等腰三角形性质导学案

合集下载

1.1等腰三角形的性质和判定导学案

1.1等腰三角形的性质和判定导学案

CAB1.1 等腰三角形的性质和判定班级 姓名 学号 家长签字 完成时间45分钟 【学习目标】1.能证明等腰三角形的性质定理和判定定理.2.了解分析的思考方法.3.经历思考、猜想,并对操作活动的合理性进行证明过程,不断感受证明的必要性、感受合情推 理和演绎推理都是人们认识事物的重要途径.【重点、难点】了解分析的思考方法;合理添加辅助线. 【新知预习】1.以前,我们曾经学习过等腰三角形,你还记得等腰三角形的一些性质吗?不妨我们来回忆一下. 等腰三角形的性质:①等腰三角形的 角相等.(简称“ ”) ②等腰三角形的 、 、 互相重合.(简称“ ”) ③等腰三角形是 对称图形,它的对称轴是: .2.你能用刻度尺画一个等腰三角形,并用作垂线的方法画出它的顶角的平分线吗?若能,请画出并加以证明.【导学过程】活动一:证明:等腰三角形的两个底角相等. 已知:如图,在△ABC 中,AB=AC. 求证:∠B=∠C活动二:证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.思考:如何证明文字命题的正确性?活动三:如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求:(1)写出它的逆命题: .(2)画出图形,写出已知、求证,并进行证明.例1.已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC,且AD∥BC . 求证:AB =AC2.拓展:在上图中,如果AB =AC ,AD∥BC,那么AD 平分∠EAC 吗?为什么?【反馈练习】1.完成第7页《练习》第1、2、3题.2.等腰三角形的一个角为50°,那么它的一个底角为______.3.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有______个.4.已知:如图,锐角△ABC 的两条高BE 、CD 相交于点O ,且OB=OC. 求证:△ABC 是等腰三角形.☆5.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.【作业布置】1.1习题 第2、3、4、题.AB C D E2011-2012学年度第二学期八年级数学校本作业(41)1.1 等腰三角形的性质和判定 编写:宋爱霞 审阅:张元国班级 姓名 学号 家长签字 完成时间40分钟 1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为 . 2.若等腰三角形有两边长为2和5,那么周长 为 .3.若等腰三角形有一个外角等于50°,那么另两个角为 .4.若等腰三角形有一个角等于120°,那么另两个角为 . ★5.若等腰三角形一腰上的高与另一腰的夹角等于30°,那么这个等腰三角形的顶角为 . ★6.若等腰三角形的周长等于12cm ,那么腰长x 的取值范围是 .7.如图在△ABC 中,AB =AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC=_ ____°. 8.如图在△ABC 中,AB =AC ,D 为AC 边上一点,且BD =BC =AD .•则∠A 等于 ( )A .30° B.36° C.45° D.72°9.已知:如图,AB=AC .(1)若CE=BD ,求证:GE=GD ;(2)若CE=mBD (m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).10.如图,在△ABC 中,点O 在AC 上,过点O 作MN ∥BC ,CE与MN 分别交于E 、F ,求证:OE=OF.11.已知△ABC 中,AB =AC ,过△ABC 的一个顶点的一条直线,把△ABC 分成两个小三角形,使得这两个小三角形也是等腰三角形.试画出所有符合条件的图形,并写出被分成的两个小等腰三角形中相等的线段及△ABC 各内角的度数.第9题图 第7题图 第8题图。

等腰三角形的性质导学案

等腰三角形的性质导学案
等腰三角形的性质
授课教师:杨 桢
授课时间:20XX 年 10 月 22 号
课型:新授课
课题:
教 学 目 标
教学 重点 教学 难点 教具资 料准备
13.3.1 等腰三角形
备课人: 杨 桢
审核人:
基础知识: 基本技能: 基本思想 方法: 情感与态度
认识等腰三角形的性质,感受等腰三角形“三线合一”的意义 观察、试验,探索等腰三角形的性质 数形结合与类比的数学思想 培养学生合情据理意识感悟等腰三 角形的实用价值,激发他们的求知欲
称“三线合一”)
3.如图在等腰三角形△ABC中,如果AB=AC,求证: ∠B=∠C
(提示:构造两个全试用其他的方法证明
三、 巩固学习,解决问题 1.例题解析
如图,在△ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,根据题意求: 1、图中有哪几个等腰三角形?2、有哪些相等的角?3、这两组相等的角之 间还有什么关系?4. 求△ABC各个角的度数。
A
D
B
C
2.知识拓展和拔高训练
如图:△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE 求证:AH=2BD
A
四、归纳总结与活动经验
1.等腰三角形的性质 2.等腰三角形的轴对称联系
五、作业布置:P82 4,6 题
板书设计
12.3 等腰三角形 性质 1 性质 2
课后反思
H B
E C
理解等腰三角形的判定
等腰三角形判定和性质的区别,对命题的证明
教师准备:书 尺子 练习册
学生准备:书 尺子 练习本




教学内容
学习笔记
【学习过程】

等腰三角形2 导学案

等腰三角形2 导学案

编号:sx-12-03-003 - 1 - 学生姓名:D C A BE D ABF6.2等腰三角形2 导学案 姓名:【学习目标】1、熟练掌握等腰三角形的性质定理和判定定理,并能灵活的运用进行相关的证明计算。

2、了解分析的思考方法。

3、经历思考、猜想,并对操作活动的合理性进行证明的过程,不断感受证明的必要性。

【重点难点】教学重点 掌握等腰三角形的性质定理和判定定理。

教学难点 运用等腰三角形的性质和判定定理进行证明和计算。

【学法指导】组内分工合作,探究交流,互相补充,是大家都能分析问题,正确写成证明计算的步骤。

【知识链接】(1)等腰三角形两底角的平分线 。

(2)等腰三角形两腰上的高线 。

(3)等腰三角形两腰上的中线 。

【学习过程】 一、回顾检查1、(1)等腰三角形性质定理:等腰三角形的两个底角 。

可以简单叙述为:等 对等 。

三线合一:等腰三角形顶角的 、底边上的 、底边上的 互相重合。

(2)等腰三角形判定定理:有两个角相等的三角形是等腰三角形,简称 等 对等 。

二、问题探究及证明1、等腰三角形两个底角的平分线相等吗?你能证明你的结论吗? 学习方法:组内合作,画图,组员说思路及证明方法,组长和其他组员点评纠正,组内形成完美的做法。

例1 如右图,在△ABC 中,AB=AC,BD,CE 是△ABC 的角平分线求证:BD=AC等腰三角形两腰上的高线相等吗?等腰三角形两腰上的中线相等吗?你能证明你的结论吗?提前想一想,交流,其他人指正。

2、例题探究例1.已知:点D 、E 在△ABC 的边BC 上,AB=AC,AD=AE. 求证:BD=CE提前想一想,交流,其他人指正。

三、小试牛刀1.等腰三角形周长为13㎝,其中一边长为3㎝,则该等腰三角形的底边长为( ) A .7㎝. B .3㎝. C .7㎝或3㎝. D .5㎝. 2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm 3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( )A.40°B .50°C .60°D .30 4.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80° 5.已知:如图AB=AC, ∠ABD=∠ACE.求证:(1)FB=FC (2)BE=CD【归纳小结】 1. 知识点: 2. 经验及教训【当堂测评】1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cm2. 如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )A .①②③B .①②③④C .①②D .①【学习反思】AC编号:sx-12-03-003 - 2 - 学生姓名:D CAB 21EDCA B 6.2等腰三角形3 导学案 姓名:【学习目标】1、熟练掌握等边三角形的判定定理和含有30度角的Rt △的性质,并能灵活的运用进行相关的证明计算。

等腰三角形导学案

等腰三角形导学案

等腰三角形导学案第一课时教学目标:1、理解等腰三角形的性质和判定定理2、利用定理证明解决实际问题任务一:1、 自主学习:〔独立完成,组内交流,课堂展示〕如图1,已知△ABC 中,AB =AC ,AD 是底边上的中线.〔1〕 求证:∠B =∠C ;〔2〕 AD 平分∠A ,AD ⊥BC .图1 归纳:等腰三角形的性质有:①性质1:等腰三角形的两底角 〔简单表达为: 〕∵ ∴ ②性质2:等腰三角形的 互相重合 ∵ ∴ ∵ ∴∵ ∴2、课堂练习:①、等腰三角形一个底角为70°,它的顶角为______.②、等腰三角形一个角为70°,它的另外两个角为 。

③如图3,在△ABC 中AB=AD=DC ,∠BAD=26°,求∠B 和∠C 度数。

图3④如图4,∠BAD=1000,ADBC,垂足为点D ,AB=AC, 求:∠B, ∠1图4任务二1、自主学习:D ACB如图:△ABC中,∠B=∠C,求证;AB=AC归纳:等腰三角形判定定理:〔简单表达为:〕∵∴思考:要证明△ABC是等腰三角形,你都有哪些方法?3、稳固练习:如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点。

⑴试说明△OBC是等腰三角形;⑵连接OA,试判断直线OA与线段BC的关系?并说明理由。

课堂检测:1、等腰三角形有两条边长为4cm和9cm,则该三角形的周长是〔〕A.17cm B.22cm C.17cm或22cm D.18cm2、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是〔〕A.40° B.50° C.60° D.30°3.如图,已知∠1=∠2=∠3,∠B=∠C则图中相等的线段有〔〕A.2对 B.3对 C.4对 D.5对4、如下图,∠CAB=∠DBA,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.等腰三角形导学案第二课时一、知识回忆:COEA BD1.如图:△ABC中,⑴假设AB=AC,则___ ____;⑵假设AB=AC, ∠BAD=∠CAD,则____ ___,____假设AB=AC, BD=CD,则___ __,__ ____;假设AB=AC, AD⊥BC,则__ ___,__ ____。

八年级上册《等腰三角形》导学案

八年级上册《等腰三角形》导学案

12.3.1《等腰三角形》导学案责任学校 责任教师一、学习目标1、 巩固等腰三角形的概念,掌握等腰三角形的性质,并能灵活应用等腰三角形的性质解决一些实际问题。

2、 通过独立思考,交流合作,体会探索数学结论的过程,发展推理能力。

二、预习内容自学课本49页至51页,完成下列问题:1、动手操作:把一张长方形的纸片按课本中虚线对折,然后沿实线剪开,再把它展开,得到什么三角形?2、有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 ,两腰的夹角叫 ,腰和底边的夹角叫 。

3、如图,在△ABC 中,AB=AC ,标出各部分名称。

4、(1) 观察剪出的等腰三角形是否为轴对称图形?它的对称轴在哪里?(2) 将等腰三角形沿折痕对折,观察重合的线段和角,你有什么发现?猜想: 。

5、如图,在△ABC 中, (1)如果AB=AC,且∠1=∠2,那么 = ,且 。

(2)如果AB=AC,且BD=DC ,那么 = ,且 。

(3)如果AB=AC,且AD ⊥BC ,那么 = ,且 。

等腰三角形性质: 性质1 等腰三角形的两个 相等(简写成“ ”)。

性质2 等腰三角形 、 、 互相重合。

三、探究学习1、证明等腰三角形性质1、2:B DAC1 22、如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数。

.四、巩固测评1、(1)如图.在△ABC 中,如果AB=AC,那么∠________=∠_______; (2)如图.在△ABC 中, AB=AC,点D 在BC 上。

如果∠BAD=∠CAD,那么 AD ⊥BC , BD=CD 。

如果BD=CD,那么∠________=∠_______, _______⊥______; 如果AD ⊥BC,那么_______________, _____________。

2、(1)如图,在下列等腰三角形中,分别求出其它两角的度数。

(2)等腰三角形一个角为130°,它的另外两个角为 。

等腰三角形的性质(导学案)

等腰三角形的性质(导学案)

等腰三角形的性质学习目标:1、通过剪纸、折纸等活动,知道等腰三角形、腰、底、顶角,底角的概念。

2、理解等腰三角形的性质,并学会应用等腰三角形的性质。

学习重点:等腰三角形的性质的探索和应用。

学习难点:等腰三角形的性质的验证。

学习过程一、做一做,请同学们剪出两个全等的等腰三角形(提前准备剪刀与两张A4纸张)二、新授1、请同学们说出等腰三角形的概念。

三角形中,的三角形是等腰三角形。

2、小练习:1) 已知等腰三角形的腰等于6cm ,底等于8cm ,则此三角形的周长为 。

2)已知等腰三角形的一边等于6cm ,另一边等于8cm ,则此三角形的周长为 。

3)等腰三角形的一边等于4cm ,另一边等于8cm ,则此三角形的周长为 。

3、折纸,请同学们将等腰三角形折叠,折叠后, 它的三条边与三个角等发生了什么变化。

(图13.3-14、猜想,等腰三角形有哪些性质?结论1:等腰三角形的 相等。

结论2:等腰三角形的 , , 相互重合。

5、小练习(将角度标在所剪的等腰三角形中来进行计算。

)1)等腰三角形中,顶角是40°,那么它的底角度数为 . 2)等腰三角形中,底角是40°,那么它的顶角度数为 . 3)等腰三角形中,一个角是36°,那么它的顶角度数为 .课后练习题1、如图,AB=AC BD=BC ,若∠BAC =40, 则∠ABD 的度数是( )A 、20B 、30C 、35D 、402、已知:如图,房屋的顶角∠BAC=100 º, 过屋顶A 的立柱AD 垂直B C , 屋椽AB=AC 。

求顶架上∠B 、∠C 、∠1、∠2的度数.3、如图,△ABC 中,AB =AC ,D ,E 为BC 上两点,AD =AE ,求证:BD =CE.练习步骤区域:证明题步骤区:。

(完整版)等腰三角形的判定导学案

(完整版)等腰三角形的判定导学案

等腰三角形的判定导学案主备人 刘满清学习目标:1、掌握等腰三角形的判定定理,提高逻辑推理能力。

2、运用等腰三角形的判定定理及性质,解决相关问题重点:等腰三角形的判定定理难点:等腰三角形判定与性质的区别。

预习案使用说明&学法指导:1、用10分钟左右的时间阅读教材P51-53课本的内容,自组高效预习,提升自己的逻辑推理能力。

2、完成教材助读设置的问题,然后结合课本的基础知识和例题完成预习自测;3、将预习中不能解决的问题标出来,并填写到后面“我的疑惑”中;4、限时、独立完成。

一、旧知回顾:1、总结等腰三角形的性质。

2、等腰三角形的性质有什么作用?学习建议:复习上节内容并完成以下问题1、等腰三角形的两边长分别为6,8,则周长为2、等腰三角形的周长为14,其中一边长为6,则另两边分别为3、等腰三角形的一个角为70°,则另外两个角的度数是4、等腰三角形的一个角为120°则另外两个角的度数是5、如图,在△ABC 中,AB=AC ,(1)若AD 平分∠BAC ,那么 、(2)若BD =CD ,那么 、(3)若AD ⊥BC,那么 、二、教材组读:1、具备什么条件的三角形是等腰三角形?为什么?2、等腰三角形的判定的作用是什么?三、预习自测:1、已知△ABC 中,∠A=36°,∠C=72°,△ABC 是______三角形2、书53P 练习第1题3、书53P 练习第2题我的疑惑:请将你预习中未能解决的问题和有疑惑的问题写下来,待课堂与老师和同学探究解决。

探究案一、 学始于疑——我思考、我收获1可用什么方法证明一个三角形是等腰三角形?2、等腰三角形的判定方法与性质有什么区别与联系?学习建议请同学们用3分钟的时间认真思考这些问题,并结合预习中自己的疑惑开始下面的探究学习。

二、 质疑探究——质疑解惑、合作探究(一) 基础知识探究探究点 等腰三角形的判定方法如图,在△ABC 中,若∠B=∠C ,能否得出△ABC 是等腰三角形?你能证明吗?思考:怎么作辅助线?目的是什么?在一般的三角形中,如果有两个角相等,•那么它们所对的边有什么关系?即 如果一个三角形有两个角相等,那么这两个角所对的 也相等(简写成 )(二) 知识综合应用1、看书52P 的例2的题目思考:(1)、猜想AE 与BC 的位置关系是什么?(2)、证明两条直线平行的方法有哪些?(3)、证明角相等有哪些方法?证明2、看书52P 的例3的题目思考:(1)、CD 与CE 相等吗? 你有哪些判断的方法?(2)、已知底边和底边上的高,你能用尺规作图的方法作出这个等腰三角形吗?我的知识网络图等腰三角形的判定⎩⎨⎧判定定理定义当堂检测:1、如图,其中△ABC 是等腰三角形的是( )2、如图,AC 和BD 相交于点O ,且AB ∥DC ,OA=OB ,求证:OC=OD3、已知:⊿ABC 中, ∠ A=∠B=∠C 求证:AB=AC=BC有错必纠 我的收获_____________________________________________. 训练案;1课本P 56复习巩顾第2题。

等腰三角形 导学案

等腰三角形 导学案
课题
1.4、等腰三角形
Xx市初中教师:
课型
学习
目标
1.经历探索等腰三角形性质的过程,掌握等腰三角形的轴对称性及其相关性质,进一步体验轴对称的特征,发展空间观念.
2.经历探索等边三角形轴对称性和内角性质的过程,掌握这个性质。
学习过程
师生活动
学习笔记
一、复习回顾:
1、什么叫一条角平分线?
2、角平分线的性质是什么?
请你在下面写出等腰三角形的性质:
三、交流与发现:
任意画一个等边三角形ABC
(1)等边三角形是轴对称图形吗?找出它的对称轴.
(2)你能发现它的哪些性质?
学习笔记
师生活动
总结如下:
等边三角形是___对称图形.
等边三角形每个角的平分线和这个角的对边上的中线、高线重合(三线合一),它们所在的直线都是等边三角形的对称轴.等边三角形共有__条对称轴.
2、等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()
A. 9cmB. 12cm
C. 9cm或12cmD.在9cm与12cm之间
师生活动
学习笔记
3、如图,等腰△ABC中,AD⊥BC于D,已知DC=2cm,AB=3cm,则△ABC的周长为___________。
4、已知:等腰三角形的一个角是80°,则它的另外两个角是。
A. 36°B. 32°ቤተ መጻሕፍቲ ባይዱ. 64°D. 72°
3、等腰三角形的对称轴是___________。
4、有一角是60°的等腰三角形是_____________,它有_____________条对称轴。
分别找出如图所示中各个图形的对称轴。
练习二、
1、等腰三角形一腰上的高与底边所成的角等于()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学《等腰三角形》导学案
编写人:高美娥审核人:乔社美杨印婷编写时间:2011-10-17
【学习目标】:1、理解等腰三角形概念,能够判断等腰三角形。

2、通过小组合作探究,发现并理解等腰三角形的性质。

3、能够利用等腰三角形的性质解决相关题目。

【重点难点】:探索并发现等腰三角形的性质
【学法指导】:主动探索,小组合作
【知识链接】:轴对称知识,角的平分线,
【学习过程】
一、预习引领
1.
2.等腰三角形是轴对称图形吗?请找出它的对称轴.
3、三角形按边来分类,可分为三角形和三角形。

4、有两边相等的三角形叫,相等的两边叫,另一边叫
两腰的夹角叫,腰和底边的夹角叫 (请在下图中标出来)5、如图,在△ABC中,AB=AC,标出各部分名称
二、探究新知
1.把上面活动中剪出的△ABC 对折,找到对称轴,折痕为AD。

找出其中重
D
D
D 合的线段和角填入下表:
试看。

2.你能验证折纸得到的结论吗?试试看.
探究一、如图在等腰三角形△ABC 中,如果AB=AC,且AD 平分∠BAC,
求证:AD ⊥BC BD=DC 证明:
探究二、如图在等腰三角形△ABC 中,如果AB=AC 且D ⊥BC,
求证:AD 平分∠BAC BD=DC 证明:
探究三、如图在等腰三角形△ABC 中,如果AB=AC 且BD=DC,
求证:AD 平分∠BAC D ⊥BC
证明:
归纳总结:
性质1 等腰三角形的两个 相等(简写成“ ”)
性质2 等腰三角形 、 、 互相重合。

D
三.学以致用
1.已知:如图,房屋的顶角∠BAC=100°,过屋顶A 的立柱AD ⊥BC ,屋AB=AC
求顶架上∠B 、∠C 、∠BAD 、∠CAD 的度数.
解:
四、课堂达标
1.在△ABC 中,AB =AC .
若∠A =50°,则∠B = °,∠C = °; 若∠C =60°,则∠A = °,∠B = °; 若∠A =∠B ,则∠A = °,∠C = °.
2.等腰三角形的一个角是30°,则它的底角是 .
3.等腰三角形的周长是24 cm ,一边长是6 cm ,则其他两边的长分别是 .
4. 如图已知△ABC 中,点D 、E 在BC 上,AB=AC ,AD=AE 。

请说明BD=CE 的理由。

五、拓展延伸,灵活应用
如图5, 试一试,你能求出五星红旗上每个角的度数吗?
【小结】
1. 总结本节课收获(知识与方法)
2. 本节课我学会了 。

【学习反思】
B D A
D
A
C
D E 解:
解:。

相关文档
最新文档