基桩的声波透射法检测

合集下载

声波透射法

声波透射法

10 声波透射法10.1 适用范围10.1.1声波透射法适用于混凝土灌注桩的桩身完整性检测,判定桩身缺陷的位置、范围和程度。

【条文说明】声波透射法是利用声波的透射原理对桩身混凝土介质状况进行检测。

当桩径小于0.6m时,声测管的声耦合会造成较大的测试误差,因此该方法适用于桩径不小于0.6m,在灌注成型过程中已经预埋了两根或两根以上声测管的基桩的完整性检测;基桩经钻芯法检测后(有两个以及两个以上的钻孔)需进一步了解钻芯孔之间的混凝土质量时也可采用本方法检测。

由于桩内跨孔测试的测试误差高于上部结构混凝土的检测,且桩身混凝土纵向各部位硬化环境不同,粗细骨料分布不均匀,因此该方法不宜用于推定桩身混凝土强度。

10.2 仪器设备10.2.1 声波发射与接收换能器应符合下列规定:1 圆柱状径向振动,沿径向无指向性;2 外径小于声测管内径,有效工作段长度不大于150mm;3 谐振频率为30~60kHz;4 水密性满足1MPa水压不渗水。

【条文说明】声波换能器有效工作面长度指起到换能作用的部分的实际轴向尺寸,该长度过大将夸大缺陷实际尺寸并影响测试结果。

换能器的谐振频率越高,对缺陷的分辨率越高,但高频声波在介质中衰减快,有效测距变小。

选配换能器时,在保证有一定的接收灵敏度的前提下, 原则上尽可能选择较高频率的换能器。

提高换能器谐振频率,可使其外径减少到30mm以下,有利于换能器在声测管中升降顺畅或减小声测管直径。

但因声波发射频率的提高,将使声波穿透能力下降。

所以,本规范仍推荐目前普遍采用的30~60kHz的谐振频率范围。

桩中的声波检测一般以水作为耦合剂,换能器在1MPa水压下不渗水也就是在100m水深能正常工作,这可以满足一般的工程桩检测要求。

对于超长桩,宜考虑更高的水密性指标。

当测距较大接收信号较弱时,宜选用带前置放大器的接收换能器,也可采用低频换能器,提高接收信号的幅度。

声波换能器宜配置扶正器,防止换能器在声测管内摆动影响测试声参数的稳定性。

基桩超讲义声波法检测

基桩超讲义声波法检测

介质质点的振动方向与波的传播方向垂直的波称为横波,又称为S波。 是依靠使介质产生剪切变形引起的剪切力变化而传播的,它和介质的剪 切弹性相关。由于液体、气体无一定形状,不具备切变弹性,不能承受
剪切应力,所以横波只能在固体介质中传播。
固体介质表面受到交替变化的表面张力作用,介质表面质点发 生相应的纵向振动和横向振动,结果使质点做这两种振动的合成运 动,即绕其平衡位置作椭圆运动,该质点的运动又波及相邻质点, 而在介质表面传播,这种波称为表面波,又称R波。表面波传播时, 质点振动的振幅随深度的增加迅速减少,当深度超过2倍的波长时, 振幅已很小了。表面波也只能在固体中传播。
频率变化与混凝土质量
声波脉冲是复频波,具有多种频率成分。当 它们穿过混凝土后,各频率成分的衰减程度不同, 高频部分比低频部分衰减严重,因而导致接收信 号的主频率向低频端漂移。其漂移的多少取决于 衰减因素的严重程度。所以,接收波主频率实质 上是介质衰减作用的一个表征量,当遇到缺陷时, 由于衰减严重,使接收波主频率明显降低。
几种声学参数的比较
声速的测试值较为稳定,结果的重复性较好,受非缺陷因素的影响小,在同一桩的不 同剖面以及同一工程的不同桩之间可以比较,是判定混凝土质量的主要参数,但声速 对缺陷的敏感性不及波幅。 接收波波幅(首波幅值)对混凝土缺陷很敏感,它是判定混凝土质量的另一个重要参 数。但波幅的测试值受仪器系统性能、换能器耦合状况、测距等诸多非缺陷因素的影 响,它的测试值没有声速稳定,目前只能用于相对比较,在同一桩的不同剖面或不同 桩之间往往无可比性。 接收波主频的变化虽然能反映声波在混凝土中的衰减状况,从而间接反映混凝土质量 的好坏,但声波主频的变化也受测距、仪器设备状态等非缺陷因素的影响,因此在不 同剖面以及不同桩之间的可比性不强,只用于同一剖面内各测点的相对比较,其测试 值也没有声速稳定。因此,目前主频漂移指标仅作为声速、波幅的辅助判据。 接收波形也是反映混凝土质量的一个重要方面,它对混凝土内部的缺陷也较敏感,在 现场检测时,除逐点读取首波的声时、波幅外,还应注意观察整个接收波形态的变化 ,作为声波透射法对混凝土质量进行综合判定时的一个重要的参考,因为接收波形是 透过两声测管间混凝土的声波能量的一个总体反映,它反映了发、收换能器之间声波 在混凝土各种声传播路径上的总体能量,其影响区域大于直达波(首波)。

声波透射法检测介绍

声波透射法检测介绍

声波透射法一、声波透射法原理:基桩成孔后,灌注混凝土之前,在桩内预埋若干根声测管作为声波发射和接收换能器的通道,在桩身混凝土灌注若干天后开始检测,用声波检测仪沿桩的纵轴方向以一定的间距逐点检测声波穿过桩身各横截面的声学参数, 然后对这些检测数据进行处理、分析和判断,确定桩身混凝土缺陷的位置、范围、程度,从而推断桩身混凝土的连续性、完整性和均匀性状况,评定桩身完整性等级。

二、仪器设备超声仪:NM4B 型非金属超声仪。

仪器在检定周期内。

换能器:径向换能器三、 声测管埋设1 声测管为50mm 镀锌钢管。

2 声测管应下端封闭、上端加盖、管内无异物;声测管连接处应光滑过渡,管口应高出桩顶1OOmm 以上,且各声测管管口高度宜一致。

3 应采取适宜方法固定声测管,使之成桩后相互平行。

4 声测管埋设数量为3根管。

检测剖面编号分别为1-2、1-3、2-3;根据设计图纸,本工程声测管埋设为3φ50的镀锌钢管。

5声测管的连接与埋没用作声测管的管材一般都不长(钢管为6m 长一根)当受检桩较长时,需把管材一段一段地联结,接口必须满足下列要求:(1)有足够的强度和刚度,保证声测管不致因受力而弯折、脱开;(2)有足够的水密性,在较高的静水压力下,不漏浆;(3)接口内壁保持平整通畅,不应有焊渣、毛刺等凸出物,以免妨碍接头的上、下移动。

声测管布置图通常有两种联结方式:螺纹联结和套筒联结。

一般用焊接或绑扎的方式固定在钢筋笼内侧,在成孔后,灌注混凝土之前随钢筋笼一起放置于桩孔中,声测管应一直埋到桩底,声测管底部应密封,如果受检桩不是通长配筋,则在无钢筋笼处的声测管间应设加强箍,以保证声测管的平行度。

安装完毕后,声测管的上端应用螺纹盖或木塞封口,以免落入异物,阻塞管道。

声测管的安装方法1—钢筋,2—声测管,3—套接管,4—箍筋,5—密封胶布(3) 检查测试系统的工作状况,。

(4) 将伸出桩顶的声测管切割到同一标高,测量管口标高,作为计算各测点高程的基准。

声波透射法检测桩基培训

声波透射法检测桩基培训

频率测量是量测接收信号第一个波的周期,再按频率 值是周期的倒数的关系计算而得:
f=1000/T
(3)
f – 信号主频值(kHz);
T – 信号周期(μs)。
如果波形畸变,测得频率的误差就较大。
声波透射法检测桩身质量,采用声时、振幅、频率三 者声学参数来综合分析、判断确定桩身完整性。
二、仪器设备 1、声波发射与接收换能器选择 (1)圆柱状径向无指向性; (2)外径小于声测管内径,有效工作面轴向长度不大于
1、当检测剖面出现多个测点的声速值普遍偏低且离散性很小时, 采用声速低限值判据Vi<Vc。故判定为声速低于低限值异常。
2、当波幅异常时的临界值判据,如某段测点的波幅值Api<Am6时,波幅可判定为异常。
3、当采用斜率法的PSD值作为辅助异常点判据时,按PSD数值 在某深度处的突变,结合波幅变化情况进行异常点判定。
V=L/t
(1)
式中:V – 超声波速 (km/s);
L – 埋管的间距 (mm);
t – 声时 (μs) 。
从实测的声速特征可以反应穿透的混凝土介质特性的变化。 由(1)式可知,在埋管间距相等情况下,当声时增加时,波 速减小,混凝土强度相对降低;相反,当声时减小时,声速 增加,混凝土强度增加,据此可以判断桩身完整性,缺陷位 置及缺陷程度。
五、检测报告 除了与其他基桩检测报告容相同外,声波透射 法还提供如下内容:
1、声测管布置图;
2、受检桩每个检测剖面声速—深度曲线、波幅—深
度曲线。并将相应判据临界值所对应的标志线 绘制于同一个坐标系; 3、当采用他频值或PSD值进行辅助分析判定时,绘
制主频—深度曲线或PSD曲线;
4、对缺陷分布图示述。
三、现场检测

基桩声波透射法

基桩声波透射法
24
测点间距要求
▪ 2014版规范要求声测线间距不应大于 100mm。2003版要求不大于250mm。间 距越小,检测精度越高,但需花费更多的 时间。
25
与低应变区别
传播方向:低应变沿桩身纵截面传播,超声 波沿横截面传播;
波长:低应变的应力波波长为米级的(0.52.0m),超声波的波长为厘米级的(4-8cm).
基桩经钻芯法检测后(有2个以上的钻孔)需进一 步了解钻芯孔之间的混凝土质量时也可采用本方 法检测。
12
原理
由发射换能器(探头)在混凝土内激发高频波, 并用接收换能器记录波在混凝土内传播过程中的波动 特征.当混凝土内存在不连续或破损界面时如松散、 蜂窝、孔洞、夹层时,将使波产生散射、反射、透射 及绕射;根据波的初至到达时间和波的能量衰减特征、 频率变化及波形畸变程度等特性,经过处理分析就能 判别测区内砼的参考强度和内部存在缺陷的性质、大 小及空间位置。
2
桩基检测 工程桩应进行单桩承载力和桩身完整性 抽样检测。 承载力检测分竖向抗压检测、竖向抗拔 静载、水平静载。竖向抗压检测可用抗 压静载和高应变等方法进行检测。 完整性检测主要有低应变法、钻芯法、 声波透射法和高应变法。
3
声波透射法一般应用在灌注桩上,灌注 桩的缺陷包括松散、蜂窝、孔洞,夹层 等。
对于超长桩,由于安装声测管存在各方面的不可预料的 因素,常常会导致堵管而无法测试。现在有人已经发明 专门通声测管的设备。
22
热异常测试典型曲线
85 0
Te m pe rature (de g F)
105
125
10
20
30
40
Elevation (ft)
50
60
70

基桩的声波透射法检测

基桩的声波透射法检测

基桩的声波透射法检测报告一、工程概况桥梁长度约1140km,占正线长度86.5%;隧道长度约16km,占正线长度1.2%;路基长度162km,占正线长度12.3%;全线铺设无碴正线约1268公里,占线路长度的96.2%。

有碴轨道正线约50公里,占线路长度的3.8%。

全线用地总计5000km2。

铁路桥梁基桩进行声波透射法检测。

二、检测依据1. 工程设计文件及施工图;2.《铁路工程基桩无损检测规程》TB10218-99三、检测方法和适用范围1.声波透射法检测声波透射法检测基桩结构完整性的基本原理是:由超声脉冲发射源在混凝土内激发高频弹性脉冲波,并用高精度的接收系统记录该脉冲波在混凝土内传播过程中表现的波动特征;当混凝土内存在不连续或破损界面时,缺陷面形成波阻抗界面,波到达该界面时,产生波的透射和反射,使接收到的透射能量明显降低;当混凝土内存在松散、蜂窝、孔洞等缺陷时,将产生波的散射和绕射;根据波的初至到达时间和波的能量衰减特征、频率变化及波形畸变程度等特性,可以获得测区范围内混凝土的声学参数。

测试记录不同测试剖面、不同高度上的超声波动特征,经过处理分析就能判别测区内混凝土的参考强度和内部存在缺陷的性质、大小及空间位置。

在基桩施工前,根据桩直径的大小预埋一定数量的声测管,作为换能器的通道。

测试时每两根声测管为一组,通过水的耦合,超声脉冲信号从一根声测管中的换能器发射出去,在另一根声测管中的声测管接收信号,声波检测仪测定有关参数并采集记录储存。

换能器由桩底同时从下往上依次检测,遍及各个截面。

声波透射法测桩的特点:检测全面、细致,现场操作简便,迅速,不受桩长、长径比的限制,一般也不受场地限制。

声波透射法基桩质量检测工作程序框图1 2 3 4 52.检测仪器1)声波发射与接收换能器应符合下列要求:➢ 圆柱状径向振动,沿径向无指向性;➢ 外径小于声测管内径,有效工作面轴向长度不大于150mm;➢ 谐振频率宜为30~60kHz;➢ 水密性满足1MPa水压不渗水。

基桩超声波法检测解读

基桩超声波法检测解读

根据实测声时计算某一剖面各测点的PSD判据,绘制“判据值~ 深度”曲线,然后根据PSD值在某深度处的突变,结合波幅变化情况 ,进行异常点判定。采用PSD法突出了声时的变化,对缺陷较敏感, 同时,也减小了因声测管不平行或混凝土不均匀等非缺陷因素造成的 测试误差对数据分析判断的影响 。
波幅判据
在《规范》中采用下列方法确定波幅临界值判据:
声速低限值法
v i< vL
vi——第i测点的声速;
件的抗压强度与声速对比试验结果,结合本地区 实际经验确定。
vL—— 声速低限值,由预留同条件混凝土试
PSD法判据
(t ci t ci 1 ) 2 Ki z i z i 1
t tci tci1
Ki——第i测点的PSD判据; tci、tci-1——分别为第i测点和第i-1测点声时; zi、zi-1——分别为第i测点和第i-1测点深度。
介质质点的振动方向与波的传播方向垂直的波称为横波,又称为S波。 是依靠使介质产生剪切变形引起的剪切力变化而传播的,它和介质的剪 切弹性相关。由于液体、气体无一定形状,不具备切变弹性,不能承受
剪切应力,所以横波只能在固体介质中传播。
固体介质表面受到交替变化的表面张力作用,介质表面质点发 生相应的纵向振动和横向振动,结果使质点做这两种振动的合成运 动,即绕其平衡位置作椭圆运动,该质点的运动又波及相邻质点, 而在介质表面传播,这种波称为表面波,又称R波。表面波传播时, 质点振动的振幅随深度的增加迅速减少,当深度超过2倍的波长时, 振幅已很小了。表面波也只能在固体中传播。
对可疑测点,先进行加密平测(换能器提升 步长为10~20cm),核实可疑点的异常情况,并 确定异常部位的纵向范围。 再用斜测法对异常点缺陷的严重情况进行进 一步的探测.斜测。就是让发、收换能器保持一定 的高程差,在声测管内以相同步长同步升降进行 测试,而不是象平测那样让发、收换能器在检测 过程中始终保持相同的高程。 由于径向换能器在铅垂面上存在指向性,因此, 斜测时,发、收换能器中心连线与水平面的夹角 不能太大,一般可取30°~40°。

声波透射法检测方法

声波透射法检测方法

1111
声波透射法检测方法的基本原理是用人工的方法在混凝土介质中激发一定频率的弹性波,该弹性波在介质中传播时,遇到混凝土介质缺陷会产生反射、透射、绕射、散射、衰减,从而造成穿过该介质的接收波波幅衰减、波形畸变、波速降低等。

根据超声波换能器通道在桩体中的不同布置方式,超声波透射法基桩检测有以下三种方法:
- 桩内单孔透射法:在某些特殊情况下只有一个孔道可供检测使用,例如在钻孔取芯后,需进一步了解芯样周围混凝土质量,作为钻芯检测的补充手段,这时可采用单孔检测法。

此时,换能器放置于一个孔中,换能器间用隔声材料隔离(或采用专用的一发双收换能器)。

超声波从发射换能器出发经耦合水进入孔壁混凝土表层,并沿混凝土表层滑行一段距离后,再经耦合水分别到达两个接收换能器上,从而测出超声波沿孔壁混凝土传播时的各项声学参数。

需要注意的是,当孔道中有钢质套管时,由于钢管影响超声波在孔壁混凝土中的绕行,故不能用此法。

- 桩外单孔透射法:当桩的上部结构已施工或桩内没有换能器通道时,可在桩外紧贴桩边的土层中钻一孔作为检测通道,检测时在桩顶面放置一发射功率较大的平面换能器,接收换能器从桩外孔中自上而下慢慢放下,超声波沿桩身混凝土向下传播,并穿过桩与孔之间的土层,通过孔中耦合水进入接收换能器,逐点测出透射超声波的声学参数,根据信号的变化情况大致判定桩身质量。

由于超声波在土中衰减很快,这种方法的可测桩长十分有限,且只能判断夹层、断桩、缩颈等。

- 桩内跨孔透射法:在桩内预埋两根或两根以上的声测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基桩的声波透射法检测
1.基本原理及方法
混凝土是由多种材料组成的多相非匀质体。

对于正常的混凝土,声波在其中传播的速度是有一定范围的,当传播路径遇到混凝土有缺陷时,如断裂、裂缝、夹泥和密实度差等,声波要绕过缺陷或在传播速度较慢的介质中通过,声波将发生衰减,造成传播时间延长,使声时增大,计算声速降低,波幅减小,波形畸变,利用超声波在混凝土中传播的这些声学参数的变化,来分析判断桩身混凝土质量。

声波透射法检测桩身混凝土质量,是在桩身中预埋2~4根声测管。

将超声波发射、接收探头分别置于2根导管中,进行声波发射和接收,使超声波在桩身混凝土中传播,用超声仪测出超声波的传播时间t、波幅A及频率f等物理量,就可判断桩身结构完整性。

2.适用范围
声波透射法适用于检测桩径大于0.6m混凝土灌注桩的完整性,因为桩径较小时,声波换能器与检测管的声耦合会引起较大的相对测试误差。


桩长不受限制。

3.仪器设备
(1)试验装置
声波透射法试验装置包括超声检测仪、超声波发
射及接收换能器(亦称探头)、预埋测管等,也有加上
换能器标高控制绞车和数据处理计算机。

其装置见图
37-21。

(2)超声检测仪的技术性能应符合下列规定:
接收放大系统的频带宽度宜为5~50kHz,增益应
大于100dB,并带有0~60(或80)dB的衰减器,其
分辨率应为1dB,衰减器的误差应小于1dB,其档间误
差应小于1%。

发射系统应输出250~1000V的脉冲电压,其波形
可为阶跃脉冲或矩发射系统应输出250~1000V的脉冲
电压,其波形可为阶跃脉冲或矩形脉冲。

显示系统应同时显示接收波形和声波传播时间,其显示时间范围宜大于300μs,计时精度应大于1μs,仪器必须稳定可行,2h中声时漂移不得大于±0.2μs。

(3)换能器应采用柱状径向振动的换能器,将超声仪发出的电脉冲信号转换成机械振动信号,其共振频率宜为25~50kHz,外形为圆柱形,外径Φ30mm,长度200mm。

换能器宜装有前置放大器,前置放大器的频带宽度宜为5~50kHz。

绝缘电阻应达5MΩ,其水密性应满足在1MPa水压下不漏水。

桩径较大时,宜采用增压式柱状探头。

(4)声测管是声波透射法检测装置的重要组成部分,宜采用钢管、塑料管或钢质波纹管,其内径宜为50~60m。

4.测试技术
(1)预埋声测管应符合下列规定:
桩径0.6~1.0m应埋设双管;1.0~2.5m应埋设三根管;桩径2.5m以上应埋设四根。

见图37-22声测管布置方式。

声测管底端及接头应严格密封,保证管外泥冰在1MPa 压力下不会渗入管内。

上端应加盖。

声测管可焊接或绑扎在钢筋笼的内侧,检测管之间应互相平行。

在检测管内应注满清水。

(2)现场检测前应测定声波检测仪发射至接收系统的延迟时间t 0,并应按下式计算声时修正值t ˊ:
t ˊ=(D-d)/V t +(d-d ˊ)/V w (37-52)
式中 D ――检测管外径(mm ); d ˊ――检测管内径(mm );
d ――换能器外径(mm ); V t ――检测管壁厚度方向声速(km /s );
V w ――水的声速(km /s ); T ――声时修正值(μs )。

将发、收换能器置于水中,间距0.5m 左右,接收信号波幅调节到二或三格,改变发、收换能器间距,测量不同距离的声时值,按时距曲线求出t 0值。

(3)检测步骤应符合下列要求:
接收及发射换能器应在装设扶正器后置于检测管内,并能顺利提升及下降。

测量时上述发射与接收换能器可置于同一标高,当发射与接收换能器置于不同标高时,其水平测角可取30°~40°。

测量点距20~40cm 。

当发现读数异常时,应加密测量点距,以保证测点间声场可以覆盖而不至漏测。

发射与接收换能器应同步升降。

各测点发射与接收换能器累计相对高差不应大于2cm ,并应随时校正。

检测宜由检测管底部开始,发射电压值应固定,并应始终保持不变,放大器增益值也应始终固定不变。

调节衰减器的衰减量,使接收信号初至波幅度在荧光屏上为2或3格。

由光标确定首波初至,读取声波传播时间及衰减器衰减量,依次测取各测点的声时及波幅并进行记录。

一根桩有多根检测管时,应将每2根检测管编为一组,分组进行测试,见图37-22。

每组检测管测试完成后,测试点应随机重复抽测10%~20%。

其声时相对标准差不应大于5%;波幅相对标准差不应大于10%。

并对声时及波幅异常的部位应重复抽测。

测量的相对标准差可按下式计算: ∑=-=
n i m ji i t n t t t 12'2)(σ (37-53) ∑
=-=n i m ji i A n A A A 12'
2)(σ
(37-54)
式中σt ˊ――声时相对标准差;σA ˊ――波幅相对标准差;
t ˊ――第i 个测点声时原始测试值(μs );A ˊ――第i 个测点波幅原始测试值(dB );
t ji --第i 个测点第j 次抽测声时值(μs );A ji ――第i 个测点第j 次抽测波幅值(dB )。

5.检测数据的处理与判定
(1)由现场所测的数据应绘制声时-深度曲线及波幅(衰减值)-深度曲线。

其声时t c 及声速V P 应按下列公式计算:
t c =t-t o -t ˊ (37-55)
V p =l/t c (37-56)
式中 t c ――混凝土中声波传播时间(μs );t ――声时原始测试值(μs );
t 0――声波检测仪发射至接收系统的延迟时间(μs );t ˊ――声时修正值(μs ); l ――两个检测管外壁间的距离(mm);V P —混凝土声速(km /s )。

(2)桩身完整性应按下列规定判定:
应采用声时平均值μt 与声时2倍标准差σt 之和作为判定桩身有无缺陷的临界值;并应按下列公式计算: ∑==n
i ci t n t 1μ (37-57) ∑=-=n i t ci t n t 1
2
)(μσ (37-58) 式中 n ――测点数; t ci ――混凝土中第i 测点声波传播时间(μs );
μt ――声时平均值(μs ); σt ――声时标准差。

亦可按声时-深度曲线相邻测点的斜率K tz 及相邻两点声时差值Δt 的乘积K tz ²Δt 作为缺陷的判据: K tz =(t ci -t ci-1)/(Z i - Z i-1) (37-59)
△t=t ci -t ci-1 (37-60)
K tz ²Δt =( t ci -t ci-1)2/( Z i - Z i-1) (37-61)
式中 t ci ――第i 测点的声时(μs ); t ci-1――第i -1测点的声时(μs );
Z i ――第i 测点的深度(m ); Z i -1――第i -1测点的深度(m )。

K tz ²Δt 值能在声时-深度曲线上明显地反映出缺陷的位置及性能,可结合μt +2σt 值进行综合判定。

波幅(衰减量)比声速对缺陷反应更灵敏,可采用接收信号能量平均值的一半作为判断缺陷临界值。

波幅值以衰减器的衰减量q 表示。

波幅判断的临界值q D 有下列关系:
q D =μq -6 (37-62)
∑==n i i q n
q 1μ (37-63) 式中 μq ――衰减量平均值(dB );q i ――第i 测点的衰减量(dB );n ――测点数。

对超越临界值的测区应进行缺陷分析与判断。

桩的完整性宜采用上述判据,并辅以接收波形的视频率做进一步的综合判定。

在作出缺陷判定后,如需判定桩身缺陷尺寸及空间分布,宜进一步采用多点发射,不同深度接收的扇形测量法,用多条交会的声线所测取的波速及波幅的异常加以判定。

6.工程实例
福州某特大桥桩基础进行声波透射法检测,现场测试工作于1997年3月16日完成。

拟建场地位于福州峡南,大桥基础采用冲钻孔灌注桩,被测桩编号为Z4-5#,,桩径Ф
2500mm ,桩长45.3m ,桩身混凝土强度等级C25,桩端持力层为微风化岩,土层自上而下为:粗砂,砂夹淤泥,砂卵石,微风化岩,详见该工程地质勘察报告。

声波透射法按《基桩低应变动力检测规程》(JGJ /T93-95)有关规定进行,桩内埋设4根测
管,通过测量整个桩身检测区域内的超声波传播时间,观察接收到的信号幅度变化,来分析判断桩身结构完整性。

本次检测采用CTS-25型非金属超声检测仪,该桩基中一对测向的声时-深度曲线见图37-23。

该桩同时采用反射波法进行检测,所用仪器为美国PDI公司生产的PIT桩基完整性检验仪,实测时域曲线见图37-24。

根据声波透射法检测结果分析,桩顶下7~7.5m处,16.5~17.5m处及28.0~32.0m处均有明显的波峰,前两个波峰处其K tz²Δt值(即PSD判据值)分别为200及580左右,这两处缺陷为局部夹泥,而桩顶下28.0~32.0m处六对测向均无法接收到超声信号,判断该桩28.0~32.0m处桩身混凝土严重离析,不合格桩。

由反射波法测得的时域曲线图37-24可看出,该桩桩顶下32.0m处有与入射波同相位的明显反射波,判断为该处桩身混凝土严重离析,与声波透射法检测结果基本吻合。

相关文档
最新文档