认为该箱产品分歧格而拒支.假设由于考验有误,1件正品被误检是次品的概率是2%,1件次品被误判是正品的概率是5%,试估计:(1)抽与的1件产品为正品的概率;(2)该箱产品通过查支的概率.解:令=A “抽与一件产品为正品”=i A “箱中有i 件次品”,2,1,0=i =B “该箱产品通过查支”(1)9.0101031)|()()(2020=-⨯==∑∑==i i i i i A A P A P A P (2))|()()|()()(A B P A P A B P A P B P +=887.005.01.098.09.0=⨯+⨯=14. 假设一厂家死产的仪器,以概率0.70不妨间接出厂,以概率0.30需进一步调试,经调试后以概率0.80不妨出厂,并以概率0.20定为分歧格品不克不迭出厂.现该厂新死产了)2(≥n n 台仪器(假设各台仪器的死产历程相互独力),供:(1)局部能出厂的概率;(2)其中恰有2件不克不迭出厂的概率;(3)其中起码有2件不克不迭出厂的概率.解:令=A “仪器需进一步调试”;=B “仪器能出厂”=A “仪器能间接出厂”;=AB “仪器经调试后能出厂”隐然AB A B +=,那么8.0)|(,3.0)(==A B P A P 24.08.03.0)|())(=⨯==A B P PA AB P 所以94.024.07.0)()()(=+=+=AB P A P B P 令=i B “n 件中恰有i 件仪器能出厂”,n i ,,1,0 =(1)nn B P )94.0()(=(2)2222222)06.0()94.0()06.0()94.0()(----==n n n n n n C C B P (3)n n nn n n k k C B P B P B P )94.0()94.0(06.01)()(1)(11120--=--=---=∑15. 举止一系列独力考查,屡屡考查乐成的概率均为p ,试供以下事变的概率:(1)直到第r 次才乐成;(2)第r 次乐成之前恰波折k 次;(3)正在n 次中博得)1(n r r ≤≤次乐成;(4)直到第n 次才博得)1(n r r ≤≤次乐成.解:(1)1)1(--=r p p P (2)k r r k r p p C P )1(11-=--+(3)r n r r n p p C P --=)1((4)r n r r n p p C P ----=)1(11 16. 对于飞机举止3次独力射打,第一次射打掷中率为0.4,第二次为0.5,第三次为0.7. 打中飞机一次而飞机被打降的概率为0.2,打中飞机二次而飞机被打降的概率为0.6,若被打中三次,则飞机必被打降.供射打三次飞机已被打降的概率.解:令=i A “恰有i 次打中飞机”,3,2,1,0=i =B “飞机被打降”隐然:09.0)7.01)(5.01)(4.01()(0=---=A P 36.07.0)5.01()4.01()7.01(5.0)4.01()7.01()5.01(4.0)(1=⨯-⨯-+-⨯⨯-+-⨯-⨯=A P 41.07.05.0)4.01(7.0)5.01(4.0)7.01(5.04.0)(2=⨯⨯-+⨯-⨯+-⨯⨯=A P 14.07.05.04.0)(3=⨯⨯=A P 而0)|(0=A B P ,2.0)|(1=A B P ,6.0)|(2=A B P ,1)|(3=A B P 所以458.0)|()()(30==∑=i i i A B P A P B P ;542.0458.01)(1)(=-=-=B P B P1. 设X 为随机变量,且k k X P 21)(==( ,2,1=k ), 则 (1) 推断上头的式子是可为X 的概率分散;(2) 假如,试供)为偶数X P (战)5(≥X P .解:令 ,2,1,21)(====k p k XP kk (1)隐然10≤≤k p ,且1121212111=-==∑∑∞=∞=k k k k p 所以,2,1,21)(===k k X P k 为一致率分散.(2)X P (为奇数31121)41411212=-===∑∑∞=∞=k k k k p 161121)5(2121555=-===≥∑∑∞=∞=k k k k p X Pλλ-==e k C k X P k!)(( ,2,1=k ), 且0>λ,供常数C . 解:1!1=-∞=∑λλe k c k k ,而1!0=-∞=∑λλe k k k 1!010=⎥⎦⎤⎢⎣⎡-∴-λλe c ,即1)1(---=λe c)10(<<p p ,不竭举止沉复考查,直到尾次乐成为止.用随机变量X 表示考查的次数,供X 的概率分散.解: ,2,1,)1()(1=-==-k p p k X P k4.设自动死产线正在安排以来出现成品的概率为p=0.1,当死产历程中出现成品时坐时举止安排,X 代表正在二次安排之间死产的合格品数,试供(1)X 的概率分散; (2))5(≥X P .解:(1) ,2,1,0,1.0)9.0()1()(=⨯=-==k p p k X P k k (2)555)9.0(1.0)9.0()()5(=⨯===≥∑∑∞=∞=k k k k X P X P5.一弛考卷上有5讲采用题,每讲题列出4个大概问案,其中有1个问案是精确的.供某教死靠预测能问对于起码4讲题的概率是几?解:果为教死靠预测问对于每讲题的概率为41=p ,所以那是一个5=n ,41=p 的独力沉复考查.641)43()41(43)41()4(0555445=+⨯=≥C C XP6.为了包管设备平常处事,需要配备适合数量的维建人员.根据体味每台设备爆收障碍的概率为0.01,各台设备处事情况相互独力.(1)若由1人控制维建20台设备,供设备爆收障碍后不克不迭即时维建的概率;(2)设有设备100台,1台爆收障碍由1人处理,问起码需配备几维建人员,才搞包管设备爆收障碍而不克不迭即时维建的概率不超出0.01?解:(1)0175.0)99.0(01.020)99.0(11920≈⨯⨯--(按Poisson (泊紧)分散近似)(2)λ==⨯==101.0100,100np n (按Poisson (泊紧)分散近似)01.0!1)99.0()01.0()1(100111001100100≤⨯≈=+≥∑∑+=-+=-N k k N k kk k k e CN X P 查表得4=NX遵循参数为λ的Poisson(泊紧)分散,且21)0(==X P ,供(1)λ; (2))1(>X P . 解:2ln ,21!0)0(0=∴===-λλλe X P )]1()0([1)1(1)1(=+=-=≤-=>X P X P X P X P )2ln 1(21]2ln 2121[1-=+-=8.设书籍籍上每页的印刷过得的个数X 遵循Poisson(泊紧)分散.经统计收当前某原书籍上,有一个印刷过得与有二个印刷过得的页数相共,供任性考验4页,每页上皆不印刷过得的概率.解:)2()1(===X P X P ,即2,!2!121==--λλλλλe e20-==∴e X P )(842)(--==∴e e P9.正在少度为的时间隔断内,某慢救核心支到慢迫呼救的次数遵循参数为的Poisson 分散,而与时间隔断的起面无关(时间以小时计),供(1)某一天从中午12时至下午3时不支到慢迫呼救的概率;(2)某一天从中午12时至下午5时支到1次慢迫呼救的概率;9.正在少度为t 的时间隔断内,某慢救核心支到慢迫呼救的次数X 遵循参数为2t 的Poisson(泊紧)分散,而与时间隔断的起面无关(时间以小时计). 供(1)某一天从中午12时至下午3时不支到慢迫呼救的概率;(2)某一天从中午12时至下午5时支到1次慢迫呼救的概率;解:(1)23)0(23,3-====e X P t λ(2)251)0(1)1(25,5--==-=≥==e X P X P t λX试供(1)a ; (2)12-=X Y 的概率分散.解:(1)12312=+++++a a a a a 101=∴a .(2)X的概率稀度直线如图1.3.8所示.试供:((3)2(<-X P ⎪⎪⎪⎩⎪⎪⎪⎨⎧∈+-=其它,0)3,0[,216121)(x x x f (3)1211)2161()2121()22012=+-++=≤<-⎰⎰-dx x dx x X P ( X的概率稀度为试决定常数a 并供)6(π>X P .解:令1)(=⎰+∞∞-dx x f ,即1sin 0=⎰dx x a 1cos 0=-∴ax ,即2,0cos π==a a 23|cos sin )6(2626=-==>⎰πππππx xdx X P xx e+-2形成概率稀度函数?解:令 12=⎰+∞∞-+-dx ce x x 即141)21(2=⎰+∞∞---dx e ec x 即141=πce411-=∴e c π),(~2σμN X ,其概率稀度函数为644261)(+--=x x e x f π(+∞<<∞-x )试供2,σμ;若已知⎰⎰∞-+∞=C Cdx x f dx x f )()(,供C .解:222)3(2)2(64432161)(--+--==x x x eex f ππ2=∴μ ,32=σ若⎰⎰∞-+∞=ccdx x f dx x f )()(,由正态分散的对于称性可知2==μc .X的概率稀度为以Y 表示对于X 的三次独力沉复考查中“21≤X ”出现的次数,试供概率)2(=Y P .解:412)21(21==≤⎰xdx XP 649)43()41()2(223===C Y P . X遵循[1,5]上的匀称分散,试供)(21x X x P <<. 如果 (1)5121<<<x x ; (2)2151x x <<<. 解:X 的概率稀度为⎪⎩⎪⎨⎧≤≤=其他,051,41)(x x f (1)⎰-==<<21221)1(4141)(x x dx x X x P (2)⎰-==<<51211)5(4141)(x x dx x X x P X(以分计)遵循51=λ的指数分散.某主瞅等待服务,若超出10分钟,他便离启.他一个月要来等待服务5次,以Y 表示一个月内他已等到服务而离启的次数,试供Y 的概率分散战)1(≥Y P .解:21051]1[1)10(1)10(-⨯-=--=<-=≥e e X P X P 5,4,3,2,1,0,)1()()(5225=-==∴---k e e C k Y P k k k5167.0)1(1)1(52≈--=≥-e Y PX的概率分散为2.0)1(==X P ,3.0)2(==X P ,5.0)3(==X P ,试供X 的分散函数;)25.0(≤≤X P ;绘出)(x F 的直线.解:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=3,132,5.021,2.01,0)(x x x x x F ; 5.0)25.0(=≤≤X P )(x F 直线:2.试供:)1|2≠X .(2 3.从家到书籍院的途中有3个接通岗,假设正在各个接通岗逢到黑灯的概率是相互独力的,且概率均是0.4,设X 为途中逢到黑灯的次数,试供(1)X 的概率分散;(2)X 的分散函数.解:(1)3,2,1,0,)3()2()(33===-k C k X P k k k 列成表格(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=3,132,12511721,1258110,125270,0)(x x x x x x F X的分散函数,并绘出)(x F 的直线.解:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤++-<≤-++-<=313041211210141214110)(22x x x x x x x x x F5. 设连绝型随机变量X 的分散函数为试供:(1)B A ,的值;(2))11(<<-X P ;(3)概率稀度函数)(x f .解:(1)11)(lim )(2=∴=+=+∞-+∞→A Be A F x x 又10)0()(lim 20-=-=∴==+-→+A B F Be A x x (2)21)1()1()11(--=--=<<-e F F X P (3)⎩⎨⎧≤>==-0,0,2)(')(2x x e x F x f x 6. 设X 为连绝型随机变量,其分散函数为试决定)(x F 中的d c b a ,,,的值.解: 10)(=∴=-∞a F 又11)(=∴=+∞d F 又10)1ln (lim 1-=∴==++-→c a cx x bx x 又111)1ln (lim =+-∴==+--→e be d x x bx ex 即1=bX的概率稀度函数为)1()(2x a x f +=π,试决定a 的值并供)(x F 战)1(<X P .解:1)1(2=+⎰+∞∞-dx x aπ 即 11|arctan =∴=∞+∞-a x aπ+∞<<∞-+=+=⎰∞-x x dt t a x F x,arctan 121)1()(2ππ5.0)]1arctan(121[)1arctan 121()1()1()1|(|=-+-+=--=<ππF F X Pt (年)的时间隔断内爆收天震的次数)(t N 遵循参数为1.0=λ的Poisson(泊紧)分散,X 表示连绝二次天震之间相隔的时间(单位:年),试供:(1)道明X 遵循指数分散并供出X 的分散函数; (2)以后3年内再次爆收天震的概率;(3)以后3年到5年内再次爆收天震的概率.解:(1) 当0≥t 时,t e t N P t X P 1.0)0)(()(-===>t e t X P t X P t F 1.01)(1)()(--=>-=≤=∴当0<t 时,0)(=t F ⎩⎨⎧<≥-=∴-01)(1.0x x e x F xX 遵循指数分散(1.0=λ)(2)26.01)3(31.0≈-=⨯-e F (3)13.0)3()5(≈-F F 9. 设)16,1(~-N X ,试估计(1))44.2(<X P ;(2))5.1(->X P ;(3))4(<X P ;(4))11(>-X P .解:(1)8051.0)444.3()4)1(44.2()44.2(=Φ=--Φ=< X P (2))5.1(1)5.1(-≤-=->X P X P 5498.0)81(1)415.1(1=-Φ-=+-Φ-= (3))414()414()4|(|+-Φ-+Φ=<X P )43()45(-Φ-Φ=6678.01)43()45(=-Φ+Φ= (4)[])2()0()2()0()1|1(|>+<=><=>-X P X P X X P X P )412(1)410(+Φ-++Φ=8253.0)43(1)41(=Φ-+Φ=X近似遵循正态分散)10,70(2N ,第100名的结果为60分,问第20名的结果约为几分?解:10020)60|(=≥≥X x X P 而[])60()()60()60()()60|(≥≥=≥≥≥=≥≥X P x X P X P X x X P X x X P 又8413.0)1(1070601)60(=Φ=⎪⎭⎫⎝⎛-Φ-=≥ X P 16826.08413.02.0)(=⨯=≥∴x X P 即16826.0)1(10701)(=Φ=⎪⎭⎫ ⎝⎛-Φ-=≥x x X P 83174.01070=⎪⎭⎫⎝⎛-Φ∴x ,96.01070≈-x ,6.79≈x 11. 设随机变量X 战Y 均遵循正态分散,)4,(~2μN X ,)5,(~2μN Y ,而)4(1-≤=μX P p ,)5(2+≥=μY P p ,试道明 21p p =. 道明:)1(44)4(1-Φ=⎪⎭⎫⎝⎛--Φ=-≤=μμμX P p )1()1(1551)5(2-Φ=Φ-=⎪⎭⎫⎝⎛-+Φ-=+≥=μμμY P p 21p p =∴.12. 设随机变量X 遵循[a,b]上的匀称分散,令d cX Y +=()0≠c ,试供随机变量Y 的稀度函数.解:⎪⎩⎪⎨⎧≤-≤⋅⎪⎭⎫ ⎝⎛-=其它,0,||1)(b cdy a c c d y f y f X Y 当0>c 时,⎪⎩⎪⎨⎧+≤≤+-=其他,0,)(1)(d cb y d a c a b c y f Y 当0<c 时,⎪⎩⎪⎨⎧+≤≤+--=其他,0,)(1)(d ca y d b c a b c y f Y。
概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计课后习题参考题答案高等教育出版社

概率论与数理统计课后习题参考答案高等教育出版社习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
福州大学概率论与数理统计课后习题答案高等教育出版社

福州大学概率论与数理统计课后习题答案高等教育出版社习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。
2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。
3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。
概率论与数理统计课后习题参考问题详解高等教育出版社

概率论与数理统计课后习题参考答案高等教育习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
概率论与数理统计课后题参考答案

第一章 基本概念1、试对下列随机试验各写出一个样本空间: (1)掷一颗骰子;(2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球; (3)10只产品中有3只是次品,每次从中任取一只(取出后不放回),直到将3只次品全部取出,记录抽取的次数;(4)对某工厂生产的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如果查出2件次品就停止检查,或者查满4件也就停止检查,记录检查结果。
解:(1)}6,5,4,3,2,1{=Ω(2))}5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1{(=Ω5个球中选3各球进行组合,有1035=C 种。
(3)}109876543{,,,,,,,=Ω最少抽取的次数是每次取出的都是次品;最多抽取的次数是把10只产品全部取出,总能抽出3个是次品。
(4)用数字1代表正品,数字0代表次品;样本空间包括查出2件是次品和查满4件产品这两种情况。
)}1,1,1,0(),1,1,1,1(),1,0,1,1(),1,1,0,1(),0,1,1,1(),0,0,1,1(),0,1,0,1(),0,1,1,0(),0,0,1(),0,1,0(),0,0{(=Ω2、工厂对一批产品作出厂前的最后检查,用抽样检查方法,约定,从这批产品中任意取出4件产品来做检查,若4件产品全合格就允许这批产品正常出厂;若有1件次品就再作进一步检查;若有2件次品则将这批产品降级后出厂;若有2件以上次品就不允许出厂。
试写出这一试验的样本空间,并将“正常出厂”、“再作检查”、“降级出厂”、“不予出厂”这4个事件用样本空间的子集表示。
解:用数字1代表正品,数字0代表次品设=“正常出厂”; =“再作检查”; =“降级出厂”;D =“不予出厂”)}1,1,1,1{(=A)}0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0{(=B)}0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0{(=C )}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{(=D)}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0(),0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0(),0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0(),1,1,1,1{(=⋃⋃⋃=ΩDC B A3、设A 、B 、C 是三个事件,试用A 、B 、C 的运算关系表示下列事件: (1)A 与B 都发生,但C 不发生;(2)A 发生,但B 与C 可能发生也可能不发生; (3)这三个事件都发生; (4)这三个事件都不发生; (5)这三个事件中至少有一个发生; (6)这三个事件中最多有一个发生; (7)这三个事件中至少有两个发生; (8)这三个事件中最多有两个发生; (9)这三个事件中恰有一个发生; (10)这三个事件中恰有两个发生。
概率论与数理统计课后习题答案

概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。
本文档将提供《概率论与数理统计》课后习题的详细答案。
2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。
b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。
1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。
【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。
所以,P(A ∩ B) = 【答案】0.2。
b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。
【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。
所以,P(B) = 【答案】1.67。
第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。
b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州大学概率论与数理统计课后习题答案高等教育出版社习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A ,313221A A A A A A ++.解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。
5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -.解:如图:BCA CBC AB A B BCA CB AC AB AC B C C AB C AB C B A C B A BC A ABC C AB C B A C B A C B A +=+=++=-+=+++++++=++;;6. 若事件C B A ,,满足C B C A +=+,试问B A =是否成立?举例说明。
解:不一定成立。
例如:{}5,4,3=A ,{}3=B ,{}5,4=C ,那么,C B C A +=+,但B A ≠。
7. 对于事件C B A ,,,试问C B A C B A +-=--)()(是否成立?举例说明。
解:不一定成立。
例如:{}5,4,3=A ,{}6,5,4=B ,{}7,6=C , 那么{}3)(=--C B A ,但是{}7,6,3)(=+-C B A 。
8. 设31)(=A P ,21)(=B P ,试就以下三种情况分别求)(A B P :(1)Φ=AB , (2)B A ⊂, (3)81)(=AB P .解:(1)21)()()()(=-=-=AB P B P AB B P A B P ; (2)61)()()()(=-=-=A P B P A B P A B P ; (3)838121)()()()(=-=-=-=AB P B P AB B P A B P 。
CB A CB A CB A ABCBCA CAB CB A ΩABCCB A9. 已知41)()()(===C P B P A P ,161)()(==BC P AC P ,0)(=AB P 求事件C B A ,,全不发生的概率。
解:())(1)(C B A P C B A P C B A P ++-=++==[])()()()()()()(1ABC P BC P AC P AB P C P B P A P +---++-83016116104141411=⎥⎦⎤⎢⎣⎡+---++-=10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。
一个人骑车经过三个路口,试求下列事件的概率:=A “三个都是红灯”=“全红”; =B “全绿”; =C “全黄”; =D “无红”; =E “无绿”; =F “三次颜色相同”; =G“颜色全不相同”; =H “颜色不全相同”。
解:271333111)()()(=⨯⨯⨯⨯===C P B P A P ;278333222)()(=⨯⨯⨯⨯==E P D P ; 91271271271)(=++=F P ;92333!3)(=⨯⨯=G P ;98911)(1)(=-=-=F P H P .11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求:(1) 取出的3件中恰有1件是次品的概率; (2) 取出的3件中至少有1件是次品的概率。
解:一次拿3件:(1)0588.0310012298==C C C P ; (2)0594.031001982229812=+=C C C C C P ; 每次拿一件,取后放回,拿3次:(1)0576.0310098232=⨯⨯=P ; (2)0588.010098133=-=P ; 每次拿一件,取后不放回,拿3次: (1)0588.03989910097982=⨯⨯⨯⨯⨯=P ;(2)0594.098991009697981=⨯⨯⨯⨯-=P 12. 从9,,2,1,0 中任意选出3个不同的数字,试求下列事件的概率:{}501与三个数字中不含=A ,{}502或三个数字中不含=A 。
解:157)(310381==C C A P ;15142)(31038392=-=C C C A P 或15141)(310182=-=C C A P 13. 从9,,2,1,0 中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。
解:9041454102839=-=P P P P 14. 一个宿舍中住有6位同学,计算下列事件的概率: (1)6人中至少有1人生日在10月份; (2)6人中恰有4人生日在10月份; (3)6人中恰有4人生日在同一月份;解:(1)41.01211166=-= P ; (2)00061.012116246=⨯= C P ; (3)0073.012116246112== C C P15. 从一副扑克牌(52张)任取3张(不重复),计算取出的3张牌中至少有2张花色相同的概率。
解:602.03521392131431314=+= C C C C C C P 或602.0135211311311334=-= C C C C C P习题1.2解答1. 假设一批产品中一、二、三等品各占60%,30%、10%,从中任取一件,结果不是三等品,求取到的是一等品的概率。
解:令=i A “取到的是i 等品”,3,2,1=i329.06.0)()()()()(3133131====A P A P A P A A P A A P 。
2. 设10件产品中有4件不合格品,从中任取2件,已知所取2件产品中有1件不合格品,求另一件也是不合格品的概率。
解:令=A “两件中至少有一件不合格”,=B “两件都不合格”511)(1)()()()|(2102621024=-=-==C C C C A P B P A P AB P A B P 3. 为了防止意外,在矿内同时装有两种报警系统I 和II 。
两种报警系统单独使用时,系统I 和II 有效的概率分别0.92和0.93,在系统I 失灵的条件下,系统II 仍有效的概率为0.85,求(1) 两种报警系统I 和II 都有效的概率; (2) 系统II 失灵而系统I 有效的概率; (3) 在系统II 失灵的条件下,系统I 仍有效的概率。
解:令=A “系统(Ⅰ)有效” ,=B “系统(Ⅱ)有效” 则85.0)|(,93.0)(,92.0)(===A B P B P A P (1))()()()(B A P B P B A B P AB P -=-=862.085.0)92.01(93.0)|()()(=⨯--=-=A B P A P B P (2)058.0862.092.0)()()()(=-=-=-=AB P A P AB A P A B P (3)8286.093.01058.0)()()|(=-==B P B A P B A P4. 设1)(0<<A P ,证明事件A 与B 独立的充要条件是)|()|(A B P A B P =证:⇒:A 与B 独立,A ∴与B 也独立。
)()|(),()|(B P A B P B P A B P ==∴ )|()|(A B P A B P =∴⇐: 1)(01)(0<<∴<<A P A P又)()()|(,)()()|(A P B A P A B P A P AB P A B P == 而由题设)()()()()|()|(A P B A P A P AB P A B P A B P =∴=即)]()()[()()](1[AB P B P A P AB P A P -=- )()()(B P A P AB P =∴,故A 与B 独立。
5. 设事件A 与B 相互独立,两个事件只有A 发生的概率与只有B 发生的概率都是41,求)(A P 和)(B P .解:41)()(==B A P B A P ,又 A 与B 独立 ∴41)()](1[)()()(=-==B P A P B P A P B A P41)](1)[()()()(=-==B P A P B P A P B A P41)()(),()(2=-=∴A P A P B P A P即21)()(==B P A P 。
6. 证明 若)(A P >0,)(B P >0,则有(1) 当A 与B 独立时,A 与B 相容; (2) 当A 与B 不相容时,A 与B 不独立。