函数的单调性自己总结
有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇有关高一数学必修一函数知识点总结4篇积累通识知识可以让我们对各种事物有更全面、更深刻的理解和把握。
积累专业知识可以让我们在自己的领域内成为专家,获得更高的社会地位和经济回报。
下面就让小编给大家带来高一数学必修一函数知识点总结,希望大家喜欢! 高一数学必修一函数知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一函数知识点总结篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
高中数学中的函数单调性性质总结

高中数学中的函数单调性性质总结高中数学中,函数单调性是非常重要的概念之一。
在函数的研究中,单调性是指一种自变量变化时,函数值的增减性质。
在本文中,我们将对函数单调性的性质进行总结和探讨,希望能对同学们更好地掌握这一概念。
一、函数单调性及其分类函数单调性是指在定义域内,自变量变大时,函数值单调递增或者单调递减,称为函数的单调性。
具体来说,若对于定义域内的任意两个自变量,我们有f(x2) ≥ f(x1) ,则函数为单调递增函数;若对于定义域内的任意两个自变量,我们有f(x2) ≤ f(x1) ,则函数为单调递减函数。
二、单调性的判定方法首先,我们需要了解单调性的判定方法。
通常有两种方法:导数法和图像法。
导数法,顾名思义,通过计算函数的导数来判断函数的单调性。
具体来说,若f‘(x)>0,则函数单调递增;若f‘(x)<0,则函数单调递减。
图像法,我们可以画出函数的图像,并观察函数的走向和斜率。
若函数的图像在定义域内逐渐上升,则函数单调递增;若函数的图像在定义域内逐渐下降,则函数单调递减。
三、几类常见函数的单调性1. 常函数:常函数的导数为0,因此常函数的单调性为常数函数。
2. 一次函数:一次函数是一条直线,因此单调性的判定非常简单。
若a>0,则函数单调递增;若a<0,则函数单调递减。
3. 幂函数:幂函数分为2种情况:a>0和a<0。
当a>0时,若n为偶数,则函数在左半轴上单调递减,在右半轴上单调递增;若n为奇数,则函数在整个定义域内单调递增。
当a<0时,若n为偶数,则函数在左半轴上单调递增,在右半轴上单调递减;若n为奇数,则函数在整个定义域内单调递减。
4. 指数函数:指数函数y=a^x,a>0且a≠1。
当a>1时,函数单调递增;当0<a<1时,函数单调递减。
5. 对数函数:对数函数y=logax,a>0且a≠1。
当a>1时,函数单调递增;当0<a<1时,函数单调递减。
高三数学知识点总结6:函数的单调性

(四)函数的单调性1.函数单调性的定义(局部性质)(1)设函数)(x f 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值,,21x x ①数:当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 是单调增函数;(形:从左往右看图象逐渐上升;)②当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 是单调减函数(形:从左往右看图象逐渐下降.)(2)等价形式:任意,21x x ≠都有0)()(2121>--x x x f x f (或写成0)()]()([2121>-⋅-x x x f x f )都表明)(x f 在区间上单调增. 注:xy 1=的单调减区间为)0,(-∞和),0(+∞,单调区间有两段一般需要用“和”,不能“ ”. 2.判断单调性的方法(用来证明单调性的只有定义法和导数法)(1)定义法:取值,作差,变形,定号,结论. (2)利用函数的运算性质:若)(),(x g x f 为增函数,则)()(x g x f +为增,)0)((>a x af 为增,)(x f 为增,)0)((<a x af 为减,)(1x f 为减. (注:只能用“增”+“增”⇒“增”,“减”+“减”⇒减,其他不能确定单调性.)(3)复合函数单调性法则:同增异减.(内函数与外函数单调性相同,则整体增;内函数与外函数单调性相反,则整体减.)(4)导数法函数)(x f y =在区间D 上单调增⇔0)('≥x f 在D 上恒成立且在D 的任何子区间上不恒等于0;函数)(x f y =在区间D 上单调减⇔0)('≤x f 在D 上恒成立且在D 的任何子区间上不恒等于0.(注:如果问单调区间,不要带等号.令,0)('>x f 求单调增区间;令,0)('<x f 求单调减区间.)(5)图像法3.分段函数求单调性的方法①左段单调性与整体一致;②右段单调性与整体一致;③若整体增(减),则左段函数在端点的函数值)(≥≤右段函数在端点的函数值.。
高一数学单调性知识点总结

高一数学单调性知识点总结在高中数学学习中,单调性是一个非常重要的概念。
单调性可以帮助我们理解函数的增减趋势以及函数图像的形状。
在本文中,我们将总结高一数学中与单调性相关的知识点,并探讨其应用。
一、函数的单调性函数的单调性是指函数在定义域内的增减趋势。
具体来说,我们可以分为递增和递减两种情况进行讨论。
1. 函数的递增性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)<f(b),那么我们称函数为递增函数。
简单来说,递增函数的函数值随着自变量的增大而增大。
通过求导可以帮助我们判断函数的递增性。
如果函数的导数大于零,则函数递增;如果导数小于零,则函数递减;如果导数等于零,则函数在该区间内的单调性不确定,需要进行进一步的分析。
2. 函数的递减性如果对于定义域内的任意两个实数a和b,当a<b时有f(a)>f(b),那么我们称函数为递减函数。
递减函数的函数值随着自变量的增大而减小。
二、函数图像的单调性分析在图像上观察函数的单调性,可以通过以下几个方面来判断。
1. 函数图像在某个区间内递增或递减通过观察函数图像,在某个区间内如果图像整体上升,则该区间内函数递增;如果图像整体下降,则该区间内函数递减。
2. 函数图像在特定点的切线斜率通过求导函数,可以得到函数的导函数。
根据导函数的正负性,可以判断函数图像在特定点的切线斜率的正负。
如果导函数大于零,则函数图像在该点的切线斜率大于零,即函数递增;如果导函数小于零,则函数图像在该点的切线斜率小于零,即函数递减。
3. 函数图像的拐点与极值点在函数图像上,拐点和极值点可能对函数的单调性产生影响。
如果在拐点或极值点的左侧函数递增,在右侧函数递减,或者相反,那么拐点或极值点就是函数单调性发生改变的点。
三、应用举例单调性是数学中的一个重要概念,有许多实际应用。
1. 市场需求曲线在经济学中,市场需求曲线通常被认为是递减函数。
这意味着当商品价格上涨时,需求量下降;当价格下降时,需求量增加。
函数单调性知识点总结高中

函数单调性知识点总结高中一、基本概念函数单调性是指在定义域上函数值的变化趋势。
具体来说,如果对于函数f(x),当x1 < x2时有f(x1) < f(x2),则称函数f(x)在区间(x1, x2)上是增函数;如果对于函数f(x),当x1 <x2时有f(x1) > f(x2),则称函数f(x)在区间(x1, x2)上是减函数。
综合起来,可以将函数的单调性分为增函数、减函数和不单调函数。
其次,函数的单调性还与导数的正负有关。
若函数f(x)在区间I上可导,则:1. 若f'(x) > 0对于x∈I,即f(x)严格递增;2. 若f'(x) < 0对于x∈I,即f(x)严格递减;3. 若f'(x) = 0对于x∈I,即f(x)在区间I上是常数函数或拐点函数,不能确定其单调性。
对于定义在闭区间[a, b]上的函数f(x),其单调性还需考虑在端点处的情况。
若f(x)在[a, b]上是增函数,且在a处有定义域,则称f(x)在[a, b]上是关于x的增函数;若f(x)在[a, b]上是减函数,且在a处有定义域,则称f(x)在[a, b]上是关于x的减函数。
二、函数单调性的判定方法1. 利用函数的导数判定单调性函数f(x)在区间I上是增函数,当且仅当f'(x) > 0对于x∈I;函数f(x)在区间I上是减函数,当且仅当f'(x) < 0对于x∈I。
因此,判定函数的单调性,可通过求导数并考察导数的正负来进行。
2. 利用函数的增减表判定单调性若函数f(x)在区间I上可导,则可根据f'(x)的正负或0来构建增减表。
增减表是一个用来判定函数单调性的表格,通过列出各点的f'(x)值,来判断函数在各点的单调性。
三、函数单调性的应用1. 函数的最值问题对于一个定义在区间[a, b]上的函数f(x),若可判定出f(x)在[a, b]上为增函数,则f(x)在[a, b]上的最小值为f(a),最大值为f(b);若可判定出f(x)在[a, b]上为减函数,则f(x)在[a, b]上的最小值为f(b),最大值为f(a)。
证明函数单调性的方法总结归纳

证明函数单调性的方法总结归纳1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.搜集整理,仅供参考学习,请按需要编辑修改。
函数单调知识点归纳总结

函数单调知识点归纳总结一、函数单调性的定义1. 单调递增函数对于定义域内的任意x1和x2,若x1<x2恒成立,则有f(x1)<=f(x2)成立,则称函数f(x)是在该定义域上是单调递增函数。
2. 单调递减函数对于定义域内的任意x1和x2,若x1<x2恒成立,则有f(x1)>=f(x2)成立,则称函数f(x)是在该定义域上是单调递减函数。
二、函数单调性的性质1. 如果函数f(x)在定义域内具有一阶导数且导数恒大于0,则函数f(x)是在该定义域上是单调递增函数;如果函数f(x)在定义域内具有一阶导数且导数恒小于0,则函数f(x)是在该定义域上是单调递减函数。
2. 函数的单调性与导数的关系:若函数f(x)在定义域上的一阶导数大于0,则函数f(x)在该定义域上是单调递增函数;若函数f(x)在定义域上的一阶导数小于0,则函数f(x)在该定义域上是单调递减函数。
3. 在具有一阶导数的情况下,如果函数f(x)在定义域上导数恒大于0,则函数f(x)的单调递增区间为(-∞,+\infty);如果函数f(x)在定义域上导数恒小于0,则函数f(x)的单调递减区间为(-\infty,+\infty)。
4. 对于具有n阶导数的函数f(x),通过求解导数的符号变化,可以得到函数f(x)在定义域上的单调性和拐点位置。
三、求解函数的单调区间1. 使用导数符号变化法求解函数的单调区间:首先求出函数f(x)的一阶导数,并求出导数的零点,然后将定义域分成几个子区间,然后再求解导数对应的区间上的符号,得到函数的单调性。
2. 使用导数的恒定性求解函数的单调区间:根据导数的恒定性可以快速求出函数的单调区间,比如函数的导数在某个区间上恒大于0,则函数在该区间为单调递增函数。
四、与单调性相关的知识1. 函数的最值。
在函数的单调性的基础上,可以求解函数的最值,对于单调递增函数来说,函数在定义域上的最小值为f(x1);对于单调递减函数来说,函数在定义域上的最大值为f(x2)。
单调性函数知识点总结

单调性函数知识点总结一、基本概念1. 单调性在数学中,函数的单调性是指函数的增减性质,即函数在定义域内的增减情况。
如果函数在其定义域内严格递增或者严格递减,那么我们就称这个函数是单调函数。
2. 单调递增和单调递减函数$f(x)$的定义域是一个区间$I$,如果对任意的$x_1, x_2 \in I$,当$x_1 < x_2$时,有$f(x_1) \leq f(x_2)$,那么称函数$f(x)$在区间$I$上是单调递增的;如果对任意的$x_1, x_2 \in I$,当$x_1 < x_2$时,有$f(x_1) \geq f(x_2)$,那么称函数$f(x)$在区间$I$上是单调递减的。
3. 严格单调递增和严格单调递减如果对任意的$x_1, x_2 \in I$,当$x_1 < x_2$时,有$f(x_1) < f(x_2)$,那么称函数$f(x)$在区间$I$上是严格单调递增的;如果对任意的$x_1, x_2 \in I$,当$x_1 < x_2$时,有$f(x_1) > f(x_2)$,那么称函数$f(x)$在区间$I$上是严格单调递减的。
4. 单调性与导数函数的单调性与导数之间有一定的关系。
如果函数在某个区间内单调递增,那么其在这个区间内的导数恒大于等于零;如果函数在某个区间内单调递减,那么其在这个区间内的导数恒小于等于零。
二、判断单调性的方法1. 导数法通过求函数的导数,然后分析导数的正负来判断函数的单调性。
当导数大于零时,函数递增;当导数小于零时,函数递减。
例如,对于函数$f(x) = x^2$,求导可得$f'(x) = 2x$。
当$x>0$时,导数大于零,即函数单调递增;当$x<0$时,导数小于零,即函数单调递减。
2. 一阶导数和二阶导数法通过分析函数的一阶导数和二阶导数的正负性来判断函数的单调性。
当一阶导数恒大于零且二阶导数恒小于零时,函数单调递增;当一阶导数恒小于零且二阶导数恒大于零时,函数单调递减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性(局部性质)及最值1、增减函数(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x 1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.(2)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种2、图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.3、单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.习 题1、判断函数单调性(1)下列函数中,在区间(0,2)上为增函数的是( )A. y=-x+1B. y=xC. y=x2-4x+5D. y=x 2(2)已知f(x)是R 上的增函数,若令F (x )=f(1-x)-f(1+x),则F (x )是R 上的( )A.增函数B.减函数C.先减后增的函数D.先增后减的函数 (3) 在区间(0,+∞)上不是增函数的函数是( )A .y=2x +1B .y=3x2+1C .y=x 2D .y=2x2+x +1(4)下列函数中,在区间(0,+∞)上不是增函数的是( )A .y =2x +1B .y =3x2+1C .y =2xD .y =|x|(5) 下列函数中,在)0,(-∞上为减函数的是( )A.y=3xB.y=-x2C.y=︱x ︱D.y=2x+1(6) 下列函数中,在区间上为增函数的是( ).A .B .C .D .(7)定义在R 上的偶函数f (x )的部分图象如图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是( )A .y =x 2+1B .y =|x |+1C .y =⎩⎪⎨⎪⎧ 2x +1,x ≥0,x 3+1,x <0D .y =⎩⎪⎨⎪⎧e x,x ≥0,e -x ,x <0以下注意复合函数单调性的判断(8)已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数答案:(1)B (2)B (3) C (4)C (5) C (6) D (7)C (8)A2、 求函数的单调区间(1) 函数y=542)21(--x x 的递减区间是__________________.(2) 函数y =-(x -3)|x|的递增区间是________.(分段函数作图) (3) 函数|1|ln )(-=x x f 的单调递减区间为 ________.(分段函数作图) (4) 函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)(5)函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞(6) 求函数f (x )=x +a 2x (a >0)的单调区间.答案:(1)[2,+∞] (2)[0,32] (3))1,(-∞ (4)B (5)C(6)解:∵函数的定义域为{x |x ∈R ,且x ≠0},设x 1、x 2≠0,且x 1<x 2, f (x 1)-f (x 2)=x 1+a 2x 1-x 2-a 2x 2=(x 1-x 2)+a 2x 2-x 1x 1·x 2=x 1-x 2x 1·x 2-a 2x 1·x 2.(1)当x 1<x 2≤-a 或a ≤x 1<x 2时,x 1-x 2<0,x 1·x 2>a 2,∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-a ]上和在[a ,+∞)上都是增函数.(2)当-a ≤x 1<x 2<0或0<x 1<x 2≤a 时,x 1-x 2<0, 0<x 1·x 2<a 2,∴f (x 1)-f (x 2)>0,∴f (x 1)>f (x 2), ∴f (x )在[-a,0)和(0,a ]上都是减函数.3、 根据函数单调性求得参数的取值范围(x 的取值范围)(1)函数y=(2k+1)X+b 在(-∞,+∞)上是减函数,则( )A.k>21 B.k<21 C.k>-21 D.k<-21 (2) 函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.0<a<21 B.a<-1或a>21 C.a>21D.a>-2 (3) 函数y =2x2-(a -1)x +3在(-∞,1]内递减,在(1,+∞)内递增,则a 的值是( )A .1B .3C .5D .-1(4)已知函数f(x)=ax+logax (a >0且a ≠1)在[1,2]上的最大值与最小值之和为loga2+6,则a 的值为________.(5)已知关于x 的函数y=loga(2-ax)在[0,1]上是减函数,则a 的取值范围是________ (6)函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .(21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)(7)已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥3(8) 已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)(9)f (x )=⎩⎪⎨⎪⎧a x(x >1)⎝⎛⎭⎫4-a 2x +2 (x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)(10) 若函数f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数a 的取值范围是________.(11)设函数f(x)=x+xa(a>0). ①求函数在(0,+∞)上的单调区间,并证明之; ②若函数f(x)在[a-2,+∞]上递增,求a 的取值范围.(12) 已知函数f (x )=a -1|x |.①求证:函数y =f (x )在(0,+∞)上是增函数;②若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.(13) 函数f (x )=ax +1x +2在区间(-2,+∞)上是递增的,求实数a 的取值范围.答案:(1)D (2)C (3)C (4) 2 (5)(1,2) (6)B (7)A (8)C(9)B (10) 12<a ≤23(11)解析:(1)f(x)在(0,+∞)上的增区间为[a ,+∞],减区间为(0,a ). 证明:∵f ′(x)=1-2xa,当x ∈[a ,+∞]时, ∴f ′(x)>0,当x ∈(0,a )时,f ′(x)<0.即f(x)在[a +∞]上单调递增,在(0,a )上单调递减.(或者用定义证) (2)[a-2,+∞]为[a ,+∞]的子区间,所以a-2≥a ⇒a-a -2≥0⇒(a +1)( a -2)≥0⇒a -2≥0⇒a ≥4.(12)解:(1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0. f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0. ∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.可证h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3,∴a 的取值范围为(-∞,3]. (13)解:f (x )=ax +1x +2=a (x +2)+1-2a x +2=1-2ax +2+a .任取x 1,x 2∈(-2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1-2a x 1+2-1-2ax 2+2=(1-2a )(x 2-x 1)(x 1+2)(x 2+2). ∵函数f (x )=ax +1x +2在区间(-2,+∞)上为增函数,∴f (x 1)-f (x 2)<0.∵x 2-x 1>0,x 1+2>0,x 2+2>0,∴1-2a <0,a >12.即实数a 的取值范围是⎝⎛⎭⎫12,+∞.4、根据函数单调性求x 的取值范围(1)若函数f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f(8x-16)的解集为_______________. (2)已知函数f(x)为R 上的减函数,则满足f(|x|)<f(1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)(3)已知函数f(x)是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f(x +1)|<1的解集的补集是( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)(4)已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1()3f 的x 取值范围是A .(13,23)B .(∞-,23)C .(12,23)D .⎪⎭⎫ ⎝⎛+∞,32答案:(1)(2,716) (2)D (3)D (4)C5、根据函数单调性求函数最值(1)已知定义在R 上的奇函数f(x)满足f(1+x)=f(1-x),且f(x)在区间[3,5]上单调递增,则函数f(x)在区间[1,3]上的( )A .最大值是f(1),最小值是f(3)B .最大值是f(3),最小值是f(1)C .最大值是f(1),最小值是f(2)D .最大值是f(2),最小值是f(3)(2)定义新运算⊕:当a≥b 时,a ⊕b =a ;当a<b 时,a ⊕b =b2,则函数f(x)=(1⊕x)x -(2⊕x), x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6D .12(3)函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值的和为a ,则a =________.(4)已知定义域为[0,1]的函数f (x )同时满足:①对于任意的x ∈[0,1],总有f (x )≥0;②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2).Ⅰ求f (0)的值; Ⅱ求f (x )的最大值;Ⅲ若对于任意x ∈[0,1),总有4f 2(x )-4(2-a )f (x )+5-4a ≥0,求实数a 的取值范围.答案:(1)A (2)C (3)12(4)解:Ⅰ对于条件③,令x 1=x 2=0得f (0)≤0, 又由条件①知f (0)≥0,故f (0)=0. Ⅱ设0≤x 1<x 2≤1,则x 2-x 1∈(0,1),∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)≥f (x 2-x 1)+f (x 1)-f (x 1)=f (x 2-x 1)≥0. 即f (x 2)≥f (x 1),故f (x )在[0,1]上递增,从而f (x )的最大值是f (1)=1.Ⅲ因f (x )在[0,1]上是增函数,则f (x )∈[0,1],又4f 2(x )-4(2-a )f (x )+5-4a ≥0⇒a ≤4f 2(x )-8f (x )+54-4f (x )对x ∈[0,1)恒成立,设y =4f 2(x )-8f (x )+54-4f (x )=1-f (x )+14[1-f (x )]≥1,则a ≤1.6、 根据函数单调性判断函数值大小(1)设函数f(x)在(-∞,+∞)上是减函数,则下列不等式正确的是( )A.f(2a)<f(a)B.f(a 2)<f(a) C.f(a 2+a)<f(a) D.f(a 2+1)<f(a) 答案:D(2)定义在R 上的偶函数f (x )满足:对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)(3)已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9) (4)已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f (a )+f (b )≤-f (a )+f (b )]B .f (a )+f (b )≤f (-a )+f (-b )C . f (a )+f (b )≥-f (a )+f (b )]D .f (a )+f (b )≥f (-a )+f (-b ) (5)定义在R 上的函数f (x )满足f (-x )=-f (x +4),当x >2时,f (x )单调递增,如果x 1+x 2<4,且(x 1-2)(x 2-2)<0,则f (x 1)+f (x 2)的值( ) A .恒小于0 B .恒大于0 C .可能为0 D .可正可负答案:(1)D (2)A (3)C (4)B (5)A。