一次函数的错题集汇总8班

合集下载

一次函数易错题汇编

一次函数易错题汇编

一次函数易错题汇编一、选择题1.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.2.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( )A .0b <B .2b <C .02b <<D .0b <或2b >【答案】D【解析】【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2.【详解】解∵B 点坐标为(b ,-b+2),∴点B 在直线y=-x+2上,直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图, ∵A (2,0),∴∠AQO=45°,∴点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,∴b 的取值范围为b <0或b >2.故选D .【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(b k-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .4.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=V 23, 故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.5.已知正比例函数y=kx (k≠0)经过第二、四象限,点(k ﹣1,3k+5)是其图象上的点,则k的值为()A.3 B.5 C.﹣1 D.﹣3【答案】C【解析】【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k﹣1),解得:k1=﹣1,k2=5,因为正比例函数的y=kx(k≠0)的图象经过二,四象限,所以k<0,所以k=﹣1,故选C.【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.6.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时, 根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误;④由图象知x=t 时,动车到达乙地,∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2B .8C .﹣2D .﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A .考点:一次函数图象上点的坐标特征.8.如图,把 Rt ABC ∆放在直角坐标系内,其中 90CAB ∠=o ,5BC =,点 A 、B 的坐标分别为(1,0)、(4,0),将ABC ∆沿x 轴向右平移,当点 C 落在直线26y x =-上是,线段BC 扫过的面积为( )A.4B.8C.16D.8【答案】C【解析】【分析】根据题目提供的点的坐标求得点C的坐标,当向右平移时,点C的纵坐标不变,代入直线求得点C的横坐标,进而求得其平移的距离,计算平行四边形的面积即可.【详解】∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x-6上时,∴令y=4,得到4=2x-6,解得x=5,∴平移的距离为5-1=4,∴线段BC扫过的面积为4×4=16,故选C.【点睛】本题考查了一次函数与几何知识的应用,解题关键是题中运用圆与直线的关系以及直角三角形等知识求出线段的长.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .2 【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图,直线y=kx+b (k≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <4【答案】A【解析】 【分析】求不等式kx+b >4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2, ∴不等式kx+b >4的解集是x>-2,故选A .【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.11.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x﹣3进行检验即可.【详解】A、2×2﹣3=1≠3,原式不成立,故本选项错误;B、2×2﹣3=1,原式成立,故本选项正确;C、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B.【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.12.一次函数y=(m﹣2)x n﹣1+3是关于x的一次函数,则m,n的值为()A.m≠2,n=2 B.m=2,n=2 C.m≠2,n=1 D.m=2,n=1【答案】A【解析】【分析】直接利用一次函数的定义分析得出答案.【详解】解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2019的坐标为()A.(21009,21010)B.(﹣21009,21010)C.(21009,﹣21010)D.(﹣21009,﹣21010)【答案】D【解析】【分析】写出一部分点的坐标,探索得到规律A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),即可求解;【详解】A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…由此发现规律:A2n+1[(﹣2)n,2×(﹣2)n](n是自然数),2019=2×1009+1,∴A2019[(﹣2)1009,2×(﹣2)1009],∴A2019(﹣21009,﹣21010),故选D.【点睛】本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.14.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()A.y=0.5x+12 B.y=x+10.5 C.y=0.5x+10 D.y=x+12【答案】A【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.故选A.点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.15.如图,已知正比例函数y 1=ax 与一次函数y 2=12x +b 的图象交于点P .下面有四个结论:①a <0; ②b <0; ③当x >0时,y 1>0;④当x <﹣2时,y 1>y 2.其中正确的是( )A .①②B .②③C .①③D .①④【答案】D【解析】【分析】 根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y 1=ax 经过二、四象限,所以a <0,①正确;一次函数212y x b =+ \过一、二、三象限,所以b >0,②错误; 由图象可得:当x >0时,y 1<0,③错误;当x <−2时,y 1>y 2,④正确;故选D.【点睛】 考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C.D.【答案】D【解析】试题解析:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.考点:一次函数与一元一次不等式.17.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4,∴A(4,0),B(0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,∴AC平分∠OAB,∴CD=CO=n,则BC=3-n,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.18.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x ,故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.19.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x 的取值即为所求.【详解】∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0),又∵当x <﹣1时,4x +2<kx +b ,当x >﹣2时,kx +b <0,∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1.故选B .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.20.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52, 则直线y 2═−2x+m 与x 轴的交点坐标为(52,0), ∴不等式0<y 2<y 1的解集是1<x<52故选:D【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.。

八年级数学待定系数法求一元一次函数解析式易错题总结(含答案)

八年级数学待定系数法求一元一次函数解析式易错题总结(含答案)

八年级数学待定系数法求一元一次函数解析式易错题总结(含答案)一、填空题(本大题共1小题,共3.0分)1.在平面直角坐标系中,点A坐标为(−3,m+2),点B坐标为(1,m−2),若点C(t+1,n1)和点D(t−2,n2)均在直线AB上,则n1−n2=____.【答案】−3【解析】【分析】本题考查了一次函数图象上点的坐标特征,待定系数法求一次函数的解析式,熟练掌握函数图象上的点的坐标满足函数解析式是本题的关键.先求出直线AB的解析式,把点C,点D坐标代入可求解.【解答】解:设直线AB解析式为:y=kx+b,解得:k=−1,b=m−1,∴直线AB解析式为:y=−x+m−1,∵点C(t+1,n1)和点D(t−2,n2)均在直线AB上,∴n1=−t−1+m−1,n2=−t+2+m−1,∴n1−n2=−3,故答案为−3.二、解答题(本大题共11小题,共88.0分)2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5ℎ,如图是甲乙两车行驶的距离y(km)与时间x(ℎ)的函数图象.(1)求出图中m ,a 的值;(2)求出甲车行驶路程y(km)与时间x(ℎ)的函数解析式,并写出相应的x 的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km .【答案】解:(1)由题意,得,m =1.5−0.5=1.120÷(3.5−0.5)=40,∴a =40.答:a =40,m =1;(2)当0≤x ≤1时设y 与x 之间的函数关系式为y =k 1x ,由题意,得40=k 1,∴y =40x ;当1<x ≤1.5时,y =40;行驶完全程需要时间260÷40=6.5,即当x =7时,y =260,当1.5<x ≤7设y 与x 之间的函数关系式为y =k 2x +b ,由题意得{40=1.5k 2+b 120=3.5k 2+b, 解得:{k 2=40b =−20, ∴y =40x −20.y ={40x,(0≤x ≤1)40,(1<x ≤1.5)40x −20,(1.5<x ≤7);(3)设乙车行驶的路程y 与时间x 之间的解析式为y =k 3x +b 3,由题意,得 {0=2k 3+b 3120=3.5k 3+b 3, 解得:{k 3=80b 3=−160,∴y =80x −160.当40x −20−50=80x −160时,解得:x =94;当40x −20+50=80x −160时,解得:x =194. 94−2=14,194−2=114. 答:乙车行驶14小时或114小时,两车恰好相距50km .【解析】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a 的值和m 的值;(2)由分段函数当0≤x ≤1,1<x ≤1.5,1.5<x ≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y 与时间x 之间的解析式,由解析式之间的关系建立方程求出其解即可.3. 已知y 是关于x 的一次函数,下表列出了这个函数部分的对应值:(1)求这个一次函数的表达式.(2)求m ,n 的值.(3)已知点A(x 1,y 1)和点B(x 2,y 2)在该一次函数图象上,设t =y 1−y2x 1−x 2,判断正比例函数y =(t −3)x 的图象是否有可能经过第一象限,并说明理由.【答案】解:(1)设y =kx +b ,当x =−3时,y =0;x =2时,y =−1.据此列出方程组{−3k +b =02k +b =−1, 解得{k =−15b =−35, ∴一次函数的解析式y =−15x −35,(2)把x =1代入,得到y =m =−45.把y =−4代入得出,得出−4=−15n −35,解得:n =17;(3)正比例函数y =(t −3)x 的图象不可能经过第一象限,理由:∵k =−15,∴该一次函数y 随x 的增大而减小,∵点A(x 1,y 1)和点B(x 2,y 2)在该一次函数图象上,∴t =y 1−y2x 1−x 2<0, ∴t −3<0,∴正比例函数y =(t −3)x 的图象经过二、四象限,不经过第一象限.【解析】略4. 在平面直角坐标系中,一次函数都是常数y =kx +b(k,b ,且k ≠0),的图象经过点(1,0)和(0,3).(1)求此函数的表达式.(2)已知点P(m,n)在该函数的图象上,且m +n =4.①求点P 的坐标.②若函数y =ax(a 是常数,且a ≠0)的图象与函数y =kx +b 的图象相交于点P ,写出不等式ax <kx +b 的解集.【答案】解:(1)将(1,0)和(0,3)带入y =kx +b ,可得方程组:{0=k +b b =3解得:{k =−3b =3∴所求一次函数解析式为:y =−3x +3;(2)①将P(m,n)带入y =−3x +3,得n =−3m +3又∵m +n =4解得{m =−12n =92 ∴P 点坐标为(−12,92);②由图可知,不等式ax <kx +b 的解集为x >−12 .【解析】(1)利用待定系数法即可求得;(2)①将P(m,n)带入y =−3x +3,得n =−3m +3,再根据m +n =4组成二元一次方程组,解得即可;②根据P 点的坐标,结合图象即可求得.此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.5. 已知一次函数y 1=kx +b(其中k 、b 为常数且k ≠0).(1)若一次函数y 2=bx −k ,y 1与y 2的图象交于点(2,3),求k ,b 的值;(2)若b =k −1,当−2≤x ≤2时,函数有最大值3,求此时一次函数y 1的表达式.【答案】解:(1)∵y 1与y 2的图象交于点(2,3),∴把点(2,3)代入y 1与y 2的解析式得,{2k +b =32b −k =3, 解得,{k =35b =95; (2)根据题意,若b =k −1,可得y 1=kx +k −1,①当k >0时,在−2≤x ≤2时,y 1随x 的增大而增大,∴当x =2时,y 1=3k −1=3, ∴k =43,∴y 1=43x +13;②当k <0时,在−2≤x ≤2时,y 1随x 的增大而减小,∴当x =−2时,y 1=−k −1=3,∴k =−4,∴y 1=−4x −5,综上所述,y 1=43x +13或y 1=−4x −5.【解析】本题考查了一次函数的性质,属于中档题.(1)把点(2,3)分别代入y 1和y 2,联立方程组,求出k 和b 的值即可;(2)根据题意可得y 1=kx +k −1,分k >0,k <0两种情况,结合一次函数的性质求出k 的值即可.6. 已知y 1与x 成正比例,y 2与x +2成正比例,且y =y 1+y 2,当x =2时,y =4;当x =−1时,y =7,求y 与x 之间的函数关系式.【答案】解:设y 1=kx ,y 2=m(x +2),∵y =y 1+y 2∴y =kx +m(x +2),把x =2,y =4和x =−1,y =7代入得{2k +4m =4−k +m =7, 解得:k =−4,m =3,∴y =−4x +3(x +2)即y 与x 之间的函数关系式是y =−x +6.【解析】本题考查了用待定系数法求出函数的解析式的应用,主要考查学生的计算能力. 设y 1=kx ,y 2=m(x +2),得出y =kx +m(x +2),把x =2,y =4和x =−1,y =7代入得出方程组,求出方程组的解即可.7. 如图所示,直线y =x +3的图象与X 轴,y 轴交于A ,B 两点.另有一条直线y =kx 与线段AB 交于点C ,把△AOB 的面积分为2:1两部分,求k 值.【答案】解:由直线y =x +3的解析式可求得A(−3,0)、B(0,3),如图(1),当直线l 把△AOB 的面积分为S △AOC :S △BOC =2:1时,作CF⊥OA于F,CE⊥OB于E,则S△AOB=92,则S△AOC=3,∴12AO⋅CF=3,即12×3×CF=3,∴CF=2.同理,解得CE=1.∴C(−1,2),代入直线y=kx中,得−k=2∴k=−2;如图(2),当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时,同理求得C(−2,1),代入直线y=kx中,得−2k=1∴k=−12;【解析】略8. 一次函数y =kx +b 的图象经过点A(0,9),并且与直线y =53x 相交于点B ,与x 轴相交于点C ,点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)在y 轴上是否存在这样的点P ,使得以点P ,B ,A 为顶点的三角形是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.(3)在直线y =kx +b 上是否存在点Q ,使△OBQ 的面积等于272?若存在,请求出点Q 的坐标;若不存在,请说明理由.【答案】解:(1)当x =3时,y =53x =53×3=5,即B(3,5),把A(0,9),B(3,5)代入y =kx +b 得到{b =93k +b =5, 解得{k =−43b =9. (2)①以A 为顶点时,P 1(0,14),P 2(0,4); ②以B 为顶点时,P 3(0,1);③以P 为顶点时,P 4(0,478).(3)由(1)知y =−43x +9,C(274,0),①当Q 点在B 点右侧时,设Q(a,−43a +9),则S △OBQ =12×274×(5+43a −9)=272, ∴a =6,∴Q(6,1);②当Q 在点B 左侧时,设Q(a,−43a +9),则S △OBQ =12×274×(−43a +9−5)=272,∴a =0,∴Q(0,9),综上所述,Q(6,1)或(0,9).【解析】本题考查一次函数综合题、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.(1)求出点B坐标,利用待定系数法即可解决问题;(2)利用勾股定理求出AB的长,分三种情形讨论求解即可;(3)分两种情形:①当Q点在B点右侧时,②当Q在点B左侧时,分别根据三角形的面积公式构建方程求解即可;【解答】解:(1)见答案;(2)①如图1,以A为顶点时,AB=AP=5,∵A(0,9)∴P1(0,14),P2(0,4);②如图2,以B为顶点时,BA=BP=5,过B向y轴作垂线,垂足为H,连接BP3,可证:Rt△AHB≌Rt△P3HB(HL),则AH=P3H,∵A(0,9),B(3,5),∴AH=P3H=√52−32=4,∴P3(0,1);③如图3,以P为顶点时,PA=PB,过B向y轴作垂线,垂足为H,由②可知,AH=4,设AP4=BP4=m,则P4H=4−m,在Rt△BHP4中,BH2+P4H2=BP42,即32+(4−m)2=m2,解得m=25,8),∴P4(0,478故答案为:①以A为顶点时,P1(0,14),P2(0,4);②以B为顶点时,P3(0,1);③以P ).为顶点时,P4(0,478(3)见答案.9.如图,直线l1:y1=x+1与直线l2:y2=−2x+n相交于点P(1,b).(1)求点P的坐标;(2)若y1>y2>0,求x的取值范围.【答案】解:(1)∵直线l1:y1=x+1过点P(1,b),∴b=1+1=2,∴P(1,2);(2)把P(1,2)代入直线l 2:y 2=−2x +n 得,2=−2+n ,∴n =4,∴直线l 2:y 2=−2x +4,当y 2=0时,x =2,∴当y 1>y 2>0时x 的取值范围为1<x <2.【解析】本题考查了两条直线相交或平行问题以及待定系数法求一次函数的解析式,得出符合这两条直线相对应的一次函数表达式是本题的关键.(1)把点P(1,b)代入y 1=x +1得到b =1+1,解方程即可求得点P 的坐标;(2)把P(1,2)代入直线l 2:y 2=−2x +n 求出解析式,进而即可求得x 的取值范围.10. 已知y 是关于x 的一次函数,如表列出了这个函数部分的对应值:(1)求这个一次函数的表达式.(2)求m ,n 的值.(3)已知点A(x 1,y 1)和点B(x 2,y 2)在该一次函数图象上,设t =y 1−y 2x1−x 2判断正比例函数y =(t −3)x 的图象是否有可能经过第一象限,并说明理由.【答案】解:(1)设y =kx +b ,当x =−3时,y =0;x =2时,y =−1.据此列出方程组{−3k +b =02k +b =−1, 解得{k =−15b =−35, ∴一次函数的解析式y =−15x −35,(2)把x =1代入,得到y =m =−45.把y =−4代入得出,得出−4=−15n −35,解得:n =17;(3)正比例函数y =(t −3)x 的图象不可能经过第一象限,理由:∵k =−15,∴该一次函数y 随x 的增大而减小,∵点A(x 1,y 1)和点B(x 2,y 2)在该一次函数图象上,∴t =y 1−y 2x 1−x 2<0,∴t −3<0,∴正比例函数y =(t −3)x 的图象经过二、四象限,不经过第一象限.【解析】(1)用待定系数法可求出函数关系式,(2)把x =1代入,得到m 的值,把y =−4代入得出n 的值;(3)根据一次函数的性质可知t =y 1−y 2x1−x 2<0,进一步得出t −3<0,根据一次函数的性质即可判断.此题考查了待定系数法求一次函数的解析式,一次函数的性质,熟练掌握一次函数的性质是解决本题的关键.11. 已知点A(m 1,n 1),B(m 2,n 2)(m 1<m 2)在一次函数y =kx +b 的图象上.(1)若已知点A(2,3) B(4,−1),求一次函数的表达式;(2)若n 1−n 2+√3(m 1−m 2)=0,求k 的值;(3)若m 1+m 2=3b ,n 1+n 2=kb +4,b >2.试比较n 1和n 2的大小,并说明理由.【答案】解:(1)∵已知点A(2,3),B(4,−1)在一次函数y =kx +b 的图象上,∴{k ×2+b =3k ×4+b =−1, 解得:{k =−2b =7, 一次函数的表达式为:y =−2x +7;(2)∵点A(m 1,n 1),B(m 2,n 2)(m 1<m 2)在一次函数y =kx +b 的图象上,∴n 1=km 1+b ,n 2=km 2+b ,∴n 1−n 2=(km 1+b)−(km 2+b)=k(m 1−m 2),∵n 1−n 2+√3(m 1−m 2)=0,∴k(m 1−m 2)+√3(m 1−m 2)=0,∴(k +√3)(m 1−m 2)=0,∵m 1<m 2,∴k =−√3;(3)n 1>n 2,理由如下:∵n 1+n 2=(km 1+b)+(km 2+b)=k(m 1+m 2)+2b =kb +4,m 1+m 2=3b ,∴3kb+2b=kb+4,,解得:k=2−bb∵b>2,<0,∴k=2−bb∴一次函数y=kx+b中y随x的增大而减小,又∵m1<m2,∴n1>n2.【解析】本题考查了待定系数法求一次函数的解析式,一次函数的性质以及一次函数图象上点的坐标特征,属于中档题.(1)根据已知点A(2,3),B(4,−1)在一次函数y=kx+b的图象上,利用待定系数法求一次函数的解析式即可;(2)由一次函数图象上点的坐标特征即可得出n1=km1+b、n2=km2+b,二者做差即可得出n1−n2=k(m1−m2),再根据n1−n2+√3(m1−m2)=0结合m1<m2即可求出k值;(3)由m1+m2=3b、n1+n2=kb+4,即可得出3kb+2b=kb+4,即可得出k<0,结合一次函数的性质即可得出一次函数y=kx+b中y随x的增大而减小,再根据m1< m2即可得出n1>n2.12.如图,在平面直角坐标系中,过点A的两条直线分别交y轴于B(0,3)、C(0,−1)两点,且∠ABC=30°,AC⊥AB于A.(1)求线段AO的长,及直线AC的解析式;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【答案】解:(1)∵B(0,3),∴OB=3,∵∠ABC=30°,∴AB=2AO,由勾股定理可得AO=√3,∴A(−√3,0),且C(0,−1),∴可设直线AC的解析式为y=kx−1,把A点坐标代入可得0=−√3k−1,解得k=−√33,∴直线AC解析式为y=−√33x−1;(2)∵DB=DC,∴点D在线段BC的垂直平分线上,∵B(0,3),C(0,−1),∴线段BC的中点为(0,1),∴D点的纵坐标为1,∵点D在直线AC上,∴1=−√33x−1,解得x=−2√3,∴D点坐标为(−2√3,1);(3)∵B(0,3),D(−2√3,1),∴可设直线BD解析式为y=mx+3,∴1=−2√3m+3,解得m=√33,∴直线BD解析式为y=√33x+3,∴可设P点坐标为(t,√33t+3),∵A(−√3,0),B(0,3),∴BP=(√33=2√33|t|,AP=(√3=2√13t2+√3t+3,AB=√(√3)2+32=2√3,当以A、B、P三点为顶点的三角形是等腰三角形时,有BP=AP、BP=AB和AP=AB 三种情况,①当BP=AP时,则有2√33|t|=2√13t2+√3t+3,解得t=−√3,此时P点坐标为(−√3,2);②当BP=AB时,则有2√33|t|=2√3,解得t=3或t=−3,此时P点坐标为(3,√3+3)或(−3,3−√3);③当AP=AB时,则有2√1t2+√3t+3=2√3,解得t=0(此时与B点重合,舍去)或3t=−3√3,此时P点坐标为(−3√3,0);综上可知存在满足条件的点P,其坐标为(−√3,2)或(3,√3+3)或(−3,3−√3)或(−3√3,0).【解析】(1)在Rt△AOB中,利用含30°角的直角三角形以及勾股定理可求得AO的长,则可求得A点坐标,再利用待定系数法可求得直线AC的解析式;(2)由DB=DC可知点D的在线段BC的垂直平分线上,可求得D点的纵坐标,再由直线AC的解析式可求得D点坐标;(3)由B、D的坐标可求得直线BD的解析式,则可设出P点坐标,从而可表示出BP、AP和AB的长,分BP=AP、BP=AB和AP=AB三种情况分别得到关于P点坐标的方程,可求得P点坐标.本题为一次函数的综合应用,涉及待定系数法、等腰三角形的性质、方程思想及分类讨论思想等知识.本题考查知识点较多,综合性较强,难度适中.。

一次函数易错题汇编含答案

一次函数易错题汇编含答案
A.-5B.5C.-3D.3
【答案】C
【解析】
【分析】
先根据一次函数沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1)求出函数经过的点,再用待定系数法求解即可.
【详解】
解:∵过点(1,0)且垂直于x轴的直线为x=1,
∴根据题意,y=x-b的图像关于直线x=1的对称点是(4,1),
∴y=x-b的图像过点(﹣2,1),
【详解】
把x=k﹣1,y=3k+5代入正比例函数的y=kx,
可得:3k+5=k(k﹣1),
解得:k1=﹣1,k2=5,
因为正比例函数的y=kx(k≠0)的图象经过二,四象限,
所以k<0,
所以k=﹣1,
故选C.
【点睛】
本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.
【详解】
∵点 的坐标为 ,∴平行四边形的中心坐标为 ,
设直线 的函数解析式为 ,
则 ,解得 ,所以直线 的解析式为 .
故选:C.
【点睛】
本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.
11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在( )
【详解】
解:∵正比例函数y=kx的图象经过第二、四象限,
∴k<0.
∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),
∴ ,
解得: 或 (舍去).
故选:A.
【点睛】
本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.

专题 08 一次函数(5大易错点分析)(解析版)-备战2024年中考数学考试易错题(广东专用)

专题 08  一次函数(5大易错点分析)(解析版)-备战2024年中考数学考试易错题(广东专用)
确定另一个变量的值;
2、一般地,一次函数y=kx+b图象上任意一点的坐标都是二元一次方程kx-y+b=0
的一个解;
3、以二元一次方程kx-y+b=0的解为坐标的点都在一次函数y=kx+b的图象上,
4、一般地,如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元 次方程组的解
学以 致 用
1.(2023·海珠区校级二模)已知一次函数y=ax+2的图象与x轴的交点坐
O D.
【分析】先根据正比例函数的增减性判断出k的符号,再由一次函数的图
象与系数的关系即可得出结论.
【解答】解:∵正比例函数y=kx,且y随x的增大而减少,
∴k<0.
在直线y=2x+k中, ∵2>0,k<0,
∴函数图象经过一三四象限,
故选:D.
x<壹 5.(2021·广州模拟)已知:函数yi=2x-1,yz=-x+3,若
小,则直线 y= -2x+k的图象是()

yA
y'
yl
0X
0x
A.
B.
C.
Ox 0 x
D.
【分析】先根据正比例函数的增减性判断出k的符号,再由一次函数的图
象与系数的关系即可得出结论.
【解答】解:∵正比例函数y=kx,且y随x的增大而减小,
∴k<0,
在直线 y=-2x+k中,
-2<0,k<0,
∴函数图象经过二、三、四象限.
2.函数性质的理解:一次函数具有一些特殊的性质,如增减性、连续性等。学生容易
忽视这些性质,或者在应用这些性质时出错。 3.函数斜率和截距的理解:在一次函数y=ax+b中,a 是函数的斜率,b 是函数的 截距。学生容易混淆斜率和截距的概念,或者不理解它们对函数图像的影响。 易错提醒:1、一次函数y=kx+b(k≠O)的增减性:

一次函数易错题汇编附答案

一次函数易错题汇编附答案
∴ ,即 .
∴如图,点E(3, ),F(7,0).
设直线EF的解析式为 ,则

解得: .
∴直线EF的解析式为 .
∴当 时, .
故选B.
14.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()
①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
A.-5B.5C.-3D.3
【答案】C
【解析】
【分析】
先根据一次函数沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1)求出函数经过的点,再用待定系数法求解即可.
【详解】
解:∵过点(1,0)且垂直于x轴的直线为x=1,
∴根据题意,y=x-b的图像关于直线x=1的对称点是(4,1),
∴y=x-b的图像过点(﹣2,1),
8.一次函数 的图象与正比例函数 的图象平行且经过点A(1,-3),则这个一次函数的图象一定经过( )
A.第一、二、三象限B.第一、三、四象限
C.第一、二、四象限D.第二、三、四象限
【答案】C
【解析】
【分析】
由一次函数 的图象与正比例函数 的图象平行可得k=-6,把点A坐标代入y=-6x+b可求出b值,即可得出一次函数解析式,根据一次函数的性质即可得答案.
A.①②B.②③C.①③D.①④
【答案】D
【解析】
【分析】
根据正比例函数和一次函数的性质判断即可.
【详解】
因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;
一次函数 \过一、二、三象限,所以b>0,②错误;

初中八年级(上)一次函数部分易错题.doc

初中八年级(上)一次函数部分易错题.doc

一.精心选一选1、下列各图给出了变量x 与y 之间的函数是: ( )2、下列函数中,y 是x的正比例函数的是: ( )A 、y=2x-1B 、y=3x C 、y=2x 2D 、y=-2x+13、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为: ( )A 、y=2x-14 B 、y=-x-6C 、y=-x+10D 、y=4x●已知一次函数的图象与直线y= -x+1垂直,且过点(8,2),那么此一次函数的解析式为:_________4、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是:( )A 、12y y >B 、12y y <C 、12y y =D 、无法确定.5、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( ) A 、 x>1B 、 x>2C 、 x<1D 、 x<26、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( )A 、第一象限 B 、第二象限 C 、第三象限D 、第四象限7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( )A 、(-1,-1)B 、(-1, 1)C 、(1, -1)D 、(1, 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )二.耐心填一填9、在函数21-=x y 中,自变量x 的取值范围是 。

10、请你写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数解析式 。

A B D 第5题11、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是 _____ ___。

一次函数易错题集(含详解)

一次函数易错题集(含详解)

《一次函数》易错题集一次函数的应用选择题1.(2005•荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1000元,那么此人住院的医疗费大约是()A.2879元B.2889元C.2899元D.2909元2.(2004•荆门)如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是()A.①②B.②③④C.②③D.①②③3.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟4.(2001•苏州)如图,L甲、L乙分别是甲、乙两弹簧的长ycm与所挂物体质量xkg之间函数关系的图象,设甲弹簧每挂1kg物体伸长的长度为k甲cm,乙弹簧每挂1kg物体伸长的长度为k乙cm,则k甲与k乙的关系是()A.k甲>k乙B.k甲=k乙C.k甲<k乙D.不能确定填空题5.(2008•株洲)利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的6.直线y=x﹣2与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有_________个.7.如图,在平面直角坐标系中,直线交x轴于A点,交y轴于B点,点C是线段AB的中点,连接OC,然后将直线OC绕点C顺时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥OC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依次类推,后面的三角形面积分别是S3,S4…,那么S1=_________,若S=S1+S2+S3+…+S n,当n无限大时,S 的值无限接近于_________.《一次函数》易错题集一次函数的应用参考答案与试题解析选择题1.(2005•荆门)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1000元,那么此人住院的医疗费大约是()A.2879元B.2889元C.2899元D.2909元考点:一次函数的应用。

一次函数易错题汇编及答案

一次函数易错题汇编及答案

一次函数易错题汇编及答案一、选择题1.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+, 解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小, ∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.2.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C【解析】 分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b ,将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩ , ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.3.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 4.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限,∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.5.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征: 当x=0时,y=﹣22,则A (0,2),当y=0时,﹣2=0,解得2,则B (2,0),所以△OAB 为等腰直角三角形,则2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到22OP OM -21OP -当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.6.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.7.一次函数y x 1=-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据一次函数y x 1=-+中k 1=-,b 1=判断出函数图象经过的象限,进而可得出结论.【详解】解:一次函数y x 1=-+中k 10=-<,b 10=>,∴此函数的图象经过一、二、四象限,不经过第三象限.故答案选:C .【点睛】本题考查的是一次函数的性质,即一次函数()y kx b k 0=+≠中,当k 0<,b 0>时,函数图象经过一、二、四象限.8.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB (O 为坐标原点)的面积为( )A .32B .2C .23D .3【答案】C【解析】【分析】根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.【详解】当32y x =-+中y=0时,解得x=23,当x=0时,解得y=2, ∴A(23,0),B(0,2), ∴OA=23,OB=2, ∴1122223AOB S OA OB =⋅=⨯⨯=23, 故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图,点,A B 在数轴上分别表示数23,1a -+,则一次函数(1)2y a x a =-+-的图像一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据数轴得出0<﹣2a +3<1,求出1<a <1.5,进而可判断1﹣a 和a ﹣2的正负性,从而得到答案.【详解】解:根据数轴可知:0<﹣2a +3<1,解得:1<a <1.5,∴1﹣a <0,a ﹣2<0,∴一次函数(1)2y a x a =-+-的图像经过第二、三、四象限,不可能经过第一限. 故选:A .【点睛】本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系.熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键.11.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x ﹣3进行检验即可.【详解】A 、2×2﹣3=1≠3,原式不成立,故本选项错误;B 、2×2﹣3=1,原式成立,故本选项正确;C 、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D 、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.12.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.13.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.【详解】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:y甲=-15x+30y乙=()() 3001306012x xx x⎧≤≤⎪⎨-+≤≤⎪⎩由此可知,①②正确.当15x+30=30x时,解得x=2 , 3则M坐标为(23,20),故③正确.当两人相遇前相距10km时,30x+15x=30-10x=49,当两人相遇后,相距10km时,30x+15x=30+10,解得x=8 915x-(30x-30)=10得x=4 3∴④错误.选C.【点睛】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.14.如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2019的坐标为( )A .(21009,21010)B .(﹣21009,21010)C .(21009,﹣21010)D .(﹣21009,﹣21010)【答案】D【解析】【分析】 写出一部分点的坐标,探索得到规律A 2n +1[(﹣2)n ,2×(﹣2)n ](n 是自然数),即可求解;【详解】A 1(1,2),A 2(﹣2,2),A 3(﹣2,﹣4),A 4(4,﹣4),A 5(4,8),… 由此发现规律:A 2n +1[(﹣2)n ,2×(﹣2)n ](n 是自然数),2019=2×1009+1,∴A 2019[(﹣2)1009,2×(﹣2)1009],∴A 2019(﹣21009,﹣21010),故选D .【点睛】本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.15.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点,A B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③直线2y kx =+中,2k =-;④方程组302y x y kx -=⎧⎨-=⎩的解为223x y =⎧⎪⎨=⎪⎩.其中正确的有( )个A .1B .2C .3D .4【答案】C【解析】【分析】 把正比例函数与一次函数的交点坐标求出,根据正比例函数与一次函数的交点先把一次函数的解析式求解出来,再分别验证即可得到答案.【详解】解:∵一次函数2y kx =+与正比例函数13y x =交于点C ,且C 的横坐标为2, ∴纵坐标:1122333y x ==⨯=, ∴把C 点左边代入一次函数得到:2223k =⨯+, ∴23k =-,22,3C ⎛⎫ ⎪⎝⎭①∵23k =-, ∴22023kx x +==-+, ∴3x =,故正确; ②∵23k =-, ∴直线223y x =-+, 当3x <时,0y >,故正确; ③直线2y kx =+中,23k =-,故错误; ④30223y x y x -=⎧⎪⎨⎛⎫--= ⎪⎪⎝⎭⎩, 解得223x y =⎧⎪⎨=⎪⎩,故正确;故有①②④三个正确;故答案为C.【点睛】本题主要考查了一次函数与正比例函数的综合应用,能正确用待定系数法求解未知量是解题的关键,再解题的过程中,要利用好已知信息,比如函数图像,很多时候都可以方便解题;16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.17.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过() A .第一、三、四象限 B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为34y =-即点A '的坐标为(43,4)-∵点A 向右平移636个单位得到点A '+-=-.∴B'的坐标为(046)2)故选:D.【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=-bx+k的一次项系数-b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A.【点睛】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y 随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.20.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、已知一次函数b kx y +=,当20≤≤x 时,对应的函数值y 的取值范围是42≤≤-y ,求kb 的值。

2、已知一次函数b ax y +=的图象经过一、二、四象限,且与x 轴交于点(-2,0),求关于x 的不等式0)1(>--b x a 的解集。

3、在平面直角坐标系中,点O 为原点,直线b kx y +=,且于x 轴交于点(2,0),交y 轴于点B ,若8=∆A B O S ,
求k 的值。

4、若直线13-=x y 与直线k x y -=的交点在第四象限,求k 的取值范围。

5、已知一次函数y=kx +b (k ≠0)的图象与直线13+-=x y 关于y 轴对称,求这个一次函数的解析式。

6、已知正比例函数和一次函数的图象都过点M (2,5),且正比例函数图象与一次函数的图象与y 轴围成的三角形面积是7,求正比例函数和一次函数的解析式。

7、等腰三角形的顶角为150°,腰长为6cm ,则该等腰三角形的面积是_____
8、已知一次函数的图象过(0,0),(2,-a ),(a ,-6)三点且随x 的增大而增大,求此函数的解析式。

9、一个函数的图象经过原点的直线,并且这条直线过第四象限及点(2,-3a )与点(a ,-6),求这个函数的解析式。

10、已知直线1)3(++-=k x k y 不经过第三象限,求k 的取值范围是_______
变形:把直线变成一次函数图象,则k 的取值又是_______
11、在平面直角坐标系中,已知点A (2,-2),在坐标轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点共有___个,分别是___________________
12、已知一次函数)0(≠+=k b kx y 的图象与直线13+-=x y 关于y 轴对称,求这个函数的解析式。

13、化简:323221-+-+-
14、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内。

求:(1)求k 的取值范围;(2)若k 为非负整数,求直线62+-=-k y x 和143+=+k y x 与y 轴的交点,与它们之间的交点所围成的三角形的面积。

15、已知点C (2,m )为直线x y =上的点,直线12+=x y 交y 轴于点A ,交x 轴于点B ,将直线AB 向右平移,使它经过点C 。

求:(1)求平移后直线的解析式;
(2)求平移的单位长度;
(3)若平移后的直线与x 轴相交于点D ,求△OCD 的面积。

相关文档
最新文档