高一数学增效减负学案函数的零点(必修1)

合集下载

高中数学人教B版必修一学案:2.4.1函数的零点

高中数学人教B版必修一学案:2.4.1函数的零点

高一数学第二章第一课时学案2.5.1 函数的零点一、学习目标1、理解函数零点的意义,能判断二次函数零点的存在性。

2、会求简单函数的零点,了解函数的零点与方程根的关系。

3、能通过零点画出函数的图象,并研究其性质。

4、在函数与方程的联系中体验数学中的转化思想的意义和价值.二、自主学习1、引例:已知二次函数26y x x =--,试求当y=0时的x 值,并画出其图象,由图象观察当x 在何区间上使得y>0?y<0?。

2、零点的定义:一般地,如果函数))((D x x f y ∈=在实数α处的值等于,即 ,则α叫做这个函数的 。

在坐标系中表示 。

3、二次函数的零点:(1)△>0,方程02=++c bx ax 有 ,二次函数的图象与x 轴有 ,二次函数有 .(2)△=0,方程02=++c bx ax 有 ,二次函数的图象与x 轴有 ,二次函数有一个 .(3)△<0,方程02=++c bx ax 无 ,二次函数的图象与x 轴无 ,二次函数无 .4、二次函数零点的性质:当函数图象通过零点且穿过x 轴时,函数值 ;两个零点把x 轴分成三个区间,在每个区间上所有函数值 ;如果一个二次函数有一个二重零点,那么它通过这个二重零点时,函数值的符号 。

三、合作探究1、二次函数)0(2≠++=a c bx ax y 的是否一定有零点,判断依据是什么2、函数的零点与方程的根、函数图象与x 轴交点的关系:函数)(x f y =有零点⇔方程0)(=x f 有 ⇔函数)(x f y =的图象与x 轴 .3、函数零点的求法:求函数)(x f y =的零点即求 。

4、二次函数零点两侧的函数值有何变化?零点将x 轴分成几个区间,在每个区间上函数值有何特点?分别以下列函数为例说明①122+-=x x y ;②223y x x =--+;③322+-=x x y 。

四、典例示范例1、求下列函数的零点:①220y x x =--+;② 32332y x x x =+++;③()()22232y x x x =-++例2、求函数3222y x x x =--+的零点,并画出它的图象。

【配套K12】高中数学 函数的零点教案(1) 新人教B版必修1

【配套K12】高中数学 函数的零点教案(1) 新人教B版必修1

教案:2.4.1函数的零点一、教学目标:1、知识与技能:了解函数的零点与方程根的关系。

理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点。

培养学生对事物的观察、归纳能力和探究能力。

2、过程与方法:通过描绘函数图像,分析零点的存在性. 体验函数零点概念的形成过程,提高数学知识的综合应用能力。

3、情感态度与价值观:培养学生的数形结合思想,渗透由抽象到具体思想,使学生理解动与静的辨证关系,在函数与方程的联系中体验数学中的转化思想的意义和价值.让学生初步体会事物间相互转化的辩证思想。

二、教学重点、难点:重点是函数零点的概念及求法;难点是利用函数的零点作图。

三、教学方法:本节课是对初中内容的加深,学生以相关知识比较熟悉,因此采用以学生活动为主,自主探究,合作交流的教学方法为宜。

四、教学流程:结合描绘的二次函数图像,提出问题,引入课题.体验数学,对二次函数的零点及零点存在性的初步认识.零点的存在性判断及零点的确定.利用计算机绘制某类特殊函数图像,找出零点,并尝试五、教学过程:1.利用函数图象判断下列方程有没有根,有几个根:(1)0532=++-x x ; (2)3)2(2-=-x x ; (3)442-=x x ; (4)532522+=+x x x .2.已知f(x)=2x 4-7x 3-17x 2+58x -24.,请探究方程0)(=x f 的根.如果方程有根,指出每个根所在的区间(区间长度不超过1).3.已知f(x)=2(m+1)x2+4mx+2m-1:(1)m为何值时,函数的图象与x轴有两个零点;(2)如果函数至少有一个零点在原点右侧,求m的值.设计意图:结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点的个数;让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的重要作用.培养动手,和分析图表的能力.列表,借助计算机或计算器来画函数的图象帮助分析.相对应例题给出一元四次函数及指数型的函数零点的探究,拓展学生的思维,以达到触类旁通。

山东省乐陵市第一中学高中数学必修一学案:2.4.1 函数的零点(自主学习)

山东省乐陵市第一中学高中数学必修一学案:2.4.1 函数的零点(自主学习)

1.理解函数零点的定义,能推断二次函数零点的存在性,会求简洁函数的零点; 2.了解函数的零点与方程根的关系;3体验函数零点的形成过程,提高数学学问的综合运用力量; 【重点】函数零点的概念及求法。

【难点】利用函数的零点作图。

【预习达标】1.如何推断一元二次方程02=++c bx ax 实根个数?2.函数62--=x x y ,x时y =0,x时y <0,x时y >0,叫做函数62--=x x y 的零点。

3.函数122+-=x x y ,x时y =0,叫做函数122+-=x x y 的零点。

4.零点的定义:)(x f y =满足_______________,则_____叫做)(x f 的零点。

5.零点的分类:6.如何求函数的零点?函数的零点与图象什么关系?7.请结合2题指出函数、方程式、不等式三者之间存在的联系。

8.如何推断二次函数零点的个数?【自我检测】1.求下列函数的零点(1)23)(+-=x x f (2)67-3)(2+-=x x x f(3)45-)(2+=x x x f (4)x x x f 5)(2+-=(5)x x x f 8-)(3= (6)⎩⎨⎧<+>+-=0,720,32-)(2x x x x x x f2.)(0)(≠+=b a bx x f 的零点为2,则b bx ax x g ++=2)(的零点为__________. 3.下列函数在什么范围内取值时,?0?0<>y y(1)8-7)(2x x x f += (2)82-)(2++=x x x f。

高中数学 第二章 函数 2.4.1 函数的零点学案 新人教B版必修1-新人教B版高一必修1数学学案

高中数学 第二章 函数 2.4.1 函数的零点学案 新人教B版必修1-新人教B版高一必修1数学学案

2.4 函数与方程2.4.1 函数的零点1.理解函数零点的概念.(重点)2.会求一次函数、二次函数的零点.(重点)3.初步了解函数的零点、方程的根、函数图象与x 轴交点的横坐标之间的关系.(重点、难点)[基础·初探]教材整理1 函数的零点阅读教材P 70~P 71“例”以上部分内容,完成下列问题. 1.定义如果函数y =f (x )在实数α处的值等于零,即f (α)=0,则α叫做这个函数的零点. 2.性质(1)当函数图象通过零点且穿过x 轴时,函数值变号.(2)两个零点把x 轴分为三个区间,在每个区间上所有函数值保持同号.判断(正确的打“√”,错误的打“×”) (1)所有的函数都有零点.( )(2)若方程f (x )=0有两个不等实根x 1,x 2,则函数y =f (x )的零点为(x 1,0),(x 2,0).( )(3)f (x )=x -1x只有一个零点.( )【答案】 (1)× (2)× (3)×教材整理2 二次函数零点与一元二次方程 实根个数的关系阅读教材P 70“倒数第2行”~P 71“例”以上的内容,完成下列问题.判别式Δ Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx+c (a >0)的图象一元二次方程ax 2+bx +c =0的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实根二次函数y =ax 2+bx+c 的零点有两个零点x 1,x 2有一个二重零点x 1=x 2没有零点已知函数f (x )=x 2-2x +a 的图象全部在x 轴的上方,则实数a 的取值范围是________.【导学号:97512030】【解析】 函数f (x )的图象是开口向上的抛物线,所以Δ=4-4a <0,a >1. 【答案】 (1,+∞)[小组合作型]求函数的零点(1)函数y =1+1x的零点是( ) A .(-1,0) B .x =-1 C .x =1D .x =0(2)求下列函数的零点. ①f (x )=-x 2-2x +3; ②f (x )=x 4-1.【精彩点拨】 求函数对应方程的根,即为函数的零点. 【自主解答】 (1)令1+1x=0,解得x =-1,故选B.(2)①由于f (x )=-x 2-2x +3=-(x +3)(x -1),所以方程-x 2-2x +3=0的两根是-3,1. 故函数的零点是-3,1.②由于f (x )=x 4-1=(x 2+1)(x +1)(x -1), 所以方程x 4-1=0的实数根是-1,1. 故函数的零点是-1,1.【答案】 (1)B (2)①-3,1 ②-1,1求函数的零点时,通常转化为解方程f x =0,若方程f x =0有实数根,则函数f x 存在零点,该方程的根就是函数f x 的零点;否则,函数f x 不存在零点.[再练一题]1.函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________.【导学号:60210059】【解析】 ∵函数f (x )=ax +b 有一个零点是2,∴2a +b =0,即b =-2a , ∴g (x )=bx 2-ax =-2ax 2-ax =-ax (2x +1), ∵-ax (2x +1)=0,即x =0,x =-12,∴函数g (x )=bx 2-ax 的零点是0,-12.【答案】 0,-12函数零点个数的判断判断下列函数零点的个数. (1)f (x )=x 2-7x +12;(2)f (x )=x 2-1x .【精彩点拨】 (1)中f (x )为一元二次函数,解答本题可判断对应的一元二次方程的根的个数;(2)中函数零点可用解方程法转化为两个熟知的基本初等函数求图象交点个数.【自主解答】 (1)由f (x )=0,即x 2-7x +12=0,得Δ=49-4×12=1>0, ∴方程x 2-7x +12=0有两个不相等的实数根3,4.∴函数f (x )有两个零点. (2)法一 由x 2-1x =0,得x 2=1x.令h (x )=x 2(x ≠0),g (x )=1x.在同一坐标系中画出h (x )和g (x )的图象,如图所示,两函数图象只有一个交点,故函数f (x )=x 2-1x只有一个零点.法二 令f (x )=0,即x 2-1x=0.∵x ≠0,∴x 3-1=0.∴(x -1)(x 2+x +1)=0. ∴x =1或x 2+x +1=0.∵方程x 2+x +1=0的根的判别式Δ=12-4=-3<0, ∴方程x 2+x +1=0无实数根.∴函数f (x )只有一个零点.确定函数零点个数的方法1.一元n 次方程根的个数的问题,一般采用分解因式法来解决. 2.一元二次方程通常用判别式来判断根的个数.3.指数函数和对数函数等超越函数零点个数的问题,一般用图象法来解决. 4.利用函数的单调性判断函数零点的个数.[再练一题]2.判断函数y =x 3-3x 2-2x +6的零点个数. 【解】 y =x 3-3x 2-2x +6 =x 2(x -3)-2(x -3) =(x 2-2)(x -3),令y =0,则x =±2或x =3, 显然有三个零点.[探究共研型]函数零点的应用探究1 设F (g (x )有何关系? 【提示】 F (x )的零点是函数y =f (x )与y =g (x )的图象的交点的横坐标.探究2 若函数f (x )=x 2-2x +a 有零点,则实数a 的取值范围是什么?【提示】 若函数f (x )=x 2-2x +a 有零点,则方程x 2-2x +a =0有根.故Δ=(-2)2-4a ≥0,故a ≤1.若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________. 【精彩点拨】 把问题转化为方程|2x-2|=b 有根问题,进而应用数形结合的思想转化为y =|2x -2|与y =b 图象的交点问题.【自主解答】 由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示,则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. 【答案】 (0,2)已知函数有零点方程有根求参数取值范围常用的方法:1直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.2分离参数法:先将参数分离,转化成求函数值域问题加以解决.3数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.[再练一题] 3.若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则a 的取值范围是( ) A .a >15B .a >15或a <-1C .-1<a <15D .a <-1【解析】 根据函数零点的性质,f (1),f (-1)一正一负,f (1)=a +1,f (-1)=-5a +1所以⎩⎪⎨⎪⎧a +1>0-5a +1<0或⎩⎪⎨⎪⎧a +1<0-5a +1>0,解得a >15或a <-1.【答案】 B1.下列四个函数图象,在区间(-∞,0)内,函数f i (x )(i =1,2,3,4)中有零点的是( )A .B .C . D.【解析】 由函数图象可知,f 2(x )在(-∞,0)上与x 轴有交点,故f 2(x )在(-∞,0)上有零点.【答案】 B2.函数y =2x -4的零点是( ) A .2B .(2,0) C.⎝ ⎛⎭⎪⎫12,0 D.12【解析】 由2x -4=0,得x =2,即函数y =2x -4的零点是2. 【答案】 A3.已知函数y =f (x )是R 上的奇函数,其零点为x 1,x 2,x 3,x 4,x 5,则x 1+x 2+x 3+x 4+x 5=________.【解析】 由奇函数的对称性知:若f (x 1)=0, 则f (-x 1)=0,即零点关于原点对称,且f (0)=0, 故x 1+x 2+x 3+x 4+x 5=0. 【答案】 04.若函数f (x )=ax 2-x -1只有一个零点,则实数a =________.【解析】 (1)当a =0时,函数为y =-x -1,显然该函数的图象与x 轴只有一个交点,即函数只有一个零点.(2)当a ≠0时,函数y =ax 2-x -1是二次函数.因为y =ax 2-x -1只有一个零点,所以关于x 的方程ax 2-x -1=0有两个相等的实数根,所以Δ=0,即1+4a =0,解得a =-14.【答案】 0或-145.已知关于x 的二次方程ax 2-2(a +1)x +a -1=0有两个根,且一个根大于2,另一个根小于2,试求实数a 的取值范围.【解】 令f (x )=ax 2-2(a +1)x +a -1,依题意知,函数f (x )有两个零点,且一个零点大于2,一个零点小于2.∴f (x )的大致图象如图所示:则a 应满足⎩⎪⎨⎪⎧a >0,f 2<0,或⎩⎪⎨⎪⎧a <0,f 2>0,即⎩⎪⎨⎪⎧a >0,4a -4a +1+a -1<0,或⎩⎪⎨⎪⎧a <0,4a -4a +1+a -1>0,解得0<a <5,∴a 的取值范围为(0,5).。

人教B版高中数学必修一函数的零点学案

人教B版高中数学必修一函数的零点学案

2.4 函数的零点 学案【预习要点及要求】1.理解函数零点的概念。

2.会判定二次函数零点的个数。

3.会求函数的零点。

4.掌握函数零点的性质。

5.能结合二次函数图象判断一元二次方程式根存在性及根的个数。

6.理解函数零点与方程式根的关系。

7.会用零点性质解决实际问题。

【知识再现】1.如何判一元二次方程式实根个数?2.二次函数c bx ax y ++=2顶点坐标,对称轴分别是什么?【概念探究】阅读课本70——71页完成下列问题1.已知函数62--=x x y ,xy =0,x y <0,x y >0。

叫做函数62--=x x y 的零点。

2.请你写出零点的定义。

3.如何求函数的零点?4.函数的零点与图像什么关系?【例题解析】1.阅读课本71页完成例题。

例:求函数2223+--=x x x y 的零点,并画出它的图象。

2.由上例函数值大于0,小于0,等于0时自变量取值范围分别是什么?3.请思考求函数零点对作函数简图有什么作用?4.完成72练习B1、2【总结点拨】对概念理解及对例题的解释1.不是所有函数都有零点2.二次函数零点个数的判定转化为二次方程实根的个数的判定。

3.函数零点有变量零点和不变量零点。

4.求三次函数零点,关键是正确的因式分解,作图像可先由零点分析出函数值的正负变化情况,再适当取点作出图像。

【例题讲解】例1.函数1)(2--=x ax x f 仅有一个零点,求实数a 的取值范围。

例2.函数3log )(3-+=x x f x 零点所在大致区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)例3.关于x 的二次方程01222=+++m mx x ,若方程式有两根,其中一根在区间)0,1(-内,另一根在(1,2)内,求m 的范围。

参考答案:例1.解:①若1)(0--==x x f a 为一次函数,易知函数仅有一个零点。

②若)(0x f a ≠为二次函数,012=--x ax 仅有一个实根,△=1+4 0=a 41-=a 综上:0=a 或41-=a 时,函数仅有一个零点。

人教B版高中数学必修一教案-2.4.1 函数的零点

人教B版高中数学必修一教案-2.4.1 函数的零点

《函数的零点》教学设计一、教学内容分析本课题是普通高中课程标准实验教科书数学1(必修)人教B版第二章《函数》,第4节函数与方程的第一课时,本节课的主要内容是函数零点的定义,函数零点存在性的判定方法.其目的是使学生体会函数与方程之间的联系.为下一节《二分法》做准备.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.本章主要渗透了“函数与方程”和“数形结合”的数学思想.二、教学目标分析知识与技能目标:理解函数零点的意义,了解函数的零点与方程根的关系,会求简单函数的零点,能判断二次函数零点的存在性,并能对零点存在定理进行简单的应用.过程与方法目标:引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力.;体验函数零点存在定理的形成过程,初步感受零点存在定理在解题中的应用.情感态度与价值观目标:让学生初步体会事物间相互转化以及特殊到一般的辨证思想.三、教学基本条件分析1.学生条件:学生有较好的数学基础和数学理解能力,喜欢思考,乐于探究.2.前期内容准备:前面学习一次函数和二次函数时,教师对函数和方程的联系已经做了适当的渗透.3.教学媒体条件:支持幻灯片展示.四、教学重难点分析教学重点:函数零点的定义的理解.教学难点:正确理解函数零点的判定方法的不可逆性;函数与方程的联系及应用.五、教学过程设计(一)开门见山,揭示课题前几节课我们一起整理了一次函数和二次函数的图象与性质,初步学习了研究函数的一般方法,今天我们通过研究函数的另一个重要知识,来进一步感受函数与方程的联系.问题引入:已知二次函数y=x 2-x-6,试问x取什么值时,y=0?方程有几个根,y=f(x)的图象与x轴就有几个交点;方程的根就是图象与x轴交点的横坐标.-2、3在方程中称为实数根,对函数来说称为零点.(板书课题)函数的零点定义:如果函数在实数x0处的值等于零,即f(x0)=0,则x0叫做这个函数的零点.注意:零点不是点.设计意图:因为对这个定义的直观理解不难,所以直接给出,意为锻炼学生的数学阅读理解的能力,同时教师对这个概念暂时不加分析的处理为后面的设计作铺垫.由此得出:函数与方程的关系.(二)设问疑问,引导探究 例1:求出下列函数的零点,并作出函数的图象.(1)y =x 2-2x +1 (2)y =x 2+x +1解:过程略.设计意图:加深对概念的理解.让学生知道二重(二阶)零点的含义;不是所有的函数都有零点. (幻灯片展示)上面我们给出的三个函数都是一元二次函数,那么你能总结出对于一般的一元二次函数y=ax 2+bx +c (a ≠0),它的零点的情况与什么有关?预设答案:与方程的判别式有关.当△>0时,一元二次方程有两个不等的实数根x 1,x 2,相应的二次函数的图象与x 轴有两个交点 (x 1,0),(x 2,0),函数有两个零点x 1,x 2;【变号零点】当△=0时,一元二次方程有两个相等的实数根x 1= x 2,相应的二次函数的图象与x 轴有一个交点 (x 1,0),函数有一个二重零点x 1;【二阶零点】当△<0时,一元二次方程没有实数根,相应的二次函数的图象与x 轴没有交点,函数没有零点. 设计意图:让学生在总结二次函数零点情况的过程中,理清方程的根、函数图象与x 轴交点的横坐标和函数的零点之间的逻辑关系.通过图象看到函数零点的性质:①图象通过零点穿过x 轴时,函数值变号.——变号零点;②零点把x 轴分成的每个区间上函数值保持同号.研究函数的零点也就是研究相应方程的实数根,也就是研究函数的图象与x 轴的交点情况.(三)利用方程,研究函数例2.求函数y =x 3-2x 2-x +2的零点并画出函数的图象(简图).问题1:函数零点把x 轴分成了几部分?请考察在函数每个区间内函数值的符号.问题2:请仔细观察表格,你能发现哪些规律?(让学生观察发现)预设答案:零点两侧符号相反.问题3:是所有函数零点两侧函数值的符号都相反吗?预设答案:不是,譬如函数y =x 2-2x +1.只有变号零点两侧符号相反.设计意图:学生应用函数与方程的联系,通过方程研究函数的性质,做出函数的简图.同时,研究的过程也是在为后面发现零点存在定理作方法上的铺垫.(四) 探究发现“零点存在定理”1.探究发现例3:已知函数f (x )=x +b 在(-1,1)上存在零点,求b 的取值范围.解:法一:求零点;(由教师引导)法二:由题意:f (-1)·f (1)<0,解得b ∈(-1,1).通过以上分析,请同学们思考,函数在某区间(a ,b )上是否存在零点,与该区间的端点函数值的符号情况是否有某种关系?探究:若函数y =f (x ) 在区间(a , b )内满足f (a )·f (b )<0,则f (x ) 在区间(a , b )内是否存在零点?下面我们一起探究函数的零点存在的充分条件.学生先独立完成,再通过小组讨论,最后全班交流.探究①:观察图象,归纳函数y=f(x)在区间端点的函数值f(a),f(b)的正负情况.预设答案:f (a)·f (b)<0或f (a)·f (b)>0.探究②:函数y=f (x)具备了什么条件,就可确定函数在区间(a,b)上存在零点呢?预设答案:f (a)·f (b)<0.探究③:具备上述特征的函数y=f(x)是否在区间(a,b)上一定存在零点?预设答案:不是.反例:y=1x或画图验证.所以函数的图象在[a,b]上必须是连续不断的.探究④:如果连续函数f(x)满足f (a)·f (b)<0,则在区间(a,b)上存在唯一的零点吗?预设答案:不对.反例画图验证.应表述为“至少存在一个”.师生归纳总结:函数y=f(x)在(a,b)上存在零点的条件.预设答案:①函数图象连续不断;②区间端点函数值满足f (a)·f (b)<0.2.函数存在零点的条件如果函数y=f (x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f (a)·f (b)<0,那么,函数y=f (x)在区间(a,b)内至少存在一个零点,即存在c∈(a,b),使得f (c)=0.(五)总结升华问题:通过本节课的学习,你在知识、数学思想方法等方面有哪些收获?设计意图:通过小结,理清思路,归纳总结,更好的掌握知识技能,理解数学思想方法,提高解决问题的经验.学生活动,教师进行简要的概括和升华.(六)作业课本P72练习A 1、2;P75习题2-4A 3、4、5、6.六、板书设计(略)七、课后反思方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题.首先要让学生认识到学习函数的零点的必要性其次教学要把握内容结构,突出思想方法像这些中学新增内容的教学,教学就要取得成功的确不易,需要一个不断实践以及实践后的反思的过程,在实践与反思的过程中,不仅要妥善解决上述问题,还要不断地发现和解决新的问题,这样,教学效果才会逐步得到改善..。

高中数学 2.4.1《函数的零点》学案 新人教b版必修1

高中数学 2.4.1《函数的零点》学案 新人教b版必修1

2.4.1函数的零点学习目标:理解函数零点的意义, 能判断函数零点的存在性,会求简单函数的零点,了解函数零点与方程跟的关系.学习难点:利用函数的零点作图.学习重点:函数零点的概念及求法一.自主达标1.如果函数y=f(x)在实数处的值等于零,即f(x)=0,则x叫做.2.把一个函数的图像与叫做这个函数的零点.3.二次函数y=a2x+bx+c(a 0),当Δ=2b-4ac>0时,二次函数有个零点;Δ=2b-4ac=0时,二次函数有个零点;Δ=2b-4ac<0时,二次函数有个零点.4.二次函数零点的性质:(1)二次函数的图像是连续的,当它通过零点时(不是二重零点),.(2)在相邻的两个零点之间所有.二。

典例解析例1.若函数f(x)=2x+ax+b的两个零点是2和-4,求a,b的值.例2.求证:方程52x-7x-1=0的一个根在(-1,0)上,另一个根在(1,2)上.限时训练1.判断下列函数在给定的区间上是否存在零点.(1).f(x)=x3-3x-18, x∈[1,8] (2)f(x)=x3-x-1, x∈[-1,2]2.二次函数y = x2+mx+(m+3)有两个不同的零点,则m的取值范围是()A.(-∞,2)∪(6,+∞)B.(-2,6)C.[-2,6 ]D.[-2,6)5.函数f(x)=x-x的零点是( ) A.0 B.1 C.2 D.无数个6.函数f(x)=3222x x x --+的零点是( )A. 1,2,3 B.-1,1,2 C.0,1,2 D.-1,1,-27.若函数f(X)在[0,4]上的图像是连续的,且方程f(x)=0在(0,4)内仅有一个实数根,则发f(0)x f(4)的值( ) A.大于0 B.小于0 C.等于0 D.无法判断8.若函数f(x)=m2x +8mx+21,当f(x)<0时-7<x<-1,则实数m的值为( )A.1 B.2 C.3 D.4 9.f(x)=xx 1-,方程f(4x)=x的根是( ) A.-2 B.2 C.-0.5 D.0.510.设函数)f(x)= c bx x 3++在[-1,1]上为增函数,且0)21(f ).21(f <-,则方程f(x)在[-1,1]内A .可能有3个实数根B .可能有2个实数根 C. 有唯一的实数根 D .没有实数根11.设f (x ) = 12x 5x -3++,则在下列区间中,使函数f (x )有零点的区间是( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]9.已知函数y=f(x)在定义域内是单调函数,则方程f(x)=c(c为常数)的解的情况( )A.有且只有一个解B.至少有一个解C.至多有一个解D.可能无解,可能有一个或多个解12.已知函数y = f(x)=x2-1,则函数f(x+1)的零点是:________.13.方程x3-2x-5=0在区间 [2,3]内有实根,取区间中点 x0=2.5,那么下一个有根区间是:___________ .14.若函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是:_____________.15.关于x的方程2k2x-2x-3k=0的两根一个大于1,一个小于1,则实数的取值范围.16.若函数f(x)=2x-ax-b的两个零点时2和3,则函数g(x)=b2x-ax-1的零点.三、解答题17.已知函数f(x)=2(m-1)2x-4mx+2m-1(1)m为何值时,函数图像与x轴有一个公共点.(2)如果函数的一个零点为2,求m的值.18.求函数f(x)=x3-2x2-x+2的零点,则画出它的大致图像.19.方程x2+(m-2)x+5-m =0.(1).两根都大于2,求m的取值范围.(2).一根大于2,另一根小于2,求m的取值范围.(3).两根分别在区间(2,3)和之间(3,4),求m的取值范围.。

高中数学苏教版高一必修一学案 3.4.1 第1课时 函数的零点

高中数学苏教版高一必修一学案 3.4.1 第1课时 函数的零点

3.4函数的应用3.4.1函数与方程第1课时函数的零点学习目标 1.理解函数零点的定义,会求函数的零点(重点);2.掌握函数零点的判定方法(难点);3.了解函数的零点与方程的根的联系(重点).预习教材P91-93,完成下面问题:知识点一函数的零点函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.【预习评价】思考函数的零点是点吗?提示函数y=f(x)的图象与横轴的交点的横坐标称为这个函数的零点,因此函数的零点不是点,是方程f(x)=0的解,即函数的零点是一个实数.知识点二函数的零点、方程的根、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.知识点三函数零点的判定定理若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.【预习评价】若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,判断下列说法是否正确.①若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0.()②若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0.()③若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0.()④若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0.()提示①×可通过反例“f(x)=(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)>0,但其存在两个解{-1,1}”,故①不正确;②×对于②可通过反例“f(x)=x(x-1)(x+1)在区间[-2,2]上满足f(-2)f(2)<0,但其存在三个解{-1,0,1}”故②不正确;③√;④×由零点存在性定理可知④不正确.题型一求函数的零点【例1】求下列函数的零点.(1)f(x)=x2-x-6;(2)f(x)=x3-x;(3)f(x)=(ax-1)(x-2)(a∈R).解(1)方法一令f(x)=0,即x2-x-6=0.∵Δ=(-1)2-4×1×(-6)=25>0,∴方程x2-x-6=0有两个不相等的实数根x1=-2,x2=3.∴函数f(x)=x2-x-6的零点是x1=-2,x2=3.方法二由f(x)=x2-x-6=(x-3)(x+2)=0,得x1=-2,x2=3.∴函数f(x)=x2-x-6的零点为x1=-2,x2=3.(2)∵x3-x=x(x2-1)=x(x-1)(x+1),∴令f(x)=0得x(x-1)(x+1)=0.∴f(x)的零点为x1=0,x2=1,x3=-1.(3)当a=0时,函数为f(x)=-x+2,令f(x)=0,得x=2.∴f(x)的零点为2.当a=12时,f(x)=(12x-1)(x-2)=12(x-2)2,令f(x)=0得x1=x2=2. ∴f(x)有零点2.当a≠0且a≠12时,令f(x)=0得x1=1a,x2=2.∴f(x)的零点为1a,2.综上,当a=0时,f(x)的零点为2;当a=12时,函数有零点2;当a≠0且a≠12时,f(x)的零点为1a,2.规律方法根据函数零点的定义,求函数f(x)的零点就是求使f(x)=0的x的值,即方程f(x)=0的根.一般求法是①代数法:解方程的思想.如求一元二次方程f(x)=0的实数根常用求根公式、分解因式等方法;②几何法:函数y=f(x)的图象与x轴交点的横坐标即为函数的零点.【训练1】函数y=x-1的零点是________.解析令y=x-1=0,得x=1,故函数y=x-1的零点为1.答案 1题型二函数零点存在性定理及应用【例2】判断下列函数在给定区间上是否存在零点:(1)f(x)=x2-3x-18,x∈[1,8];(2)f(x)=x3-x-1,x∈[-1,2];(3)f(x)=log2(x+2)-x,x∈[1,3].解(1)∵f(1)=-20<0,f(8)=22>0,∴f(1)·f(8)<0.故f(x)=x2-3x-18在[1,8]上存在零点.(2)∵f(-1)=-1<0,f(2)=5>0,∴f(-1)·f(2)<0,∴f(x)=x3-x-1在[-1,2]上存在零点.(3)∵f(1)=log2(1+2)-1>log22-1=0,f(3)=log2(3+2)-3<log28-3=0.∴f(1)·f(3)<0,故f(x)=log2(x+2)-x在[1,3]上存在零点.规律方法由函数给定的区间[a,b]分别求出f(a)和f(b),判断f(a)f(b)<0是否成立,这是判断函数有无零点的基本方法,同时要注意如果f(a)f(b)>0,并不说明函数在[a,b]上没有零点.【训练2】已知函数f(x)的图象是连续不断的,有如下x,f(x)的对应值表:x 12345 6f(x)1510-76-4-5则函数f(x)解析根据函数零点存在性定理可判断至少有3个零点.答案 3题型三判断函数零点的个数【例3】判断函数f(x)=ln x+x2-3的零点的个数.解函数对应的方程为ln x+x2-3=0,所以原函数零点的个数即为函数y=ln x 与y=3-x2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y=3-x2与y=ln x的图象只有一个交点.从而ln x+x2-3=0有一个根,即函数y=ln x+x2-3有一个零点.规律方法判断函数零点个数的方法:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f(x)=g(x)-h(x)=0,得g(x)=h(x),在同一坐标系下作出y1=g(x)和y2=h(x)的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数.【训练3】函数f(x)=ln x-x+2的零点个数为________.解析如图所示,分别作出y=ln x,y=x-2的图象,可知两函数的图象有两个交点,即f(x)有两个零点.答案 2互动题型四零点的应用探究【探究1(0,1)与(1,2)内,试求k的取值范围.解由题意可知,方程7x2-(k+13)x-k+2=0的两根分别在区间(0,1)与(1,2)内,也就是说函数y=7x2-(k+13)x-k+2的图象与x轴的交点横坐标分别在0与1,1与2之间,作出草图.根据图象得⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0即⎩⎪⎨⎪⎧-k +2>0,7-(k +13)-k +2<0,28-2k -26-k +2>0.解之得-2<k <43.故k 的取值范围是(-2,43).【探究2】 已知关于x 的方程|x 2-4x +3|-a =0有三个不相等的实数根,则实数a 的值是________.解析 如图所示,由图象知直线y =1与y =|x 2-4x +3|的图象有三个交点,则方程|x 2-4x +3|=1有三个不相等的实数根, 因此a =1. 答案 1【探究3】 已知函数f (x )=ax 2+2x +1(a ∈R ),若方程f (x )=0至少有一正根,则a 的取值范围是________.解析 对ax 2+2x +1=0,当a =0时,x =-12,不符合题意;当a ≠0,Δ=4-4a =0时,得x =-1(舍去).当a ≠0时,由Δ=4-4a >0,得a <1, 又当x =0时,f (0)=1,即f (x )的图象过(0,1)点, f (x )图象的对称轴方程为x =-22a =-1a ,当-1a >0,即a <0时,图象开口向下,与x 轴正半轴有一交点,满足题意;当-1a <0,即a >0时,图象开口向上,与x 轴正半轴无交点,不满足题意,综上,a 的取值范围是(-∞,0).答案 (-∞,0)规律方法 (1)在解决二次函数的零点分布问题时要结合草图考虑四个方面:①Δ与0的关系;②对称轴与所给端点值的关系;③端点的函数值与零的关系;④开口方向.(2)求解探究2这类问题可先将原式变形为f (x )=g (x ),则方程f (x )=g (x )的不同解的个数等于函数f (x )与g (x )图象交点的个数,分别画出两个函数的图象,利用数形结合的思想使问题得解.课堂达标1.函数f (x )=1-x 21+x 的零点是________.解析 由f (x )=0,即1-x 21+x=0,得x =1,即函数f (x )的零点为1.答案 12.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为________(填序号). ①⎝ ⎛⎭⎪⎫-14,0;②⎝ ⎛⎭⎪⎫0,14;③⎝ ⎛⎭⎪⎫14,12;④⎝ ⎛⎭⎪⎫12,34. 解析 ∵f ⎝ ⎛⎭⎪⎫14=4e -2<0,f (12)=e -1>0,∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,又f (x )单调递增, ∴零点在⎝ ⎛⎭⎪⎫14,12上.答案 ③3.已知函数f (x )=(x -a )(x -b )+2(a <b ),并且α,β(α<β)是函数y =f (x )的两个零点,则实数a ,b ,α,β的大小关系是________. 解析 函数g (x )=(x -a )(x -b )的两个零点是a ,b .由于y =f (x )的图象可看作是由y =g (x )的图象向上平移2个单位而得到的,所以a <α<β<b . 答案 a <α<β<b4.已知二次函数f (x )=x 2+x +a (a >0),若f (m )<0,则在(m ,m +1)上函数零点的个数是________.解析 二次函数f (x )=x 2+x +a 可化为f (x )=(x +12)2+a -14,则二次函数对称轴为x =-12,其图象如图.∵f (m )<0,由图象知f (m +1)>0,∴f (m )·f (m +1)<0,∴f (x )在(m ,m +1)上有1个零点. 答案 15.已知函数f (x )=ax 2+2ax +1有两个零点x 1,x 2,且x 1∈(0,1),x 2∈(-4,-2),求a 的取值范围.解 ∵f (x )=ax 2+2ax +1的图象是连续的且两零点x 1,x 2满足x 2∈(-4,-2),x 1∈(0,1).∴⎩⎪⎨⎪⎧f (0)·f (1)<0⇒3a +1<0,f (-4)·f (-2)<0⇒8a +1<0⇒a <-13. ∴a 的取值范围为(-∞,-13).课堂小结1.在函数零点存在定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档