高中数学必修一《函数图象变换与函数零点》优秀教学设计
人教新课标高中数学B版必修1《2.4.1 函数的零点》教学设计(表格式)

2.4.1《函数的零点》教学设计课题:函数的零点教材:人教B版新课标高中数学必修1教学内容:第二章函数2.4.1函数的零点教材分析:一.教材的地位和作用本课时主要学习函数的零点,通过研究二次函数的图象性质归纳函数的零点的性质。
本节课的内容起到了承上启下的作用。
本节课重点在于研究函数的零点概念及其存在性,函数零点的概念及求法,函数零点与方程根之间的关系。
难点是理解方程的根与函数零点的关系,利用函数的零点作图。
通过本节课的学习进一步加深学生对函数概念及性质的理解和认识,使学生能够整理出较为系统的函数知识体系和完整的思维方式方法,并由此及彼,帮助后面函数的学习。
二.教学目标:1.知识目标:(1)理解函数零点的定义,能判断二次函数零点的存在性;(2)会求简单函数的零点。
理解函数零点和方程的根的关系。
(3)理解函数零点存在的判定条件。
2.能力目标:通过充分运用函数与方程,数形结合的数学思想方法教学,体验函数零点概念的形成过程,体会数形结合、等价转化的数学思想.同时注重培养学生对于解题方法的灵活性和多样性的掌握。
3.情感态度与价值观目标:感悟形与数不同的数学形态间的和谐统一美,培养学生对事物之间转化的辩证唯物主义观点的认识三.教学重点和难点重点:函数零点的概念及求法,函数零点与方程根之间的关系难点:理解方程的根与函数零点的关系,利用函数的零点作图.教学关键点:从实际出发,在学生获得一定感性认识的基础上,通过观察,比较,归纳进一步提升到理性认识,逐步形成完整的概念,在此基础上结合图象,运用数学结合的数学思想解决问题。
学情分析:学生已经学习过函数的基本性质,本节课函数关系的建立做好了知识准备,在此基础上进行函数的零点的学习,可以将对函数的认识进一步系统化和完善化。
教法分析:(一)教学方式教师引导,学生讨论,与启发探究相结合。
(二)教学手段借助几何画板和函数编辑器等教学软件和投影仪等,展示学生的做图结果,并演示高次函数的图像。
函数的零点教案详细

函数的零点教案详细教学目标:1.理解函数的零点概念;2.掌握求解函数零点的方法;3.能够应用函数零点解决实际问题。
教学准备:1.教师准备白板、黑板和彩色粉笔;2.学生准备教材和笔记。
教学步骤:第一步:概念讲解(10分钟)教师首先解释函数的零点的定义:当函数的自变量取一些值时,函数的值等于零。
即,在坐标系中,函数图像与x轴的交点即为函数的零点。
教师示范画出一条函数图像并指出该图像的零点,并要求学生观察和思考。
第二步:解决一元一次方程(10分钟)教师给出一元一次方程的定义并解释其与函数的零点的关系。
然后,教师以具体的一元一次方程为例,介绍求解一元一次方程的步骤和方法。
第三步:求解函数的零点(20分钟)教师示范以一元一次函数为例,介绍如何求解函数的零点。
教师解释首先要将函数转化为一元一次方程,然后解方程得到函数的零点。
第四步:练习与巩固(20分钟)教师出示几个函数图像,并要求学生找出函数的零点并解释其含义。
然后,教师提供一些函数的表达式,要求学生求解函数的零点。
第五步:应用实例(20分钟)教师给出一些实际问题,要求学生将其转化为函数并求解函数的零点。
例如,商品制造企业的销售函数为y=500-2x,其中x为单位时间内生产的商品数量,y为单位时间内的销售额。
学生需要求解销售额为零的情况,即找出生产多少单位商品时销售额为零。
第六步:总结与展望(10分钟)教师与学生共同总结函数的零点的概念和求解方法,并回顾本节课所学的内容。
最后,教师展望下节课的内容,引起学生的兴趣和思考。
教学反思:本节课通过理论讲解和实际问题的应用,使学生对函数的零点概念有了深入的理解,并掌握了求解函数零点的方法。
通过练习和实例的训练,学生的求解能力得到了提高。
然而,在实际问题的应用中,一些学生仍然存在困难,需要进一步加强训练和巩固。
因此,下节课将继续举一些实际问题进行训练和拓展。
人教B版必修一高中数学第二章第四节《函数的零点》教案

人教B版《必修一》第二章第四节《函数的零点》(第一课时)【教材分析与学情分析】1.本节课是人教B版《必修一》第二章第四节“函数与方程”的第一课时。
高一学生在学习本节内容之前,对三次函数的了解仅限于第二章的幂函数;而利用函数零点与方程根的关系作图也仅限于二次函数。
随着学习内容的加深与扩展,本节课的设计对学生来说,是一次思想方法上的突破和学习观念的提升。
2.任教班级学生数学基础良好。
【课型】新授课【教学目标】1.能说出函数零点的定义,会求简单函数的零点。
2.经历二次函数零点性质推广到一般连续函数的过程,体会“函数与方程”、“转化与化归”、、“数形结合”的数学精神。
3. 用数学的眼光发现问题,并用数学知识方法给予解决;在学习新知的过程中,体会数学的应用价值;树立正确的人生观、价值观以及爱国主义情怀。
【教学准备】1.多媒体技术;2.网络资源;3.三封信件4.图书文献资源和网络资源:对“我国女排发球技术研究”的查阅【教学方法】自主探究、合作探究【教学重点】函数零点的概念与求法,作三次函数图象【教学难点】作三次函数图象、解决简单应用问题【教学过程】(含时间分配)(先准备几封写好的信(其实为最后学习要点的引出埋下伏笔),鼓励课堂活动踊跃的学生)(一)新课引入(5分钟)1.情景引入(激发学生的好奇心)播放中国女排在2016年里约奥运会夺冠的视频,指出女排的夺冠与数学紧密相连。
2.问题引入(激发学生求知欲)(二)概念的形成与深化(5分钟)1.实例引入 ?062=--=y x x x y 取何值时,,当对于函数2.函数的零点3.概念深化 函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x 轴有交点(三)实践与探究(14分钟)1.自主尝试求下列函数的零点:2.总结升华(学生把一般二次函数零点的判定以表格形式给出)3.深入探究(学生自主探究)当二次函数有零点时,请由图象探究:(1)在零点的两侧,函数值符号是否改变?(2)相邻两个零点之间函数值的符号是否相同?1.你能画出函数y=2x+7的图象吗?22.你能画出函数y=x -x-6的图象吗?323.你能画出函数y=x -2x -x+2的图象吗?(1)236(2)y x y x =-+=222(3)(4)21(5)23y x x y x x y x x =+=-+=-+()=0f x x 使得函数的实数的值,叫做这个函数的零点.(学生自主完成)对于二次函数而言: (1)当函数图象穿过零点时,函数值变号; 当函数图象遇到零点但不穿过零点时,函数值不变号. (2)相邻两个零点之间的所有函数值保持同号.(师总结)推广:对任意函数,只要函数图象是连续不断的,上述性质同样成立.(四)应用举例(18分钟)1.(学生亲自投影,面对同学讲解做法,教师适当补充)在这4个区间内,取x 的一些值,以及零点,列出这个函数的对应值表: X … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 … Y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 … 在坐标系内,描点连线,作出图象.x y 0 x 1x 1 x 2 0yx 321.例求函数y=x -2x -x+2的零点,并画出它的图象.322211x x x --+-解:因为 =(x-2)(x-1)(x+1)所以函数的零点为, , 2.x 4--1-11122,+∞∞3个零点把轴分成个区间:(,),(,),(,),()*学生总结方法求函数y=f(x)零点的方法:求方程f(x)=0的根.(常用:因式分解)画三次函数图象的步骤:(1)求函数的零点,用其将x 轴分成几个区间;(2)利用在区间内适当取的x 值及零点,得到图象上的一些点;(3)描点连线,得到图象.2.自主尝试(学生黑板板演)*课下研究课题3.(回扣课头)例 2 研究发现:排球发球的成功率y%与抛球角度x(单位:度)近似满足二次函数关系:216144,25y x x =-+-(3090)x << 在一场排球比赛中,每位发球队员的成功率只有大于80%,才有利于比赛胜出。
8.1.1函数的零点教学设计-2023-2024学年高一上学期数学苏教版(2019)必修第一册

授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
课程基本信息
1.课程名称:函数的零点
2.教学年级和班级:2023-2024学年高一上学期,数学苏教版(2019)必修第一册
3.授课时间:第1课时
4.教学时数:45分钟
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解函数零点的基本概念。函数零点是函数图像与x轴交点的横坐标,它是使函数值为零的输入值。函数的零点可以帮助我们解决方程的根的问题,它在数学和科学领域中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数零点在实际中的应用,以及它如何帮助我们解决问题。
再次,在实践活动环节,学生对于如何利用函数零点解决实际问题还不够熟练。针对这一点,我计划在接下来的教学中,增加更多的生活实例,让学生在解决实际问题的过程中,更好地运用所学的函数零点知识。
此外,我在课堂上的提问和互动环节,发现学生参与度不高。为了提高学生的积极性,我计划改变提问方式,更多地采用开放式问题,引导学生进行思考和讨论。
答案:根据函数值的正负来判断。如果函数在这两个值之间的区间内有一个值为0,则函数在这个区间内有零点。
2.函数零点的求解方法
题型3:求解一次函数的零点。
答案:一次函数的零点为函数的截距,即y轴截距。
题型4:求解二次函数的零点。
答案:二次函数的零点为判别式Δ=0的解,即x1,x2=(-b±√Δ)/(2a)。
-学生能够在作业中正确解答与函数零点相关的实际问题,显示出对函数零点的应用能力。
5.教师评价与反馈:
精品2019-2020年最新高中数学苏教版必修一2.5.1《函数的零点》一等奖教学设计

§2.5 函数与方程2.5.1 函数的零点课时目标 1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数,理解二次函数的图象与x轴的交点和相应的一元二次方程根的关系.2.理解函数零点的概念以及函数零点与方程根的联系.3.掌握函数零点的存在性定理.1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应的ax2+bx+c=0(a≠0)的根的关系2.一般地,我们把使函数y=f(x)的值为0的实数x称为函数y=f(x)的______.3.函数y=f(x)的零点就是方程f(x)=0的________,也就是函数y=f(x)的图象与x轴的交点的______.4.方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有______⇔函数y=f(x)有______.函数零点的存在性的判断方法若函数f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.一、填空题1.二次函数y=ax2+bx+c中,a·c<0,则函数的零点个数是________.2.若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,则下列说法不正确的是________.(填序号)①若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0;②若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0;③若f(a)f(b)>0,有可能存在实数c ∈(a ,b)使得f(c)=0;④若f(a)f(b)<0,有可能不存在实数c ∈(a ,b)使得f(c)=0.3.若函数f(x)=ax +b(a ≠0)有一个零点为2,那么函数g(x)=bx 2-ax 的零点是________.4.已知函数y =f(x)是偶函数,其部分图象如图所示,则这个函数的零点至少有________个.5.函数f(x)=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x>0零点的个数为________.6.已知函数y =ax 3+bx 2+cx +d 的图象如图所示,则实数b 的取值范围是________.7.已知函数f(x)是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______.8.函数f(x)=lnx -x +2的零点个数为________. 9.根据表格中的数据,可以判定方程e x -x -2=0的一个实根所在的区间为(k ,k +1)(k ∈N),则k 的值为________.10.证明:方程x 4-4x -2=0在区间[-1,2]内至少有两个实数解.11.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求m 的取值范围. 能力提升 12.设函数f(x)=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2, x>0,若f(-4)=f(0),f(-2)=-2,则方程f(x)=x 的解的个数是_______________________.13.若方程x2+(k-2)x+2k-1=0的两根中,一根在0和1之间,另一根在1和2之间,求k的取值范围.2.5.1 函数的零点知识梳理1.2个1个0个2个1个 2.零点 3.实数根横坐标4.交点零点作业设计1.2个解析方程ax2+bx+c=0中,∵ac<0,∴a≠0,∴Δ=b2-4ac>0,即方程ax2+bx+c=0有2个不同实数根,则对应函数的零点个数为2个.2.①②④解析对于①,可能存在根;对于②,必存在但不一定唯一;④显然不成立.3.0,-1 2解析∵a≠0,2a+b=0,∴b≠0,ab=-12.令bx2-ax=0,得x=0或x=ab=-12.4.4解析由图象可知,当x>0时,函数至少有2个零点,因为偶函数的图象关于y轴对称,故此函数的零点至少有4个.5.2解析x≤0时,令x2+2x-3=0,解得x=-3.x>0时,f(x)=lnx-2在(0,+∞)上递增,f(1)=-2<0,f(e3)=1>0,∴f(1)f(e3)<0,∴f(x)在(0,+∞)上有且只有一个零点.综上,f(x)在R上有2个零点.6.(-∞,0)解析设f(x)=ax3+bx2+cx+d,则由f(0)=0可得d =0,f(x)=x(ax2+bx+c)=ax(x-1)(x-2)⇒b=-3a,又由x∈(0,1)时f(x)>0,可得a>0,∴b<0.7.3 0解析∵f(x)是R上的奇函数,∴f(0)=0,又∵f(x)在(0,+∞)上是增函数,由奇函数的对称性可知,f(x)在(-∞,0)上也单调递增,由f(2)=-f(-2)=0.因此在(0,+∞)上只有一个零点,综上f(x)在R上共有3个零点,其和为-2+0+2=0.8.2解析该函数零点的个数就是函数y=lnx与y=x-2图象的交点个数.在同一坐标系中作出y=lnx与y=x-2的图象如下图:由图象可知,两个函数图象有2个交点,即函数f(x)=lnx -x +2有2个零点.9.1解析 设f(x)=e 2-(x +2),由题意知f(-1)<0,f(0)<0,f(1)<0,f(2)>0,所以方程的一个实根在区间(1,2)内,即k =1.10.证明 设f(x)=x 4-4x -2,其图象是连续曲线. 因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0. 所以在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解. 11.解 令f(x)=mx 2+2(m +3)x +2m +14.依题意得⎩⎪⎨⎪⎧m>0f 4<0或⎩⎪⎨⎪⎧m<0f 4>0,即⎩⎪⎨⎪⎧m>026m +38<0或⎩⎪⎨⎪⎧m<026m +38>0,解得-1913<m<0.12.3解析由已知⎩⎪⎨⎪⎧16-4b +c =c ,4-2b +c =-2,得⎩⎪⎨⎪⎧b =4,c =2.∴f(x)=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2, x>0.当x ≤0时,方程为x 2+4x +2=x , 即x 2+3x +2=0, ∴x =-1或x =-2; 当x>0时,方程为x =2, ∴方程f(x)=x 有3个解.13.解 设f(x)=x 2+(k -2)x +2k -1.∵方程f(x)=0的两根中,一根在(0,1)内,一根在(1,2)内,∴⎩⎨⎧f0>0f 1<0f2>0,即⎩⎨⎧2k -1>01+k -2+2k -1<04+2k -4+2k -1>0∴12<k<23.。
高中数学《函数图象的变换》教案

高中数学《函数图象的变换》精品教案第一章:函数图象的变换概述1.1 教学目标了解函数图象变换的概念和基本方法。
理解函数图象变换的实质和作用。
1.2 教学内容函数图象的平移变换:水平方向的平移和垂直方向的平移。
函数图象的缩放变换:横向缩放和纵向缩放。
函数图象的旋转变换。
1.3 教学方法采用多媒体演示和实际操作相结合的方式,让学生直观地理解函数图象的变换。
通过例题和练习题,让学生巩固所学内容。
1.4 教学评估通过课堂讲解和练习题,评估学生对函数图象变换概念的理解程度。
通过实际操作和练习题,评估学生对函数图象变换方法的掌握程度。
第二章:函数图象的平移变换2.1 教学目标掌握函数图象的水平方向和垂直方向的平移变换方法。
能够运用平移变换方法改变函数图象的位置。
2.2 教学内容水平方向的平移变换:左加右减的原则。
垂直方向的平移变换:上加下减的原则。
实际操作示例:通过几何画板或函数图象软件,演示函数图象的平移变换过程。
2.3 教学方法通过多媒体演示和实际操作,让学生直观地理解函数图象的平移变换方法。
通过例题和练习题,让学生巩固所学内容。
2.4 教学评估通过课堂讲解和练习题,评估学生对函数图象平移变换方法的理解程度。
通过实际操作和练习题,评估学生对函数图象平移变换的掌握程度。
第三章:函数图象的缩放变换3.1 教学目标掌握函数图象的横向缩放和纵向缩放变换方法。
能够运用缩放变换方法改变函数图象的大小。
3.2 教学内容横向缩放变换:横坐标的乘以一个非零常数。
纵向缩放变换:纵坐标的乘以一个非零常数。
实际操作示例:通过几何画板或函数图象软件,演示函数图象的缩放变换过程。
3.3 教学方法通过多媒体演示和实际操作,让学生直观地理解函数图象的缩放变换方法。
通过例题和练习题,让学生巩固所学内容。
3.4 教学评估通过课堂讲解和练习题,评估学生对函数图象缩放变换方法的理解程度。
通过实际操作和练习题,评估学生对函数图象缩放变换的掌握程度。
高中数学《函数图象的变换》教案

一、教学目标:1. 知识与技能:(1)理解函数图象的平移变换和伸缩变换规律;(2)能够运用变换规律对给定的函数图象进行变换;(3)掌握函数图象的变换在实际问题中的应用。
2. 过程与方法:(1)通过观察、分析、归纳函数图象的变换规律,培养学生的抽象思维能力;(2)利用数形结合的方法,让学生体会数学与实际生活的联系。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点:1. 教学重点:(1)函数图象的平移变换和伸缩变换规律;(2)运用变换规律对函数图象进行变换。
2. 教学难点:(1)理解函数图象的平移变换和伸缩变换规律的推导过程;(2)灵活运用变换规律解决实际问题。
三、教学过程:1. 导入新课:(1)复习旧知识:回顾上一节课所学的函数图象的基本概念;(2)提出问题:如何对已知的函数图象进行变换?2. 知识讲解:(1)讲解函数图象的平移变换规律;(2)讲解函数图象的伸缩变换规律;(3)举例说明变换规律的应用。
3. 课堂练习:(1)让学生独立完成课本上的练习题;(2)挑选几名学生上黑板演示变换过程。
四、课后作业:1. 完成课后练习题;2. 选取一个实际问题,运用所学函数图象的变换规律进行解决。
五、教学反思:通过本节课的教学,学生应该能够掌握函数图象的平移变换和伸缩变换规律,并能够运用这些规律对给定的函数图象进行变换。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和自信心。
要注重培养学生的抽象思维能力和实际应用能力,提高学生解决实际问题的能力。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及练习题的完成情况,了解学生的学习状态。
2. 作业评价:检查学生课后作业的完成质量,评估学生对课堂所学知识的理解和运用能力。
3. 成果展示评价:挑选几名学生展示他们解决问题的成果,评估学生的创新能力和团队合作精神。
函数的零点教案设计

函数的零点教案设计
一、教学目标
1.能够掌握函数的零点以及计算函数的零点的方法。
2.能够熟练使用解一元二次方程组的方法求解函数的零点。
3.能够运用函数的零点解决实际问题。
二、教学准备
1.准备一些实际的例子来让学生理解函数的零点。
2.准备一些计算机软件来帮助学生进行实际操作演示。
三、教学过程
1. 介绍函数的概念:函数(function)是一种特殊的关系,其中每一个输入都有对应一输出,可以用函数表或图标表示,如函数
y=f(x)=2x+1、y=f(x)=x2+1等。
2.介绍函数零点:当函数y=f(x)在其中一点x=a时,取得值
y=f(a)=0,这个点a就是函数f(x)的零点。
3.给出一个典型例子来让学生明白函数的零点的概念:例如有函数
y=f(x)=x2-2x+1,我们求出这个函数的零点,当x=1时,y=f(1)=0,所以x=1就是这个函数的零点。
4.演示如何计算函数的零点:让学生学会运用函数的定义求函数的零点,如让学生学会把函数y=f(x)转化成一元二次方程组,然后使用解一元二次方程组的方法求解函数的零点。
5.运用函数的零点解决实际问题:让学生学会如何运用函数的零点解决实际问题,比如有一个小学生跳远比赛,他的分数满分为90分,比赛结束后他的得分为75分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
-2
13x
y O
【课前练习】 1.函数
12-=x y 的零点是
2. 2.函数
x y 2log = 的零点是
3.函数
12-=x
y 的零点是
4.函数
12
++=x x y 的零点个数是
5.函数
232)(2
--=x x x f 的零点个数是
6.函数y=f( x)的图象如右图,则其零点为
思考:
(1)怎样求函数lnx+2x -6=0的零点呢?零点个数呢?
(2)怎样求函数
()243f x x x =-+的零点呢?零点个数呢?
这节课将学习这类问题,首先介绍一下图象变换
问题1: 怎样由函数)(x f y =的图象得到函数)(a x f y ±=的图象? 怎样由函数)(x f y =的图象得到函数a x f y ±=)(的图象?
课题
§函数图象变换与函数零点
课型 复习
学习目标 ①掌握函数图象平移、对称、翻折变换法则
②会画出一些基本函数图象,并进行平移、对称、翻折变换
③会在同一坐标系中画出两个函数图象,并通过交点个数判断函数零点个数
④能说出函数零点,方程根,图象交点的关系。
重点 会根据图象变换法则,画出相应函数图象
难点 会在同一坐标系中画出两个函数图象,并通过交点个数判断函数零点个数
平 移 变
换
翻
折
变
换
练习2:作出函数2
2-
=x
y的图象
【典例分析】
【课后巩固练习】
1. 函数零点所在区间为( ) A. )0,1(- B. )1,0( C. )2,1( D. )3,2(
2、【2015高考安徽,文4】下列函数中,既是偶函数又存在零点的是( ) (A )y =lnx (B )2
1y x =+ (C )y =sinx (D )y =cosx 3
、函数
的一个正数零点附近的函数值用二分法计算,得数据如下:
那么方程的一个最接近的近似根为( )
A .
B .
C .
D .
4、【2015高考湖南】若函数()|22|x
f x b =--有两个零点,则实数b 的取值范围是 .
5、(07湖南)函数()⎩⎨⎧>+-≤-=1,341
,442x x x x x x f 的图象和函数()x x g 2log =的图象的交
点个数是( )
A.4
B.3
C.2
D.1
2()2x f x e x =+-。