函数发生器的设计
模电课程设计——函数发生器

目录1.函数发生器的几种设计方法....................................................................................................2.1基于555的函数发生器设计.....................................................................................................2.2基于ICL8038函数发生器设计.................................................................................................2.3基于单片机的函数发生器设计.................................................................................................2. 函数发生器的设计框图 .........................................................................................................3. 函数发生器工作原理 .............................................................................................................4.1函数发生器原理图 .....................................................................................................................4.2方波—三角波产生电路.............................................................................................................4.3三角波—正弦波转换电路的工作原理.....................................................................................4.电路的参数选择及计算 ...........................................................................................................5.1方波-三角波中电容C1变化 .....................................................................................................5.2三角波—正弦波部分 .................................................................................................................5.3函数发生器的电路图 .................................................................................................................5.电路仿真 .................................................................................................................................6.1方波--三角波发生电路的仿真及实物波形.............................................................................6. 电路的安装与调试.................................................................................................................7.1方波—三角波发生器的装调 .....................................................................................................7.2三角波—正弦波变换电路的装调 .............................................................................................7.实验心得1 函数发生器的几种设计方法1.1 基于555的函数发生器设计通过555定时器进行函数发生器的设计,电路简单,成本低廉。
《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技术知识,运用AD画图软件,设计并制作完成一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源电路。
1.2 整机实现的基本原理及框图函数信号发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。
其电路中使用的器件可以是分立器件,也可以是集成电路。
本课题需要完成一个能产生方波、三角波的简易函数信号发生器。
产生方波、三角波的方案有很多种,本课题采用运放构成电压比较器出方波信号,采用积分器将方波变为三角波输出,其原理框图如图1所示。
直流电源电路一般由"降压--整流--滤波--稳压"这四个环节构成。
基本组成框图如图2所示。
电源变压器的作用是将电网220V的交流电压变成整流电路所需要的电压u。
因此,u 1=nui(n为变压器的变比)。
整流电路的作用是将交流电压u1变换成单方向脉动的直流U2。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U2=0.9u1。
每只二极管所承受的最大反向电压URM =√2u1,平均电流I D(av)=12IR=0.45u1R对于RC滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC=(3~5)T/2,T为50Hz交流电压的周期,即20ms。
2 硬件电路设计这是直流电源电路的原理图,由“降压——整流——滤波——稳压”这四个环节构成。
通过变压把电网 220V 的交流电压变成整流电路所需要的电压,4个二极管的作用是整流,电容起滤波的作用,再经过7812跟7912进行稳压,2个LED灯起指示作用。
这部分采用运放构成电压比较器出方波信号这部分采用运放构成积分器将方波变为三角波输出3 制作与调试过程根据要求画出实验电路的原理图,根据测量元器件来确定孔径的大小,元器件管脚间的距离以及元器件的大小,导入PCB后改好规则,布好局后连线,布局时要留出一定位置来放变压器,放置姓名学号,这样制版的第一步就做好了。
函数发生器电路的设计

函数发生器电路的设计首先,我们来讨论振荡器的设计。
振荡器是函数发生器电路的核心部分,它负责产生所需的信号波形。
常用的振荡器电路有RC振荡器、LC振荡器和晶振振荡器。
RC振荡器是一种简单且常用的振荡器电路。
它由一个放大器、一个RC网络和一个反馈电路组成。
其中,RC网络由一个电阻R和一个电容C 串联而成。
放大器可以选择运算放大器或晶体管放大器。
通过调整RC网络的参数,我们可以得到不同频率的振荡信号。
LC振荡器则是由一个电感L和一个电容C构成。
由于电感和电容在设定条件下可以形成谐振电路,所以LC振荡器也可以产生稳定的振荡信号。
LC振荡器的频率和振幅可以通过调整电感和电容的参数来控制。
晶振振荡器则是基于石英晶体的振荡原理。
在晶振振荡器中,石英晶体起到了高稳定性振荡频率的基础。
通过选取适当的石英晶体,我们可以得到稳定的振荡信号。
接下来,我们来介绍幅度控制器的设计。
幅度控制器负责调节函数发生器输出信号的幅度。
常见的幅度控制方法有负反馈和非线性失真法。
负反馈法通过控制反馈电路中的增益来实现幅度调节。
当输出信号的幅度过大时,反馈电路将会使放大器工作点偏离,从而降低输出幅度。
反之,当输出信号幅度不足时,反馈电路将会提高放大器的工作点,增加输出幅度。
负反馈法能够实现较好的幅度控制效果。
非线性失真法通过调节非线性元件的工作状态来实现幅度调节。
常见的非线性元件有二极管、晶体管等。
调节非线性元件的偏置电压和工作状态可以改变输出波形的幅度。
最后,我们来讨论波形整形电路的设计。
波形整形电路负责将振荡器输出的信号进行整形和滤波,以获得所需的信号波形。
常用的波形整形电路有比较器、滤波器等。
比较器是一种电路,用于将输入信号与参考信号进行比较,并输出相应的高电平或低电平信号。
通过调整比较器的阈值电压,我们可以得到所需的波形上升沿和下降沿。
滤波器则是一种电路,用于去除输出信号中的高频噪音。
常见的滤波器有低通滤波器、高通滤波器和带通滤波器。
函数信号发生器的设计

函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
函数发生器的设计------模拟电子技术课程设计

搭建仿真模型:根据设计要求,搭建函数发生器的仿真模型
设定仿真参数:设定仿真所需的参数,如频率、幅度、相位等
模拟电子技术课程设计中的函数发生器设计
模拟电子技术课程设计是电子工程专业的必修课程
设计目标:掌握模拟电子技术,提高实践能力
高精度和高稳定性:函数发生器将更加精确和稳定,满足更高要求的测试需求
技术挑战:如何实现高精度、高稳定性的函数发生器
市场竞争:如何应对国内外竞争对手的挑战
市场需求:如何满足不同行业对函数发生器的需求
发展趋势:如何把握未来函数发生器的发展趋势,如智能化、网络化等
汇报人:
感谢您的观看
设计背景:模拟电子技术在电子工程领域具有广泛应用
函数发生器是模拟电子技术课程设计中的重要项目
设计目标:实现一个具有一定频率和幅度的函数发生器
设计方案:采用模拟电子技术,设计一个具有一定频率和幅度的函数发生器
实现方法:采用模拟电子技术,设计一个具有一定频率和幅度的函数发生器
设计步骤:设计电路、制作电路、测试电路、调试电路
科研教育:用于科研实验和教育教学,进行信号发生和模拟
电子测量:用于测量电子设备的性能和参数
通信系统:用于模拟通信信号,进行通信系统的测试和调试
便携性和小型化:函数发生器将更加便携和小型化,方便携带和使用
网络化和远程控制:函数发生器将支持网络化和远程控制,方便远程操作和监控
数字化和智能化:函数发生器将更加智能化,能够自动生成和调整信号
组成结构:包括振荡器、放大器、滤波器、调制器等部分
应用领域:电子测量、通信、雷达、自动控制等领域
显示和操作界面:显示信号发生器的工作状态和参数设置,并提供操作界面供用户进行参数设置和操作。
函数发生器课程设计实验报告

函数发生器课程设计实验报告实验名称:函数发生器课程设计实验目的:1.掌握函数发生器的基本原理和特性;2.熟悉常见函数发生器的操作方法;3.学会使用函数发生器进行实际测量与实验。
实验原理:函数发生器是一种可以产生不同频率和波形的电子仪器,常用于科学研究、电子工程实验和生产测试等。
函数发生器可以通过调节工作模式、频率、幅度和偏移量等参数来产生不同的电信号。
常见的波形包括正弦波、方波、锯齿波和三角波等。
实验器材与仪器:1.函数发生器2.示波器3.电源实验步骤:1.连接函数发生器、示波器和电源,确保电路连接正确并稳定。
2.打开函数发生器,并将频率设置为100Hz,幅度设置为5V。
3.在示波器上观察输出波形,并记录实际测量值。
4.将函数发生器的频率和幅度分别调节为500Hz和10V,重复步骤3。
5.将函数发生器的工作模式切换为方波,重复步骤3。
6.将函数发生器的工作模式切换为锯齿波,重复步骤3。
7.将函数发生器的工作模式切换为三角波,重复步骤3。
实验结果与数据分析:经过实验测量得到的数据如下:1.正弦波频率为100Hz,峰峰值为4.88V。
2.正弦波频率为500Hz,峰峰值为9.79V。
3.方波频率为100Hz,峰峰值为4.88V。
4.锯齿波频率为100Hz,峰峰值为4.88V。
5.三角波频率为100Hz,峰峰值为4.88V。
由实验数据可知,函数发生器能够按照设定参数的要求产生不同频率和波形的电信号。
通过调节频率和幅度等参数,可以控制输出信号的特性,满足实际需求。
同时,通过示波器对输出信号进行测量和观察,可以验证函数发生器的工作状态和输出波形的准确性。
实验总结:本次实验通过对函数发生器的使用,熟悉了其基本原理和操作方法,并能够进行实际测量与实验。
函数发生器作为一种常用的仪器设备,广泛应用于各个领域的科学研究和工程实践中。
掌握函数发生器的使用方法对于今后的学习和工作具有重要的意义。
在实验过程中,需要注意正确连接电路和设备,并确保信号的稳定性和准确性。
简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
简单函数发生器的设计

简单函数发生器的设计函数发生器(function generator)是一种能生成不同函数形式输出信号的仪器。
它广泛应用于电子、通信、自动控制等领域,用于测试、仿真、教学以及其他各种应用。
函数发生器通常由以下几个组成部分组成:信号源、波形形状选择电路、频率选择电路和幅度控制电路。
下面将分别对这些部分进行设计。
首先是信号源。
在函数发生器中,常用的信号源有信号发生器和稳压电源。
信号发生器产生正弦、方波、三角波等各种波形信号。
稳压电源用于提供稳定的电压输出。
这里我们选择使用信号发生器作为信号源。
接下来是波形形状选择电路。
波形形状选择电路用于选择输出信号的波形形状,包括正弦波、方波、三角波等。
这里我们采用多路开关电路来实现波形形状的选择。
多路开关电路可以通过切换不同的开关状态来选择不同的波形形状。
然后是频率选择电路。
频率选择电路用于选择输出信号的频率。
一种常见的频率选择电路是使用可变频率振荡器(VFO)。
可变频率振荡器可以通过调节电路中的电阻、电容或电感等参数来改变输出信号的频率。
最后是幅度控制电路。
幅度控制电路用于控制输出信号的幅度大小。
一种常用的幅度控制电路是使用可变增益放大器。
可变增益放大器可以通过调节放大器的增益来改变输出信号的幅度。
综上所述,一个简单函数发生器的设计包括信号源、波形形状选择电路、频率选择电路和幅度控制电路四个部分。
其中信号源使用信号发生器,波形形状选择电路使用多路开关电路,频率选择电路使用可变频率振荡器,幅度控制电路使用可变增益放大器。
通过调节这些电路的参数,我们可以生成不同形式的函数输出信号。
函数发生器在电子、通信、自动控制等领域具有广泛的应用。
它可以用于测试电路的频率响应、幅度响应等性能指标,也可以用于信号仿真和教学实验。
由于函数发生器的灵活性和可调节性,它成为了各种实验和应用中不可或缺的仪器之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数发生器的设计
目录
一、设计任务与要求
二、方案与论证
1.正弦波产生电路:
1. 1RC桥式正弦波振荡电路:
2.正弦波变换为方波的电路:
2.1 电压比较器电路:
3.方波变换为三角波的电路:
3.1 积分运算电路:
三、仿真
四、元器件清单
五、调式与性能分析:
一、 设计任务与要求:
掌握方波——三角波——正弦波函数发生器的设计方法与测试技术。
了解集成运算放大器与晶体管差分放大器组成的函数发生器的工作原理与设计方法。
学会安装与调试由分离器件与集成电路组成的多级电子电路小系统。
设计并制作一个简易函数发生器,要求如下: 1. 输出波形:正弦波、方波、三角波等 2. 频率范围:1Hz~10Hz, 10Hz~100Hz
3. 输出电压:方波Vp-p<=24V , 三角波Vp-p<=8V , 正弦波Vp-p>1V .
二、方案与论证
方案总体分为三部分,先设计一个正弦波发生电路,再将正弦波信号经迟滞比较器转化为方波,再将方波经积分运算转变为三角波。
正弦波 方波 三角波
1. 正弦波产生电路:
RC 桥式振荡电路原理图如下:
RC 桥式振荡电路
迟滞比较器
积分电路
3
2
6
7
415
U1
UA741
C
C R R RF
R1
0R1
由选频网络和放大电路两部分组成。
选频网络兼作放大电路的正反馈,反馈系数Fv = Vf / V o ,当f =1 / (2πRC) 时,幅频响应的幅值为最大Fmax = 1/3 ,相频响应的相位角为零。
也就是说,只有当f =1 / (2πRC) 时,输出电压的幅值最大,为输入电压的1/3,且输出电压与输入电压同相。
噪声中有f =1 / (2πRC) 这个频率,直流电源提供能源,选频网络的正反馈使输出频率越来越大,最后受电路中非线性元件的限制,振荡幅度自动稳定下来。
适当调整负反馈的强弱,使Av
起振时略大于3,稳幅时Av = 3。
如果Av 远大于3,则会出现严重的非线性失真。
2.正弦波变换为方波的电路:
使用双门限反相输入迟滞比较器,电路原理图如下:
3
2
6
7
415
U2
UA741
D3
D4
R4
R6
门限电压是随着输出电压V o 的变化而改变的。
V o 用双向稳压管(或两个单稳压管反向串联)稳压,V = R1*Vref / (R1+R2) + R1*V o / (R1+R2) ,当输入电压vi >V+ ,则输出电源最大电压(即742的供电电压),门限电压变为下门限;直到vi <V- 才输出电源最小电压,门限电压变为上门限,如此反复。
可以改变输入电压接同相输入端还是反相输入端改变跳变方向,但一定要构成正反馈。
输出电压幅值大小可以通过滑动变阻器调节,另一端要
接地。
3.方波变换为三角波的电路:
使用积分电路,电路原理图如下:
3
2
6
7
415
U1
UA741
C1
R1
R2
三、仿真与分析
1. RC 桥式正弦波振荡电路:
正弦波振荡电路的典型特征是无交流输入信号,却在输出端产生了正弦波输出信号。
经过选频兼正反馈网络,把某一频率信号筛选出来(而其他信号被抑制),再送回放大电路的输入端,整个电路的回路增益应略大于1,这样不断的循环放大,得到失真的输出信号,最后经稳幅环节可输出一个频率固定、幅值稳定的正弦波信号。
R1、C1、R2、C2组成的串并联选频兼正反馈网络以及RW 和RF组成的电压串联负反馈稳幅环节。
利用二极管正向伏安特性的非线性实现自动稳幅。
电压小于二极管的导通电压时,二极管电阻较大,负反馈系数比较小;随着振幅逐渐增大,二极管导体电阻逐渐减小,负反
馈增强,限制振幅增大;稳幅环节中电阻选择4.4k ,仿真效果比较好。
2.电压比较器电路:
门限电压是随着输出电压V o的变化而改变的。
V o用两个单稳压管反向串联稳压为+5.1V和-5.1V,V += R1*Vref / (R1+R2) + R1*V o / (R1+R2) =0+2.2*5.1/(2.2+2.2) = 2.55V ,仿真输出为2.51V (图中3.16V是因为接了后面电路, 当输入电压vi >2.55V ,理想条件下输出电源15V,仿真电路中,直到vi <V- 才输出电源最小电压,门限电压变为上门限,如此反复。
可以改变输入电压接同相输入端还是反相输入端改变跳变方向,但一定要构成正反馈。
输出电压幅值大小可以通过滑动变阻器调节,另一端要接地。
3.积分运算电路:原理图如下
3
2
6
7
4
15
U3
UA741
C3
0.33u
R4
5M R6
510K
R7
510K
元件参数的确定:
UA741,电容C3,电阻R10组成基本的积分电路; 通过R3和变阻器RV5起限流作用;
要求R10=R6=1/10R11来防止积分偏移和饱和截止;
主要是确定积分时间C1R1的值,或者说是确定闭环增益线与0dB 线交点的频率f0(零交叉点频率)。
当时间常数较大,如超过10ms 时,电容C1的值就会达到数微法,由于微法级的标称值电容选择面较窄,故宜用改变电阻R1的方法来调整时间常数。
但如所需时间常数较小
时,就应选择R1为数千欧~数十千欧,再往小的方向选择C1的值来调整时间常数。
因为R1的值如果太小,容易受到前级信号源输出阻抗的影响。
根据以上的理由,图①和图②积分电路的参数如下:积分时间常数0.2s(零交叉频率0.8Hz),输入阻抗200kΩ,输出阻抗小于1Ω
原理:从图得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故Uo=(1/c)∫icdt=(1/RC)∫Uidt 这就是输出Uo正比于输入Ui 的积分(∫Uidt)RC电路的积分条件:RC≥Tk
4.仿真结果如下图,满足要求。
四.元件清单
数量备注元件序列型号元件参数
值
3
U1~ U3 放大器
ua741
D3~D4 二极管
2
10BQ040
C1~C3 电解电容0.33uF 3
R1 电阻2K 1
R3 电阻1K 1
R2 电阻10K 1
R4 电阻20K 1
R5,R7 电阻 1.6K 2
R8 电阻 1.1K 1
R9 电阻51K 1
R6,R10 电阻100 2
R11 电阻1M 1
200K 2
RV1,RV2 滑动变阻
器
RV4 滑动变阻
2K 1
器
RV5 滑动变阻1K 1
器
五、调式与性能分析:
实际调试时,一次成功,波形都满足要求,只是方波的上沿和下沿的右端都有点向下倾斜。