概率论与数理统计答案,祝东进
概率论与数理统计课后习题答案(非常全很详细)

P(B) P(A)P(B A) P(A)P(B A)
第 5 页 共 101 页
5
0.2 0.1
1 0.02702
0.8 0.9 0.2 0.1 37
即考试及格的学生中不努力学习的学生仅占 2.702%
(2) P(A B) P(AB)
P(A)P(B A)
P(B) P(A)P(B A) P(A)P(B A)
可以看出,用第二种方法简便得多. (3) 由于是有放回的抽取,每次都有 N 种取法,故所有可能的取法总数为 Nn 种,n
次抽取中有
m
次为正品的组合数为
C
m n
种,对于固定的一种正、次品的抽取次序,
m 次取得正品,都有 M 种取法,共有 Mm 种取法,nm 次取得次品,每次都有 NM 种取法,共有(NM)nm 种取法,故
【解】 P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)
111 1 3
=+ + =
4 4 3 12 4
7. 从 52 张扑克牌中任意取出 13 张,问有 5 张黑桃,3 张红心,3 张方块,2 张梅花的概率 是多少?
【解】
p=
C153C133C133C123
P( A1
B)
P( A1B) P(B)
P(B
A 1
)
P(
A1
)
2
P(B Ai )P( Ai )
i0
2 / 31/ 3
1
1/ 31/ 3 2 / 31/ 3 11/ 3 3
28. 某工厂生产的产品中 96%是合格品,检查产品时,一个合格品被误认为是次品的概率
为 0.02,一个次品被误认为是合格品的概率为 0.05,求在被检查后认为是合格品产品确
概率论与数理统计习题答案1-19章

1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则(1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==A PB P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+ 0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度. (3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx.7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,1)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上 的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan(),(y C x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰0030006),()(3032y y e x x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xy xy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki kn n k i n in q p C C2121)( 由knm ki ik n k m C C C +=-=∑, 有kn n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z z z z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i个并联组才停止工作,所以有)3,2,1(),max(21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为X1 2 3 …… n ……p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xpp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 4202===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0, 0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元, 调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni i n i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯=故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理四、 设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x ey x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .三、 台机床分别加工生产轴与轴衬.设随机变量X (mm)表示轴的直径,随机变量Y (mm)表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴衬的内径与轴的直径之差在3~1(mm)之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率. 解:由题设,知随机变量X 与Y 是独立的,且)3.0,50(~2N X ,)4.0,52(~2N Y .设X Y Z -=根据独立正态随机变量线性组合的分布,我们有)5.0,2()3.0)1(4.0,50)1(52(~2222N N Z =⨯-+⨯-+.根据题目假设,我们知道当31≤-=≤X Y Z 时,轴与轴衬可以配套使用.于是所求概率为1)2(2)2()2()25.022()5.0235.025.021()31(-Φ=-Φ-Φ=≤-≤-=-≤-≤-=≤≤Z P Z P Z P9544.019772.02=-⨯=.四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求: (1) 任一时刻有70至86台车床在工作的概率;。
概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。
2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。
3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。
大学_概率论与数理统计(祝东进郭大伟著)课后答案

概率论与数理统计(祝东进郭大伟著)课后答案概率论与数理统计(祝东进郭大伟著)内容简介第1章随机事件和概率1.1 随机事件1.2 随机事件的频率与概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性习题1第2章随机变量及其数字特征2.1 随机变量及其分布2.2 随机变量的数字特征2.3 常用概率分布习题2第3章随机向量的分布及数字特征3.1 随机向量的分布3.2 随机变量的`独立性3.3 随机向量函数的分布与数学期望 3.4 随机向量的数字特征习题3第4章极限定理4.1 大数定律4.2 中心极限定理习题4第5章数理统计的基本概念5.1 总体与样本5.2 经验分布函数与顺序统计量5.3 样本分布的数字特征5.4 常用分布及分位数5.5 常用抽样分布习题5第6章参数估计6.1 点估计6.2 区间估计习题6第7章假设检验7.1 假设检验的基本概念7.2 单个正态总体的假设检验7.3 两个正态总体的假设检验__7.4 非正态总体参数及分布律的假设检验习题7第8章方差分析与线性回归分析8.1 单因素方差分析8.2 一元线性回归分析习题8第9章 Excel统计分析9.1 利用随机数发生器产生随机数9.2 常见的几个分布的概率计算9.3 常用统计量的计算9.4 假设检验9.5 方差分析9.6 回归分析附录1 部分习题参考答案附录2 几个常用函数的数值表及相关系数显著性检验表概率论与数理统计(祝东进郭大伟著)目录《概率论与数理统计》是高等学校概率统计课的教材,内容包括概率论的基本概念、随机变量及其概率分布、数字特征、大数定律与中心极限定理、统计量及其概率分布、参数估计和假设检验、回归分析、方差分析以及用EXcel进行概率统计计算。
《概率论与数理统计》论述严谨,通俗易懂,书中结合实际给出了大量例题和习题,特别是用Excel进行概率统计分析提供了简单实用的计算工具。
《概率论与数理统计》适合大学理工科各专业以及经济管理类专业学生使用,既可作为本科生同步学习参考书,又可作为考研复习指导书。
概率论与数理统计答案-祝东进

概率论与数理统计答案-祝东进习题 1.11. 写出下列随机试验的样本空间:(1) 掷两颗骰子,观察两颗骰子出现的点数.(2) 从正整数中任取一个数,观察取出数的个位数.(3) 连续抛一枚硬币,直到出现正面时为止.(4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或检查四个产品就停止检查,记录检查的结果.(5) 在单位圆内任意取一点,记录它的坐标.解:(1){(,)|1,2,,6,1,2,,6}i j i j Ω===; (2){|0,1,,9}i i Ω==; (3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反,正), … }; (4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次, 正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)};(5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤.2. 在掷两颗骰子的试验中写出下列事件的集合表示:(1) A =”出现的点数之和为偶数”.(2) B =”出现的点数之和为奇数, 但没有骰子出现1点”.(3) C =”至少掷出一个2点”.(4) D =”两颗骰子出现的点数相同”.解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A ={(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=;(2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =;(3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =;(4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =.3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:(1) 事件“,,A B C 中至少有一个事件发生”.(2) 事件“,,A B C 中至少有两个事件不发生”.(3) 事件“,,A B C 中至多有一个事件不发生”.(4) 事件“,,A B C 中至少有一个事件不发生”.(5) 事件“,A B 至少有一个发生,而C 不发生”.解:(1)A B C ; (2)()()()A B A C B C 或 ()()()()A B C A B C AB C A B C ;(3)()()()()ABC A BC AB C AB C 或()()()AB AC BC ; (4)A B C ; (5)()A B C 或()()()ABC ABC ABC .4. 指出下列命题哪些成立,哪些不成立? (1) ()A B ABB =. (2) ()A B A AB =. (3) ()()A AB AB =. (4) ()A BC A B C =. (5) A B A B =. (6) ()()AB AB =∅. (7) A B ⊂等价于A B B =或AB A =或B A ⊂.(8) 若AB =∅,则A B ⊂.解:(1)正确;(2)正确;(3)正确;(4)正确;(5)错误;(6)正确;(7)正确;(8)正确.5. 在数学系的学生中任选一名学生,令事件A 表示被选学生是女生, 事件B 表示被选学生是三年级学生, 事件C 表示被选学生是运动员.(1) 叙述ABC 的意义.(2) 在什么条件下ABC A =成立?(3) 什么时候A C =成立?解: (1)被选学生是三年级男运动员;(2)因为ABC A =等价于A BC ⊂,即数学系的女生全部都是三年级运动员;(3)数学系的男生全部都是运动员,且运动员全部都是男生.6. 试用维恩图说明,当事件A ,B 互不相容,能否得出A ,B 也互不相容? 解: 不能.7. 设样本空间{}010x x Ω=≤≤, 事件{}27A x x =≤≤,{}15B x x =≤≤,试求: ,,,A B AB B A A B -.解:{}17A B x x =≤≤;{}25AB x x =≤≤;{}12B A x x -=≤<;[0,2)(5,10]A B AB ==.习题 1.2(6) 设A B ⊂,()()0.2,0.3,P A P B ==求(1)()P A B ; (2) ()P BA ;(3)()P A B -. 解: ()()0.3P A B P B ==;()()()0.1P B A P B P A =-=;()()0P A B P -=∅=.(7) 设()(),P AB P A B = 且()2,3P A =求()P B . 解:注意到()()1()1()()()P A B P A B P A B P A P B P AB ==-=---.从而由()()P AB P A B =得()()1P A P B +=.于是1()1()3P B P A =-=. (8) 设,,A B C 为三个随机事件, 且1()()(),2P A P B P C ===1()(),3P AB P BC == ()0P AC =,求()P A B C .解: 由()0P AC =知()0P ABC =. 于是由广义加法公式有()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 325236=-=. (9) 设,A B 为两个随机事件,且()0.7,()0.9P A P B ==,问:(4) 在什么条件下, ()P AB 取到最大值,最大值是多少?(5) 在什么条件下, ()P AB 取到最小值,最小值是多少?解:(1)由于()()()()P AB P A P AB P B ≤≤且.由此可见在A B ⊂条件下,()P AB 取到最大值()0.7P A =.(6) 注意到()()()()P AB P A P B P A B =+-. 因此当()1P A B =时,()P AB 取到最小值0.70.910.6+-=.思考: 有人说(2),在AB =∅时,()P AB 取到最小值0. 你能指出错误在什么 地方吗?(10) 设,A B 为两个随机事件,证明: (1) ()1()()()P AB P A P B P A B =--+. (2) 1()()()()()()P A P B P AB P A B P A P B --≤≤≤+.证明:(1)由广义加法公式可得()1()1()()()P AB P A B P A P B P A B =-=--+.(2)由(1)立得1()()()P A P B P AB --≤.其余不等式是显然的.(11)设,,A B C 为三个随机事件,证明:()()()()P AB P AC P BC P A +-≤. 证明:由广义加法公式可得()(())(()())()()()()()().P A P A B C P AB AC P AB P AC P ABC P AB P AC P BC ≥==+-≥+- (12) 设12,,,n A A A 为n 个事件,利用数学归纳法证明:(1) (次可加性) ()121()nn k k P A A A P A =≤∑.(2) ()121()(1)nn k k P A A A P A n =≥--∑.证明: (1) 当2n =时, 由广义加法公式有()21212121()()()()k k P A A P A P A P A A P A ==+-≤∑.即对2n =成立.假设对n k =成立, 于是()12112111()()()()().k k k k k k P A A A A P A A A P A P A P A P A +++≤+≤+++即对1n k =+成立. (1)得证.(2)当2n =时, 由广义加法公式有 ()12121212()()()()()1P A A P A P A P A A P A P A =+-≥+-. 即对2n =成立.假设对n k =成立, 即()121()(1)k k i i P A A A P A k =≥--∑. 于是()1211211111()()1()(1)()1().k k k k ki k i k i i P A A A A P A A A P A P A k P A P A k +++=+=≥+-≥--+-=-∑∑即对1n k =+成立. (2)得证.(13) 设12,,A A 为一列事件,且1,1,2,n n A A n +⊂=,证明:1()lim ()n n n n P A P A +∞→+∞==.证明:(利用性质6(1)的结论) 显然12,,A A 为一列事件,且1,1,2,n n A A n +⊂=,即性质6(1)的条件成立,因此1()lim ()n n n n P A P A +∞→+∞==. 于是11()1()1lim ()lim ()n n n n n n n n P A P A P A P A +∞+∞→+∞→+∞===-=-=. 习题 1.3(7) 掷两颗均匀的骰子,求下列事件概率: (1)两颗骰子的点数相同;(2)两颗骰子的点数之和为偶数;(3)一颗骰子的点数恰是另一颗骰子的点数的两倍.解:(1)16; (2) 12; (3)318. (8) 有五条线段,长度分别为1,3,5,7,9(单位cm),从这五条线段中任取三条,求所取的三条线段能拼成三角形的概率.解:由古典概型可得所求的概率为353310C =. (9) 一个小孩用13个字母:A 、A 、A 、C 、E 、H 、I 、I 、M 、M 、N 、T 、T 做组字游戏.如果字母的各种排列是随机的,问组成”MATHEMATICIAN ”一词的概率为多少?解:由古典概型可得所求的概率为3!2!2!2!13!. (10) n 个人随机地排成一列,甲、乙是其中的两个人,求甲、乙两人之间恰好有r 个人的概率, 这里0,1,,2r n =-.解:由古典概型可得所求的概率为2(1)!!2!!r n C n r r n -⋅--. (11) n 个男孩和m 个女孩(1m n ≤+)随机排成一列,求任意两个女孩都不相邻的概率.解:n 个男孩和m 个女孩(1m n ≤+)随机排成一列共有()!n m +种排法.任意两个女孩都不相邻可按如下方式进行: 先将n 个男孩排好,共有1n +个间隔,从1n +个间隔中选出m 个位置进行女生排列.因此排法总数为1!!m n C n m +.从而由古典概型可得所求的概率为1!!()!m n C n m n m ++. (12) 从n 双尺码不同的鞋子中任取2(2)r r n <只,求下列事件的概率: a) 所取的2r 只鞋子中没有两只成对的; (2) 所取的2r 只鞋子中只有两只成对的; (3) 所取的2r 只鞋子恰成r 对.解:(1)2222r r n r n C C ⋅;(2)12(1)2(1)1222r r n n r nC C C ---⋅⋅;(3)22r n r n C C .(13) 掷一枚均匀的硬币n 次,求出现的正面次数多于反面次数的概率. 解:设A 表示硬币出现的正面次数多于反面次数,B 表示硬币出现的反面次数多于正面次数,C 表示硬币出现的反面次数等于正面次数.易见 ()()()1P A P B P C ++=, ()()P A P B =.当21n m =+时,易见()0P C =,从而1()2P A =. 当2n m =时,易得21()2n nn P C C ⎛⎫= ⎪⎝⎭.从而211()122n n n P A C ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. (14) 从一个装有a 个白球,b 个黑球的袋中逐一将球不放回地随机取出,直至留在袋中的球都是同一颜色的球为止,求最后留在袋中的球都是白球的概率.解:此题设想将袋中的a 个白球和b 个黑球全部摸出,则最后一次(第a b +次)摸出白球与本题所述的事件相同.因此由抽签原理可得所求的概率为a ab +. (15) 口袋中有5个白球、3个黑球,从中任取两个,求至少取到一个白球的概率.解:所求的概率为23281C C -. (16) 某人有m 把钥匙,其中只有一把能打开门,他一把接一把地试开门,不能开门的就扔掉.求他恰好在第k 次把门打开的概率.解:所求的概率为()()1(2)(1)111(1)m m m k m m m k m -⋅--+⨯=⋅--+. (17) 任取一个正整数,求下列事件的概率:a) 该数平方的个位数是1; (2)该数立方的个位和十位都是1. 解:(1)我们知道一个数平方的个位数只与该数的个位数有关.因此我们观察取出数的个位数,其样本空间为{0,1,2,,9}Ω=.易知其是古典概型.设A 表示该数平方的个位数是1, 则{1,9}A =,于是2()10P A =. (2)一个数立方的个位和十位与该数的个位和十位有关.因此我们观察取出数的个位和十位数,其样本空间为{00,01,02,,99}Ω=,B 表示该数立方的个位和十位都是1.则{71}B =,于是1()100P B =. (18) 某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨这位数,假设拔完规定电话位数算完成一次拨号,且假设对方电话不占线,试问他拨号不超过四次就能接通电话的概率是多少?解:所求的概率为191981987141010910981098710⨯⨯⨯⨯⨯⨯+++=⨯⨯⨯⨯⨯⨯. (19) 一公司批发出售服装,每批100套.公司估计某客商欲购的那批100套服装中有4套是次品,12套是等级品,其余是优质品,客商在进货时要从中接连抽出2套做样品检查,如果在样品中发现有次品,或者2套都是等级品,客商就要退货.试求下列事件的概率:(1)样品中1套是优质品,1套是次品;(2)样品中1套是等级品,1套是次品;(3)退货;(4)该批货被接受;(5)样品中恰好有1套优质品.解:(1)样品中1套是优质品,1套是次品的概率为2100844C ⨯; (3))样品中1套是等级品,1套是次品的概率为2100124C ⨯; (4)退货的概率为229612*********C C C C ⎛⎫+- ⎪⎝⎭; (5)该批货被接受的概率为22229696121222210010010011C C C C C C C ⎡⎤⎛⎫--+-=⎢⎥ ⎪⎝⎭⎣⎦; (6)样品中恰好有1套优质品的概率为21008416C ⨯. (20) 在桥牌比赛中,把52张牌(不包括大小王)任意地分给东、南、西、北四家(每家13张牌),求下列事件的概率:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花;(2)南家及北家共有9张黑桃,东、西两家各有2张黑桃;(3) 南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃.解:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花的概率为54311313131339!13!13!13!52!13!13!13!13!C C C C ⋅或54311313131352!13!39!C C C C ; (2)南家及北家共有9张黑桃,东、西两家各有2张黑桃的概率为13!39!9!2!2!17!11!11!52!26!13!13!⋅; (3)南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃的概率为13!39!9!1!3!17!12!10!52!26!13!13!⋅.(21) 将3个球随机地放入4个杯子,求4个杯子中球的个数最大值为2的概率.解: 3个球随机地放入4个杯子共有34种放法. 4个杯子中球的个数最大值为2相当于先从3个球中任意地选出2个球作为一个整体和另外一个球放到4个杯子(注意不能同时放入同一个杯子)的放法总数为24A .于是所求的概率为2434A . (22) 设集合A 有4个元素, 集合B 有3个元素,随机地作集合A 到集合B的映射,求该映射为满射的概率.解:该映射为满射的概率为2443!3C ⋅. (23) 将m 个球随机地放入n ()n m ≤个盒子中,求下列事件的概率:(14) 每个盒子中均有球; (2)恰好有1个盒子空着的概率.解:设i A 表示第i 个盒子无球,1,2,,i n =.(6) 设A 表示每个盒子中均有球.则1212n n A A A A A A A ==. 注意到(1)()mi m n P A n -=, 1,2,,i n =,()i j mP A A n =,1i j n ≤<≤,1212()(),1,1,2,,.k mi i i k mn k P A A A i i i n k n n-=≤<<<≤=于是由广义加法公式有()112121112111()()(1)()(1)(2)1().nn n i i j n i i j nm mn nn nm mmm n k n mk P A A A P A P A A P A A A n n C C C n nn n k C n +=≤<≤--==-++---=+++-=∑∑∑从而()()112121()()11mn kn n nmk n k P A P A A A P A A A C n -=-==-=-∑. (7) 恰好有1个盒子空着可以这样理解,先从n 个盒子任意选定1个空盒,然后将m 个球随机地放入1n -个盒子,使得1n -个盒子都有球. 从而由(1)及乘法原理可知"恰好有1个盒子空着"共有2111(1)(1)n m k m nn k C n C n k --=⎡⎤----⎢⎥⎣⎦∑样本点,于是其概率为2111(1)(1)n m k m nn k m C n C n k n --=⎡⎤----⎢⎥⎣⎦∑. (24)某班有m 个同学参加面试,共有n ()n m ≤张考签,每人抽到考签用后即放回,在面试结束后,求至少有一张考签没有被抽到的概率. (8) 解:设i A 表示第i 张考签没有被抽到,1,2,,i n =.设A 表示至少有一张考签没有被抽到. 则12n A A A A =.注意到(1)()mi mn P A n -=, 1,2,,i n =,()i j mP A A n =,1i j n ≤<≤,1212()(),1,1,2,,.k mi i i k mn k P A A A i i i n k n n-=≤<<<≤=于是由广义加法公式有()112121112111()()()(1)()(1)(2)1().nn n i i j n i i j nm mn nn nm mmm n k n mk P A P A A A P A P A A P A A A n n C C C n nn n k C n +=≤<≤--===-++---=+++-=∑∑∑ (25)从n 阶行列式的一般展开式中任取一项,问这项包含主对角线元素的概率为多少?解:设i A 表示所取的项含第i 行第i 列主对角线元素,1,2,,i n =.设A 表示所取的项包含主对角线元素. 则12n A A A A =.注意到(1)!()!i n P A n -=, 1,2,,i n =, (2)!()!i j n P A A n -=,1i j n ≤<≤,1212()!(),1,1,2,,.!k i i i k n k P A A A i i i n k n n -=≤<<<≤=于是由广义加法公式有()1121211121()()()(1)()(1)!(2)!1!!!1.!nn n i i j n i i j nn nn nnk P A P A A A P A P A A P A A A n n C C C n n n k +=≤<≤===-++---=+++=∑∑∑习题 1.51. 已知111(),(|),(|)432P A P B A P A B ===,求()P B ;()P A B ;()P A B .解:注意到1()()(|),12P AB P A P B A ==故()1/121()(|)1/26P AB P B P A B ===.1()()()()3P A B P A P B P AB =+-=.1()()()6P A B P A P AB =-=.□2. 设()0.4,()0.7,P A P B ==试证:(|)0.5.P B A ≥ 证明: 因为()()()()()0.3P A B P B P AB P B P A =-≥-=, ()1()0.6P A P A =-= . 故()0.3(|)0.5.0.6()P A B P B A P A =≥=□3. 设N 件产品中有M 件不合格品,从中逐一不放回地取出两件产品,(6)已知第一次取出不合格品,求第二次也取出不合格品的概率;(7)已知所取的两件产品中有一件是不合格品,求另一件也是不合格品的概率.解:(1)设iA 表示"第i 次取出不合格品",1,2i =.于是所求的概率为211()1M P AA N -=-.(2)设A 表示所取的两件产品中有一件是不合格品, B 表示另一件也是不合格品.于是所求的概率为2222222()().()1MN M N M N N MNC C C P AB P B A C P A C C C --===--□4. 掷两颗均匀的骰子,(1)已知点数和为偶数,求点数和等于8的概率;(2) 已知点数和为奇数,求点数和大于6的概率;(3) 已知点数和大于6,求点数和为奇数的概率.解: (1)所求的概率为518; (2)所求的概率为1218; (3)所求的概率为1221. □ 5. 一个家庭中有三个小孩,已知其中一个是女孩,求至少有一个男孩的概率. 解: A 表示三个小孩中有一个是女孩, B 表示三个小孩中至少有一个是男孩, 于是所求的概率为()6/86().()7/87P AB P B A P A ===□6. 为防止意外事故,在矿井内同时安装两种警报系统A 与B ,每种系统单独使用时,其有效率A 为0.92,B 为0.93,在A 失灵条件下B有效概率为0.85.求:(1)发生事故时,这两种警报系统至少有一个有效的概率;(2)在B 失灵条件下,A 有效的概率. 解:A 表示系统A 有效, B 表示系统B 有效. 由题意知()0.92,()0.93,(|)0.85P A P B P B A ===,从而()(|)()0.850.080.068,P A B P B A P A ==⨯= ()()()0.862P AB P B P A B =-=. (1)所求的概率为()()()()0.988P AB P A P B P AB =+-=.(2)所求的概率为()()()(|)0.8291()()P A B P A P AB P A B P B P B -===-. □7. 口袋中有1只红球和1n -只白球,现从中一个一个不放回地取球,(1) 已知前1()k k n -≤次都没有取到红球,求第k 次取出红球的概率. (2) 求第k 次取出红球的概率. 解: (1)所求的概率为11n k -+; (2)所求的概率为1n.□8. 口袋中有a 只白球、b 只黑球和3个红球,现从中一个一个不放回地取球,试求白球比黑球出现得早的概率. 解:设A 表示白球比黑球出现得早,iB 表示第i 次取出白球, iC 表示第i 次取出黑球, iD 表示第i 次取出红球,则1121231234()()()A BD B D D B D D D B =, 且1121231234,,,B D B D D B D D D B两两互斥,于是1121231234()()()()()P A P B P D B P D D B P D D D B =+++aa b =+.□9. 某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人,一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9,0.7,0.5,0.2. 求任取一位射手,他能通过选拔进入比赛的概率.解: 设iB 表示选出i 级射手,1,2,3,4i =.A 表示选出的射手能通过选拔进入比赛. 于是由全概率公式得41()(|)()0.645.i i i P A P A B P B ===∑ □10. 12个乒乓球中有9个新球,3个旧球,第一次比赛,取出3个球,用完放回,第二次比赛又取出3个球.求第二次取出的3个球中有2个新球的概率.解:设iB 表示第一次比赛取出3个球中有i 个新球, 0,1,2,3i =.A 表示第二次取出的3个球中有2个新球.由全概率公式知 21333939333001212()(|)().i i i ii i i i C C C C P A P A B P B C C --+====⨯∑∑□11. 某商店出售尚未过关的某电子产品,进货10件,其中有3件次品,已经售出2件,现要从剩下的8件产品中任取一件,求这件是正品的概率.解: 设iB 表示已经售出2件产品中有i 件次品,0,1,2i =.A表示从剩下的8件产品中任取一件产品是正品.则由全概率公式知 222372001057()(|)().810i i i i i i C C i P A P A B P B C -==⋅+==⨯=∑∑□12. “学生参加选择题的测验,每一个题目有5个备选答案,其中有一个正确.若该学生知道答案,则他一定能选出正确的答案,否则他随机地从5个答案中选一个.若该学生知道所有试题的70%的正确答案,求:(1)对一试题,该学生选得正确答案的概率是多少?(2)若该学生对一试题已选得正确答案,问他真正知道此题答案的概率是多少?13. 设有来自3个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生报名表的概率. (2) 已知后抽到的一份是男生报名表,求先抽到的一份是女生报名表的概率.14. 口袋中有一球,不知它的颜色是黑的还是白的,假设”该球是白球”的可能性为12.现再往口袋中放入一只白球,然后从口袋中任意取出一只,已知取出的是白球,求口袋中原来那只球是白球的概率.解: 设B 表示"往口袋中放入一只白球,然后从口袋中任意取出一只是白球," A 表示口袋中原来那只球是白球. 则由贝叶斯公式知 11(|)()22(|)1113(|)()(|)()1222P B A P A P A B P B A P A P B A P A ⨯===+⨯+⨯.□15. 甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷.试求第n 次由甲掷的概率. 解:设iA 表示第i 次由甲掷, 1,2,,i n=.显然125()1,()6P A P A ==,1151(|),(|)66i i i i P A A P A A ++==,1,2,,i n=.于是由全概率公式有111()(|)()(|)()51()(1())6614(),1,2,,.66i i i i i i i i i i P A P A A P A P A A P A P A P A P A i n +++=+=⋅+⋅-=+⋅=从而112()123i i P A -⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.2,,i n=.□16. 设()0P A >,证明:()(|)1()P B P B A P A ≥-. 证明:注意到()()()()()P AB P A P AB P A P B =-≥-, 不等式两边同除以()P A 得()()()()(|)1()()()P AB P A P B P B P B A P A P A P A -=≥=-.□17. 设0()1P B <<,证明: (|)()P A B P A ≤的充要条件是(|)()P A B P A ≥.证明:(|)()()()()()()()()()()()()(|)().P A B P A P AB P A P B P AB P A P AB P A P A P B P A P B P A B P A ≤⇔≤⇔=-≥-=⇔≥□。
概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计答案(华东师大魏宗舒版)

概率论与数理统计答案(华东师大魏宗舒版)第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
概率论和数理统计课后习题答案解析

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率. 解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布求a.解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:故(1)在Y=1条件下,X的条件分布律为(2)在X=2的条件下,Y的条件分布律为表(a)表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为亦即表P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3), P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为试求:(1)Z=X+Y; (2)Z=XY; (3)Z=X/Y; (4)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类型,本质上是利用事件及其概率的运算法则.注意,Z的相同值的概率要合并.于是(1)(2)Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1. 写出下列随机试验的样本空间: (1) 掷两颗骰子,观察两颗骰子出现的点数. (2) 从正整数中任取一个数,观察取出数的个位数. (3) 连续抛一枚硬币,直到出现正面时为止.(4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或检查四个产品就停止检查,记录检查的结果. (5) 在单位圆内任意取一点,记录它的坐标. 解:(1){(,)|1,2,,6,1,2,,6}i j i j Ω===;(2){|0,1,,9}i i Ω==;(3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), … };(4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次,正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)};(5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤.2. 在掷两颗骰子的试验中写出下列事件的集合表示: (1) A =”出现的点数之和为偶数”.(2) B =”出现的点数之和为奇数, 但没有骰子出现1点”. (3) C =”至少掷出一个2点”. (4) D =”两颗骰子出现的点数相同”.解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A = {(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=;(2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =;(3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =.3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:(1) 事件“,,A B C 中至少有一个事件发生”. (2) 事件“,,A B C 中至少有两个事件不发生”. (3) 事件“,,A B C 中至多有一个事件不发生”. (4) 事件“,,A B C 中至少有一个事件不发生”. (5) 事件“,A B 至少有一个发生,而C 不发生”. 解:(1)A B C ; (2)()()()A BA CBC 或 ()()()()A B C A B C AB C A B C ;(3)()()()()ABC A BC AB C AB C 或()()()AB AC BC ;(4)A B C ; (5)()A B C 或()()()ABCABC ABC .4. 指出下列命题哪些成立,哪些不成立 (1) ()A B AB B =. (2) ()A B AAB =.(3) ()()A AB AB =. (4) ()A B C A B C =.(5) A B A B =. (6) ()()AB AB =∅.(7) A B ⊂等价于A B B =或AB A =或B A ⊂. (8) 若AB =∅,则A B ⊂.解:(1)正确;(2)正确;(3)正确;(4)正确;(5)错误;(6)正确;(7)正确;(8)正确.5. 在数学系的学生中任选一名学生,令事件A 表示被选学生是女生, 事件B 表示被选学生是三年级学生, 事件C 表示被选学生是运动员. (1)叙述ABC 的意义.(2)在什么条件下ABC A =成立 (3)什么时候A C =成立解: (1)被选学生是三年级男运动员;(2)因为ABC A =等价于A BC ⊂,即数学系的女生全部都是三年级运动员; (3)数学系的男生全部都是运动员,且运动员全部都是男生.6. 试用维恩图说明,当事件A ,B 互不相容,能否得出A ,B 也互不相容 解: 不能.7. 设样本空间{}010x x Ω=≤≤, 事件{}27A x x =≤≤,{}15B x x =≤≤,试求: ,,,A B AB B A A B -.解:{}17A B x x =≤≤;{}25AB x x =≤≤;{}12B A x x -=≤<;[0,2)(5,10]A B AB ==.习题(6) 设A B ⊂,()()0.2,0.3,P A P B ==求(1)()P A B ; (2)()P BA ;(3)()P A B -. 解: ()()0.3P A B P B ==;()()()0.1P B A P B P A =-=;()()0P A B P -=∅=.(7) 设()(),P AB P A B = 且()2,3P A =求()P B .解:注意到()()1()1()()()P A B P A B P A B P A P B P AB ==-=---. 从而由()()P AB P A B =得()()1P A P B +=.于是1()1()3P B P A =-=.(8) 设,,A B C 为三个随机事件, 且1()()(),2P A P B P C ===1()(),3P AB P BC ==()0P AC =,求()P A B C .解: 由()0P AC =知()0P ABC =. 于是由广义加法公式有()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+325236=-=.(9) 设,A B 为两个随机事件,且()0.7,()0.9P A P B ==,问: (4)在什么条件下, ()P AB 取到最大值,最大值是多少 (5)在什么条件下, ()P AB 取到最小值,最小值是多少解:(1)由于()()()()P AB P A P AB P B ≤≤且.由此可见在A B ⊂条件下,()P AB 取到最大值()0.7P A =. (6)注意到()()()()P AB P A P B P A B =+-. 因此当()1P A B =时,()P AB 取到最小值0.70.910.6+-=.思考: 有人说(2),在AB =∅时,()P AB 取到最小值0. 你能指出错误在什么 地方吗(10) 设,A B 为两个随机事件,证明: (1) ()1()()()P AB P A P B P A B =--+.(2) 1()()()()()()P A P B P AB P A B P A P B --≤≤≤+.证明:(1)由广义加法公式可得 ()1()1()()()P AB P AB P A P B P A B =-=--+.(2)由(1)立得1()()()P A P B P AB --≤. 其余不等式是显然的.(11) 设,,A B C 为三个随机事件,证明:()()()()P AB P AC P BC P A +-≤. 证明:由广义加法公式可得()(())(()())()()()()()().P A P A B C P AB AC P AB P AC P ABC P AB P AC P BC ≥==+-≥+-(12) 设12,,,n A A A 为n 个事件,利用数学归纳法证明:(1) (次可加性) ()121()nn k k P A A A P A =≤∑.(2) ()121()(1)nn k k P A A A P A n =≥--∑.证明: (1) 当2n =时, 由广义加法公式有()21212121()()()()k k P A A P A P A P A A P A ==+-≤∑.即对2n =成立.假设对n k =成立, 于是()12112111()()()()().kk k k k k P A A A A P A A A P A P A P A P A +++≤+≤+++即对1n k =+成立. (1)得证.(2)当2n =时, 由广义加法公式有()12121212()()()()()1P A A P A P A P A A P A P A =+-≥+-.即对2n =成立.假设对n k =成立, 即()121()(1)kk i i P A A A P A k =≥--∑.于是()1211211111()()1()(1)()1().k k k k k i k i k i i P A A A A P A A A P A P A k P A P A k +++=+=≥+-≥--+-=-∑∑ 即对1n k =+成立. (2)得证. (13) 设12,,A A 为一列事件,且1,1,2,n n A A n +⊂=,证明:1()lim ()n n n n P A P A +∞→+∞==.证明:(利用性质6(1)的结论) 显然12,,A A 为一列事件,且1,1,2,n n A A n +⊂=,即性质6(1)的条件成立,因此1()lim ()n n n n P A P A +∞→+∞==.于是11()1()1lim ()lim ()n n n n n n n n P A P A P A P A +∞+∞→+∞→+∞===-=-=.习题(7)掷两颗均匀的骰子,求下列事件概率: (1)两颗骰子的点数相同;(2)两颗骰子的点数之和为偶数;(3)一颗骰子的点数恰是另一颗骰子的点数的两倍.解:(1)16; (2) 12; (3)318.(8)有五条线段,长度分别为1,3,5,7,9(单位cm),从这五条线段中任取三条,求所取的三条线段能拼成三角形的概率. 解:由古典概型可得所求的概率为353310C =. (9)一个小孩用13个字母:A 、A 、A 、C 、E 、H 、I 、I 、M 、M 、N 、T 、T 做组字游戏.如果字母的各种排列是随机的,问组成”MATHEMATICIAN ”一词的概率为多少解:由古典概型可得所求的概率为3!2!2!2!13!. (10)n 个人随机地排成一列,甲、乙是其中的两个人,求甲、乙两人之间恰好有r 个人的概率, 这里0,1,,2r n =-.解:由古典概型可得所求的概率为2(1)!!2!!rn C n r r n -⋅--.(11) n 个男孩和m 个女孩(1m n ≤+)随机排成一列,求任意两个女孩都不相邻的概率.解:n 个男孩和m 个女孩(1m n ≤+)随机排成一列共有()!n m +种排法. 任意两个女孩都不相邻可按如下方式进行: 先将n 个男孩排好,共有1n +个间隔,从1n +个间隔中选出m 个位置进行女生排列.因此排法总数为1!!m n C n m +.从而由古典概型可得所求的概率为1!!()!m n C n m n m ++.(12) 从n 双尺码不同的鞋子中任取2(2)r r n <只,求下列事件的概率:a) 所取的2r 只鞋子中没有两只成对的; (2) 所取的2r 只鞋子中只有两只成对的; (3) 所取的2r 只鞋子恰成r 对.解:(1)2222r r n r n C C ⋅;(2)12(1)2(1)1222r r n n rnC C C ---⋅⋅;(3)22r n r n C C . (13) 掷一枚均匀的硬币n 次,求出现的正面次数多于反面次数的概率.解:设A 表示硬币出现的正面次数多于反面次数,B 表示硬币出现的反面次数多于正面次数,C 表示硬币出现的反面次数等于正面次数.易见()()()1P A P B P C ++=, ()()P A P B =.当21n m =+时,易见()0P C =,从而1()2P A =. 当2n m =时,易得21()2n n nP C C ⎛⎫= ⎪⎝⎭.从而211()122n n n P A C ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(14) 从一个装有a 个白球,b 个黑球的袋中逐一将球不放回地随机取出,直至留在袋中的球都是同一颜色的球为止,求最后留在袋中的球都是白球的概率.解:此题设想将袋中的a 个白球和b 个黑球全部摸出,则最后一次(第a b +次)摸出白球与本题所述的事件相同.因此由抽签原理可得所求的概率为aa b+. (15)口袋中有5个白球、3个黑球,从中任取两个,求至少取到一个白球的概率.解:所求的概率为23281C C -.(16)某人有m 把钥匙,其中只有一把能打开门,他一把接一把地试开门,不能开门的就扔掉.求他恰好在第k 次把门打开的概率. 解:所求的概率为()()1(2)(1)111(1)m m m k m m m k m-⋅--+⨯=⋅--+.(17)任取一个正整数,求下列事件的概率:a) 该数平方的个位数是1; (2)该数立方的个位和十位都是1.解:(1)我们知道一个数平方的个位数只与该数的个位数有关.因此我们观察取出数的个位数,其样本空间为{0,1,2,,9}Ω=.易知其是古典概型.设A 表示该数平方的个位数是1, 则{1,9}A =,于是2()10P A =. (2)一个数立方的个位和十位与该数的个位和十位有关.因此我们观察取出数的个位和十位数,其样本空间为{00,01,02,,99}Ω=,B 表示该数立方的个位和十位都是1.则{71}B =,于是1()100P B =. (18)某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨这位数,假设拔完规定电话位数算完成一次拨号,且假设对方电话不占线,试问他拨号不超过四次就能接通电话的概率是多少 解:所求的概率为191981987141010910981098710⨯⨯⨯⨯⨯⨯+++=⨯⨯⨯⨯⨯⨯. (19)一公司批发出售服装,每批100套.公司估计某客商欲购的那批100套服装中有4套是次品,12套是等级品,其余是优质品,客商在进货时要从中接连抽出2套做样品检查,如果在样品中发现有次品,或者2套都是等级品,客商就要退货.试求下列事件的概率:(1)样品中1套是优质品,1套是次品;(2)样品中1套是等级品,1套是次品;(3)退货;(4)该批货被接受;(5)样品中恰好有1套优质品. 解:(1)样品中1套是优质品,1套是次品的概率为2100844C ⨯; (3))样品中1套是等级品,1套是次品的概率为2100124C ⨯; (4)退货的概率为229612221001001C C C C ⎛⎫+- ⎪⎝⎭;(5)该批货被接受的概率为22229696121222210010010011C C C C C C C ⎡⎤⎛⎫--+-=⎢⎥ ⎪⎝⎭⎣⎦; (6)样品中恰好有1套优质品的概率为21008416C ⨯. (20)在桥牌比赛中,把52张牌(不包括大小王)任意地分给东、南、西、北四家(每家13张牌),求下列事件的概率:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花;(2)南家及北家共有9张黑桃,东、西两家各有2张黑桃;(3) 南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃.解:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花的概率为54311313131339!13!13!13!52!13!13!13!13!C C C C ⋅或54311313131352!13!39!C C C C ;(2)南家及北家共有9张黑桃,东、西两家各有2张黑桃的概率为13!39!9!2!2!17!11!11!52!26!13!13!⋅;(3)南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃的概率为13!39!9!1!3!17!12!10!52!26!13!13!⋅.(21)将3个球随机地放入4个杯子,求4个杯子中球的个数最大值为2的概率.解: 3个球随机地放入4个杯子共有34种放法. 4个杯子中球的个数最大值为2相当于先从3个球中任意地选出2个球作为一个整体和另外一个球放到4个杯子(注意不能同时放入同一个杯子)的放法总数为24A .于是所求的概率为2434A . (22) 设集合A 有4个元素, 集合B 有3个元素,随机地作集合A 到集合B的映射,求该映射为满射的概率.解:该映射为满射的概率为2443!3C ⋅.(23)将m 个球随机地放入n ()n m ≤个盒子中,求下列事件的概率:(14) 每个盒子中均有球; (2)恰好有1个盒子空着的概率. 解:设i A 表示第i 个盒子无球,1,2,,i n =.(6) 设A 表示每个盒子中均有球.则1212n n A A A A A A A ==.注意到(1)()mi m n P A n -=, 1,2,,i n =,(2)()mi j mn P A A n-=,1i jn ≤<≤,1212()(),1,1,2,,.k mi i i k mn k P A A A i i i n k n n -=≤<<<≤=于是由广义加法公式有()112121112111()()(1)()(1)(2)1().nn n i i j n i i j nm mn nn nm mmm n k n mk P A A A P A P A A P A A A n n C C C n nn n k C n +=≤<≤--==-++---=+++-=∑∑∑从而()()112121()()11mn kn n nmk n k P A P A A A P A A A C n -=-==-=-∑. (7) 恰好有1个盒子空着可以这样理解,先从n 个盒子任意选定1个空盒,然后将m 个球随机地放入1n -个盒子,使得1n -个盒子都有球. 从而由(1)及乘法原理可知"恰好有1个盒子空着"共有2111(1)(1)n m k m nn k C n C n k --=⎡⎤----⎢⎥⎣⎦∑样本点,于是其概率为2111(1)(1)n m k m nn k m C n C n k n --=⎡⎤----⎢⎥⎣⎦∑. (24)某班有m 个同学参加面试,共有n ()n m≤张考签,每人抽到考签用后即放回,在面试结束后,求至少有一张考签没有被抽到的概率. (8) 解:设i A 表示第i 张考签没有被抽到,1,2,,i n =.设A 表示至少有一张考签没有被抽到. 则12n A A A A =.注意到(1)()mi m n P A n -=, 1,2,,i n =,(2)()mi j mn P A A n-=,1i j n ≤<≤,1212()(),1,1,2,,.k mi i i k mn k P A A A i i i n k n n -=≤<<<≤=于是由广义加法公式有()112121112111()()()(1)()(1)(2)1().nn n i i j n i i j nm mn nn nm mmm n k n mk P A P A A A P A P A A P A A A n n C C C n nn n k C n +=≤<≤--===-++---=+++-=∑∑∑(25) 从n 阶行列式的一般展开式中任取一项,问这项包含主对角线元素的概率为多少解:设i A 表示所取的项含第i 行第i 列主对角线元素,1,2,,i n =.设A 表示所取的项包含主对角线元素. 则12n A A A A =.注意到(1)!()!i n P A n -=, 1,2,,i n =, (2)!()!i j n P A A n -=,1i j n ≤<≤,1212()!(),1,1,2,,.!k i i i k n k P A A A i i i n k n n -=≤<<<≤=于是由广义加法公式有()1121211121()()()(1)()(1)!(2)!1!!!1.!nn n i i j n i i j nn nn nnk P A P A A A P A P A A P A A A n n C C C n n n k +=≤<≤===-++---=+++=∑∑∑习题1. 已知111(),(|),(|)432P A P B A P A B ===,求()P B ; ()P A B ;()P A B . 解:注意到1()()(|),12P AB P A P B A ==故 ()1/121()(|)1/26P AB P B P A B ===.1()()()()3P A B P A P B P AB =+-=.1()()()6P A B P A P AB =-=. □2. 设()0.4,()0.7,P A P B ==试证:(|)0.5.P B A ≥证明: 因为()()()()()0.3P A B P B P AB P B P A =-≥-=, ()1()0.6P A P A =-= . 故 ()0.3(|)0.5.0.6()P A B P B A P A =≥= □ 3. 设N 件产品中有M 件不合格品,从中逐一不放回地取出两件产品, (6)已知第一次取出不合格品,求第二次也取出不合格品的概率;(7)已知所取的两件产品中有一件是不合格品,求另一件也是不合格品的概率.解:(1)设i A 表示"第i 次取出不合格品",1,2i =. 于是所求的概率为211()1M P A A N -=-. (2)设A 表示所取的两件产品中有一件是不合格品, B 表示另一件也是不合格品. 于是所求的概率为2222222()().()1MN M N M N N MNC C C P AB P B A C P A C C C --===-- □ 4. 掷两颗均匀的骰子,(1)已知点数和为偶数,求点数和等于8的概率;(2) 已知点数和为奇数,求点数和大于6的概率;(3) 已知点数和大于6,求点数和为奇数的概率.解: (1)所求的概率为518; (2)所求的概率为1218; (3)所求的概率为1221. □ 5. 一个家庭中有三个小孩,已知其中一个是女孩,求至少有一个男孩的概率. 解: A 表示三个小孩中有一个是女孩, B 表示三个小孩中至少有一个是男孩,于是所求的概率为()6/86().()7/87P AB P B A P A === □ 6. 为防止意外事故,在矿井内同时安装两种警报系统A 与B ,每种系统单独使用时,其有效率A 为,B 为,在A 失灵条件下B 有效概率为.求:(1)发生事故时,这两种警报系统至少有一个有效的概率;(2)在B 失灵条件下,A 有效的概率. 解:A 表示系统A 有效, B 表示系统B 有效. 由题意知()0.92,()0.93,(|)0.85P A P B P B A ===,从而()(|)()0.850.080.068,P A B P B A P A ==⨯= ()()()0.862P AB P B P A B =-=.(1)所求的概率为()()()()0.988P A B P A P B P AB =+-=.(2)所求的概率为()()()(|)0.8291()()P A B P A P AB P A B P B P B -===-. □7. 口袋中有1只红球和1n -只白球,现从中一个一个不放回地取球, (1) 已知前1()k k n -≤次都没有取到红球,求第k 次取出红球的概率. (2) 求第k 次取出红球的概率. 解: (1)所求的概率为11n k -+;(2)所求的概率为1n. □ 8. 口袋中有a 只白球、b 只黑球和3个红球,现从中一个一个不放回地取球,试求白球比黑球出现得早的概率. 解:设A 表示白球比黑球出现得早,i B 表示第i 次取出白球, i C 表示第i 次取出黑球, i D 表示第i 次取出红球, 则1121231234()()()A B D B D D B D D D B =, 且1121231234,,,B D B D D B D D D B 两两互斥,于是1121231234()()()()()P A P B P D B P D D B P D D D B =+++aa b=+. □ 9. 某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人,一、二、三、四级射手能通过选拔进入比赛的概率分别是,,,. 求任取一位射手,他能通过选拔进入比赛的概率. 解: 设i B 表示选出i 级射手,1,2,3,4i =. A 表示选出的射手能通过选拔进入比赛. 于是由全概率公式得41()(|)()0.645.iii P A P A B P B ===∑ □10. 12个乒乓球中有9个新球,3个旧球,第一次比赛,取出3个球,用完放回,第二次比赛又取出3个球.求第二次取出的3个球中有2个新球的概率. 解:设i B 表示第一次比赛取出3个球中有i 个新球, 0,1,2,3i =. A 表示第二次取出的3个球中有2个新球. 由全概率公式知21333939333001212()(|)().i i i ii i i i C C C C P A P A B P B C C --+====⨯∑∑ □ 11. 某商店出售尚未过关的某电子产品,进货10件,其中有3件次品,已经售出2件,现要从剩下的8件产品中任取一件,求这件是正品的概率. 解: 设i B 表示已经售出2件产品中有i 件次品,0,1,2i =.A 表示从剩下的8件产品中任取一件产品是正品.则由全概率公式知222372001057()(|)().810i i i i i i C C i P A P A B P B C -==⋅+==⨯=∑∑ □ 12. “学生参加选择题的测验,每一个题目有5个备选答案,其中有一个正确.若该学生知道答案,则他一定能选出正确的答案,否则他随机地从5个答案中选一个.若该学生知道所有试题的70%的正确答案,求:(1)对一试题,该学生选得正确答案的概率是多少(2)若该学生对一试题已选得正确答案,问他真正知道此题答案的概率是多少13. 设有来自3个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份. (1) 求先抽到的一份是女生报名表的概率.(2) 已知后抽到的一份是男生报名表,求先抽到的一份是女生报名表的概率. 14. 口袋中有一球,不知它的颜色是黑的还是白的,假设”该球是白球”的可能性为12.现再往口袋中放入一只白球,然后从口袋中任意取出一只,已知取出的是白球,求口袋中原来那只球是白球的概率.解: 设B 表示"往口袋中放入一只白球,然后从口袋中任意取出一只是白球," A 表示口袋中原来那只球是白球. 则由贝叶斯公式知11(|)()22(|)1113(|)()(|)()1222P B A P A P A B P B A P A P B A P A ⨯===+⨯+⨯. □15. 甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此人继续掷.试求第n 次由甲掷的概率. 解:设i A 表示第i 次由甲掷, 1,2,,i n =.显然125()1,()6P A P A ==, 1151(|),(|)66i i i i P A A P A A ++==,1,2,,i n =.于是由全概率公式有111()(|)()(|)()51()(1())6614(),1,2,,.66i i i i i i i i i i P A P A A P A P A A P A P A P A P A i n +++=+=⋅+⋅-=+⋅=从而112()123i i P A -⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 2,,i n =. □16. 设()0P A >,证明:()(|)1()P B P B A P A ≥-. 证明:注意到()()()()()P AB P A P AB P A P B =-≥-, 不等式两边同除以()P A 得()()()()(|)1()()()P AB P A P B P B P B A P A P A P A -=≥=-. □ 17. 设0()1P B <<,证明: (|)()P A B P A ≤的充要条件是(|)()P A B P A ≥.证明:(|)()()()()()()()()()()()()(|)().P A B P A P AB P A P B P AB P A P AB P A P A P B P A P B P A B P A ≤⇔≤⇔=-≥-=⇔≥ □。