SE9302中文资料
HT9302

I
CMOS IN
HKS=VDD: On-hook state (PO=low). Except for HFI/HDI (hand-free/hold-line control input), other functions are all disabled.
HKS=VSS: Off-hook state (PO=high). The chip is in the standby mode and
ready to receive the key input.
This pin is a CMOS output structure, which by receiving HKS and HFO/HDO
signals, control the dialer to connect or disconnect the telephone line.
C o lu m n C4
R1 K ey R ow
R4
X1 D iv id e r
X2
.SM
K ey . u n c tio n E ncoder
E ncoder
D ebounce
C lo c k G e n e ra to r
C o n tro l
W RM C o u n te r
ADDRL
SRAM
OSCILLATOR resonator to the X1 and X2 terminals can implement the oscillator function. The
X2
O
oscillator is turned off in the standby mode, and is actuated whenever a key-
SC9302资料

SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0111-MEMORY/2-MEMORY TONE/PULSEDIALERDESCRIPTIONThe SC9302 series tone/pulse dialers are CMOS LSIs for thetelecommunication system. They are designed to meet variousdialing specifications through resistor options matrix.The SC9302 series tone/pulse dialers are offered in four differentversions. They are SC9302X normal version, SC9302/F/G/H simpleversion, SC9302XT key-tone version and SC9302XLT key-tone/lockfunctions version. The SC9302X normal version provides the pin-selected lock function; the SC9302XT version provides the key-tonefunction; the SC9302XLT version provides both the key-tone functionand key board-operated IDD lock function. All of the above threeversions also supply the following functions: Hold-line, Hand-free andLCD dialing number display interface, all of which are suitable forfeature phone applications. However, the SC9302F/G/H version issimpler than the other three versions. It provides only a redialingmemory for a simple low-cost system application.SDIP-24SC9302D PackageFEATURES*Universal specification*Operating voltage: 2.0V~5.5V*Low stand-by current*Low memory retention current:0.1µA(Typ.)*Tone/pulse switchable*Interface with LCD driver*32 digits for redialing*32 digits for the SA memory dialing*One-key redialing*Pause and P→T key for PBX*4x4 keyboard matrix*3.58MHz crystal or ceramic resonator*Hand-free control*Hold-line control*Pause, P→T can be saved for redialing*Lock function*Key tone function*Resistor options:-M/B ratio-Flash function and flash time-Pause and P→T duration-Pulse number-Keyboard operated IDD lock functionSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-012PIN CONFIGURATIONSSC9302X NORMAL VERSIONR1R2R3HKSDTMFHDOV DDHFOSC9302ADIP-18SC9302DSDIP-24SC9302CDIP-20SC9302BSDIP-22SC9302XT/XLT VERSIONR1R2R3HKSDTMFHDOV DDHFOSC9302AT/ALTDIP-18SC9302DT/DLTSDIP-24SC9302CT/CLTDIP-20SC9302BT/BLTSDIP-22SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-013SC9302F/G/H SIMPLE VERSIONSC9302F/HDIP-18R1R2R3R4HKSDTMFPOMODESC9302GDIP-16C1C2C3C4R1R2R3R4X1X2KTMODEHFOHDOHFIHDIHKSXMUTEPODTMFCLOCKDOUTSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-014KEYBOARD INFORMATIONSAFPR369#258147*/TC4C3C2C1SAFPR369#258147*/TR1R2R3R4C4C3C2C1STHKS R1R2R3R4FPR369#258147*/TC4C3C2C1R1R2R3R4FR/P369#258147*/TC4C3C2C1R1R2R3R4FPR369#258147*/TC3C2C1HKSR1R2R3R4SC9302X and SC9302XT SC9302XLTSC9302HSC9302FSC9302GSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-015ABSOLUTE MAXIMUM RATINGS (Tamb=25°C, fosc=3.5795MHz,unless otherwise specified) Characteristic Symbol Value UnitSupply Voltage V DD-0.3 ~ 5.5 VInput Voltage V IN Vss-0.3V ~ V CC+0.3V VOperating Temperature Topr -20 ~ +75 °CStorage Temperature Tstg -50 ~ +125 °CSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-016SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-017PULSE MODE ELECTRICAL CHARACTERISTICS(Tamb=25°C, fosc=3.5795MHz,unless otherwise specified)SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-018TONE MODE ELECTRICAL CHARACTERISTICS(Tamb=25°C, fosc=3.5795MHz,unless otherwise specified)Test ConditionsParameter SymbolV DD ConditionMin Typ Max Unit DTMF Output DC Level V TDC-- -- 0.45V DD-- 0.7V DD V DTMF Sink Current I TOL 2.5V V DTMF =0.5V 0.1 -- -- mA DTMF Output AC Level V TAC-- Row group, R L =5kΩ0.12 0.155 0.18 Vrms DTMF Output Load R L 2.5V THD ≤ -23dB 5 -- -- kΩColumn Pre-emphasis A CR 2.5V Row group = 0dB 1 2 3 dB Tone Signal Distortion THD 2.5V R L =5kΩ-- -30 -23 dBOthers -- 82.5--Minimum Tone Duration T TMIN-- Auto-redial9302G -- 100 --msOthers -- 85.5 --Minimum Inter-tone Pause T ITPM-- Auto-redial9302G -- 106 --ms THD (Distortion)(dB)=20log)V+V/V+...+V+V(2h2i2n2221Vi, Vh: Row group and column group signalsV1,V2, …Vn: Harmonic signals (BW=300Hz~3500Hz)APPROXIMATE INTERNAL CONNECTION CIRCUITSSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-019(to be continued)SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0110(continued)(to be continued)SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0111(continued)FUNCTION DESCRIPTIONS1. KEYBOARD MATRIXThe 1C~4C and 1R~4R make up of a keyboard matrix. Together with a standard 4x4 keyboard, the keyboard matrix is used for dialing entrance. In addition, the keyboard matrix provides resistor option for different dialing specification selections. The keyboard arrangement for each of the SC9302 series are listed in KEYBOARD INFORMATION.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0112% Error does not contain the crystal frequency drift.3. DIALING SPECIFICATION SELECTIONBy means of adding resistors across keyboard matrixpins, various dialing specifications can be selected. Theallowable option resistor connections are shown right.C4C3C2C1All the resistors are 330kΩ. The resistor option functions and the default specifications (without option resistors) are listed below.OptionResistorOption Function Default (No Resistor)R K12Make/Break Ratio Selection 40:60R K13R K14Flash Function And Flash TimeSelectionFlash = control functionFlash time = 600msR K21Pause & P T Duration Selection T P = 3.6s , T P T = 3.6sR K31R K41Pulse Number Selection Or IDDLock SelectionN or Keyboard operatedlock4. M/B RATIO SELECTION TABLER K13M/B Ratio(%)No 40:60Yes 33.3:66.6SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01135. FLASH FUNCTION/TIME(DURATION) SELECTION TABLER K13R K14Flash Function Flash Time(TF)No No Control 600msNo Yes Digit 600msYes No Digit 98msYes Yes Digit 300ms6. PAUSE AND P T DURATION SELECTION TABLER K21T P (sec) T P T (sec)No 3.6 3.6Yes 2 17. PULSE NUMBER SELECTION TABLE• This table shows pulse number selections for SC9302X AND SC9302XT. The table for SC9302XLT is used toselect IDD lock function.R K31R K41Pulse NumberNo No NNo Yes N + 1Yes No 10-NYes Yes --• SC9302G has different selection method listed in the table below.R K31Pulse NumberNo NYes 10-NSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01148. PULSE NUMBER TABLEKeypad Output Pulse NumberDigit Key Normal N New Zealand (10-N) Sweden/Denmark(N+1)1 1 9 22 2 8 33 3 7 44 4 6 55 5 5 66 6 4 77 7 3 88 8 2 99 9 1 100 10 10 1*/T P T P T P T# Ignored Ignored Ignored9. HAND-FREE FUNCTION OPERATION•H: Logic HIGH X: Don’t care L: Logic LOW An: Unchanged: Rising edge : Falling edgeSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0115•Hand-free function executionWhen HFO is low, a rising edge triggers the HFI, asserting the Hand-free function (HFO becomes high). •Reset Hand-free functionWhen HFO is high, the Hand-free function is enabled and can be reset by:* Off-hook* Applying a rising edge to HFI* Changing the HDO pin from low to high10. HOLD-LINE FUNCTION OPERATION•Hold-line function executionWhen HDO is low, a falling edge triggers the HDI, asserting the Hold-line function (HDO becomes high). The XMUTE remains low when HDO is high.•Reset Hold-line functionWhen HDO is high, the Hold-line function is enabled and can be reset by:* Off-hook.* Applying a falling edge to HDI.* Changing the HFO pin from low to high.•H: Logic HIGH X: Don’t care L: Logic LOW An: Unchanged: Rising edge : Falling edgeSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-011611. DOUT BCD CODEWhen dialing, the corresponding 4-bit BCD codes are serially presented on DOUT from MSB to LSB. The data of the DOUT is valid at the falling edge of the CLOCK pin. The following table lists the BCD codes corresponding to the keyboard input.Key-In BCD Code Key-In BCD Code1 0001 8 10002 0010 9 10013 0011 0 10104 0100 */T 11015 0101 # 11006 0110 F 10117 0111 P 111012. LOCK FUNCTIONThe function aims to detect locked dialing number to prevent a long distance call. The dialing output of the chip is disabled if the first input key after on-off-hook is the locked number when the lock function is enabled. The lock function selection is listed below.The SC9302X version is the pin-selected type; on the other hand, the SC9302XLT is the key-board operated type. However, the SC9302XT version does not support any lock function.•SC9302X VERSIONLOCK Pin FunctionOPEN Normal dialing (no lock)V DD“0, 9” is inhibitedVss “0” is inhibited• SC9302XLT VERSIONR K31R K41FunctionNo No Keyboard operated IDD lockNo Yes Lock 0Yes No Lock 0,9Yes Yes All keys are lockedSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0117SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-011814. KEYBOARD OPERATIONThe following operations are all described under an on-off-hook or on-hook with the hand-free active condition. •NORMAL DIALING---Pulse Modea) without */TKeyboard input: D1 D2 … DnDialing output: D1 D2 … DnRM: D1 D2 … DnSAM: Unchangedb) with */TKeyboard input: D1 D2 … Dn */T Dn+1 … Dm---Tone Modea) without */TKeyboard input: D1 D2 … DnDialing output: D1 D2 … DnRM: D1 D2 … DnSAM: Unchangedb) with */TKeyboard input: D1 D2 … Dn */T Dn+1 … DmDialing output: D1 D2 … Dn * Dn+1…DmRM: D1 D2 … Dn * Dn+1…DmSAM: Unchanged•REDIAL---Pulse Modea) without */Tb) with */TRM: UnchangedSAM: Unchanged---Tone Modea) without */TRM content: D1 D2 … DnKeyboard input: R (or R/P)Dialing output: D1 D2 … DnRM: UnchangedSAM: Unchangedb) with */TRM content: D1 D2 … Dn */T Dn+1…DmKeyboard input: R (or R/P)Dialing output:D1 D2 … Dn * Dn+1…DmRM: UnchangedSAM: UnchangedSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0119•ONE-KEY REDIAL---Pulse Modea) without */TKeyboard input: D1 D2 … Dn RDialing output: D1 D2 … Dn T BRK T RP D1 D2 … DnRM: D1 D2 … DnSAM: Unchangedb) with */TKeyboard input: D1 D2 … Dn */T Dn+1 … Dm R---Tone Modea) without */TKeyboard input: D1 D2 … Dn RDialing output: D1 D2 … Dn T BRK T RP D1 D2 … DnRM: D1 D2 … DnSAM: Unchangedb) with */TKeyboard input: D1 D2 … Dn */T Dn+1 … Dm RDialing output: D1 D2 … Dn * Dn+1…Dm T BRKT RP D1 D2 … Dn * Dn+1…DmRM: D1 D2 … Dn * Dn+1…DmSAM: UnchangedPO = V DD.•SA COPY---Pulse Modea) without */Tb) with */TPulse ToneRM: D1 D2 … Dn */T Dn+1…DmSAM: D1 D2 … Dn */T Dn+1…Dm---Tone Modea) without */TKeyboard input: D1 D2 … Dn SADialing output: D1 D2 … DnRM: D1 D2 … DnSAM: D1 D2 … Dnb) with */TKeyboard input: D1 D2 … Dn */T Dn+1 … Dm SADialing output: D1 D2 … Dn * Dn+1…DmRM: D1 D2 … Dn * Dn+1…DmSAM: D1 D2 … Dn * Dn+1…DmNote: The maximum capacity of the RM memory is 32 digits. When over 32 digits plus the “SA” key are entered, the SAVE function will not be executed, and all the existing data in the save memory will not be changed.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0120•SA DIALING---Pulse Modea) without */TSAM content: D1 D2 … DnKeyboard input: SADialing output: D1 D2 … DnRM: UnchangedSAM: Unchangedb) with */TSAM content: D1 D2 … Dn */T Dn+1…DmKeyboard input: SADialing output: D1 D2 … Dn T P T Dn+1…DmPulse ToneRM: UnchangedSAM: Unchanged---Tone Modea) without */TSAM content: D1 D2 … DnKeyboard input: SADialing output: D1 D2 … DnRM: UnchangedSAM: Unchangedb) with */TSAM content: D1 D2 … Dn * Dn+1…DmKeyboard input: SADialing output: D1 D2 … Dn * Dn+1…DmRM: UnchangedSAM: Unchanged•FLASH---Flash as a digital keya) The intervenient keyKeyboard input: D1 D2 … Dn F Dn+1 … DmDialing output: D1 D2 … Dn T F T FP Dn+1…DmRM: D1 D2 … DnSAM: Unchangedb) The first keyKeyboard input: F D1 D2 … DnDialing output:T F T FP D1 D2 … DnRM: UnchangedSAM: Unchanged---Flash as a control keyKeyboard input: D1 D2 … Dn F Dn+1 … DmDialing output: D1 D2 … Dn T F T FP Dn+1…DmRM: Dn+1…DmSAM: UnchangedNote: T F: break a flash time•PAUSEKeyboard input: D1 D2 … Dn P Dn+1 … DmDialing output: D1 D2 … Dn T P Dn+1…DmRM: P Dn+1…DmSAM: Unchanged•NOTERM: Redial memorySAM: Save dialing memoryD1 D2 … Dn: 0~9Dn+1…Dm: 0~9, *, #SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0121•IDD lock operation by the keyboard (2 lock numbers, 3 digits/number at maximum)---Personal / lock No.1 / Lock No.2 input operationa) Personal code doesn’t existStores Personal Code: ST D1 D2 D3 ST * 0Stores Lock No.1: ST D4 D5 D6 ST * 1Stores Lock No.2: ST D7 D8 D9 ST * 2b) Personal code existChanges Personal Code: ST D1 D2 D3 ST # ST D4 D5 D6 ST * 0(Old personal code) (New personal code)Changes Lock No.1: ST D1 D2 D3 ST # ST D4 D5 D6 ST * 1(personal code) (Lock No.1)Changes Lock No.2: ST D1 D2 D3 ST # ST D7 D8 D9 ST * 2(personal code) (Lock No.2)Changes Personal Code, Lock No.1 and Lock No.2 at one timeST D1 D2 D3 ST # ST D4 D5 D6 ST * 0 (continued)(Old personal code) (New personal code)ST D7 D8 D9 ST # ST D10 D11 D12 ST * 2(Lock No.1) (Lock No.2)---Personal / lock No.1 / Lock No.2 cancel operationCancels Personal Code: ST D1 D2 D3 ST # ST # 0Cancels Lock No.1: ST D1 D2 D3 ST # ST # 1Cancels Lock No.2: ST D1 D2 D3 ST # ST # 2---Temporary release both of the lock numbers (Lock No.1, Lock No.2):ST D1 D2 D3 ST # Dm Dm+1 Dm+2 Dl…Dn(Personal code)Note: D1~D12=0~9Dm Dm+1 Dm+2 = 0~9Dl…Dn = 0~9, *, #•Note:RM: Redial memorySAM: Save dialing memoryD1 D2…Dn: 0~9Dn+1…Dm: 0~9, *, #Dm+1…Dl: 0~9, *, #Dl+1…Dk: 0~9, *, #SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0122OPERATION TIMING1. NORMAL DIALING•PULSE MODEHKSKEY INXMUTEPOXMUTEDTMFKTX2OthersSC9302G•TONE MODEHKSKEY INXMUTEPODTMFKTX2High impedanceSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01232. DIALING WITH PAUSE KEY•PULSE MODEHKSKEY INOthersPOXMUTESC9302GDTMFKTX2•TONE MODEHKSKEY INXMUTEDTMFKTX2High impedanceSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01243. FLASH KEY OPERATIONHKSKEY INXMUTEPO20msDTMFKTX2High impedance4. PULSE TONE OPERATIONKEY INXMUTEDTMFKTX2High impedanceSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01255. ONE KEY REDIAL OPERATIONHKSKEY INXMUTEPODTMFKTX2High impedance6. CLOCK & DOUT OPERATIONHKSKEY INXMUTEPOCLOCKDOUTX2High impedanceKTNote: D1=D3=3, D2=2.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0126TYPICAL APPLICATIONS1. SC9302A (DIP-18)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01272. SC9302B (SDIP-22)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.* The melody IC provides a melody during the hold period.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01283. SC9302C(DIP-20)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01294. SC9302D (SDIP-24)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.* The Melody IC provides a melody during the hold period.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01305. SC9302AT/ALT (DIP-18)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01316. SC9302BT/BLT (SDIP-22)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.* The Melody IC provides a melody during the hold period.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01327. SC9302CT/CLT (DIP-20)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01338. SC9302DT/DLT (SDIP-24)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.* The Melody IC provides a melody during the hold period.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-01349. SC9302H (DIP-18)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-013510. SC9302G (DIP-16)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-013611. SC9302F (DIP-18)* RKfor dialing signal option. (Refer to the functional description) * Unmarked transistors are of 8050 type. * A 1µF capacitor between XMUTEand Vss (GND) is recommended.SilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0137CHIP TOPOGRAPHYSilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0138PACKAGE OUTLINESilanSemiconductors SC9302 SeriesHANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev: 2.0 2001-11-0139。
ES9023芯片介绍

ES9023芯片介绍ES9023是24bit立体声音频数-模转换芯片,芯片内集成2Vrms输出的驱动运放。
采用了业界先进的SABRE数-模转换技术,这款芯片集最佳音质、高性价比于一身,使之成为数模转换的理想选择。
可以应用在蓝光播放器、CD/DVD、高清机顶盒、数字电视或音频接收设备等产品。
ES9023内部使用专利技术的超线流(Hyperstream)架构和时域抖动消除技术,使之可以实现无抖动录音级别的音质,动态范围达到了112dB。
由于芯片内集成了电荷泵可以产生负电压,ES9023可以在单电源供电下参考地线直接输出2Vrms,免除了直流电压隔离的耦合电容。
而且,输出幅度可以根据实际需要,通过电阻来设置小于2Vrms水平。
开关机噪声也得以全面抑制。
专用的控制/状态引脚可以允许在没有单片机控制的情况下容易集成到系统中。
后记ES9023是ESS公司一款单端输出DAC芯片,也是他们的SABRE DAC系列里很独特、简洁的一款,公认为是最容易出好声的解码芯片。
在3.6V供电下我们实际测试输出可以大于2Vrms,而且没有耦合电容的结构,不用再费心寻找价格不菲的耦合电容了,也不需要担心电容带来的音频失真(通常会这样)。
另外实际测试中我们用32ohm耳机发现也可以很好驱动,只不过输出幅度会略为减小。
而对于驳接功放、耳放等电路,更是不在话下。
亿世科技(ESS Technology)的最新解码芯片S9023。
ES9023 拥有从此公司顶级产品ES9018 身上继承过来的多处核心技术,包括专利技术的超级流水线结构(Hyperstream architecture)和时域抖动消除器(Time Domain Jitter Eliminator)等。
设计完美并精心校音的ES9023 解码电路可以提供惊人性价比的声音输出。
欢迎登陆HiFi音响论坛参与讨论。
KLD-9302公共测控单元说明书正文

1 概述1.1 装置功能及适用范围KLD-9302公共测控单元的测控功能包括:1)16路遥信开入采集、遥信变位;2)遥测功能:装置采集两段三相电压Ua、Ub、Uc和两路三相电流Ia、Ib、Ic,计算Uab、Ubc、Uca、P、Q、COSΦ、F;3)16个继电器输出,可做8路遥控;4)遥信事件记录及时间SOE等;本装置满足变电站综合自动化系统的要求,可作为110KV及以下系统变用站的公共测控单元。
1.2 主要特点见KLD-9300概述部分1.2主要特点。
1.3 外形尺寸和安装尺寸见KLD-9300概述部分1.3外形尺寸和安装尺寸。
2 技术条件见KLD-9300概述部分2技术条件。
3. 测控功能3.1 遥测功能装置采集计算的遥测量包括:1) 相电压有效值Ua1、Ub1、Uc1、Ua2、Ub2、Uc2;2) 线电压有效值Uab1、Ubc1、Uca1、Uab2、Ubc2、Uca2; 3) 测量电流有效值Mia1、Mib1、Mic1、Mia2、Mib2、Mic2; 4) 有功功率Pa1、Pb1、Pc1、Psum1、Pa2、Pb2、Pc2、Psum2; 5) 无功功率Qa1、Qb1、Qc1、Qsum1、Qa2、Qb2、Qc2、Qsum2;6) 功率因数a Φcos 1、b Φcos 1、c Φcos 1、sum Φcos 1、a Φcos 2、b Φcos 2、c Φcos 2、sum Φcos 2; 7) 本侧频率MF ;8) 各个模拟输入量超前于第一通道(或第七通道)的相角;3.2 遥信功能装置的遥信包括:1) 16路遥信开入量采集;2) 告警遥信。
装置内部存储最新产生的32条SOE ,遥信分辨率小于2ms 。
3.3 遥控功能装置具备16个遥控量,可以做8路遥控。
4 装置自检同KLD-93115 装置出口配置装置具有“装置异常”专用出口。
装置自检过程中,出现异常情况时,“装置异常”出口闭合;异常情况解除后,“装置异常”出口打开。
OX3042资料

OCXO SERIES 4000n FEATURES APPLICATIONS Excellent frequency stability - SATCOMMechanical / Electrical frequency adjustment available - BASE STATIONS- TEST INSTRUMENTSn ELECTRICAL PERFORMANCEPARAMETER OCXO SERIES 4000AT CUT CRYSTAL SC CUT CRYSTAL Supply voltage, nom. 15V, 12V, 5V ±5% StandardPower dissipation steady state 2.5 Watt Max.Heat up power 5 Watt MaxHeat up time. 7 min MaxFrequency range 1 To 160 MHz StandardFrequency Adjustment:Electrical (0 to 5V) Electrical (0 to 10V) Mechanical ±10PPM Min±15PPM Min±1.5PPM Min±0.7PPM Min±1PPM Min±0.6 PPM Min±0.05 PPM±0.1 PPM±0.002 PPM±0.005 PPMFreq. stability vs. temperatureLX: 0°C to 60°CFZ: -30°C to 70°C(Standard, contact factory for different temp ranges and stabilities) Freq. stability vs. supplychanges±0.005 PPM Max for ±5% Change ±0.002 PPM Max for ±5% ChangeFreq. stability vs. loadchanges±0.005 PPM Max for ±5% Change ±0.001 PPM Max for ±5% ChangeLong term stability (Aging) ± 1.5 PPM Max for 10 Years± 0.3 PPM Max for 1 Years±0.002 PPM/Day Max. ±0.6 PPM Max for 10 Years ±0.05 PPM Max for 1 Years ±0.0005 PPM/Day Max.Output HCMOS/TTL/Sine 0 to +13dBm Harmonics, Sub Harmonics -30dBc(Sine Output)Spurious -75dBc(Sine Output)Duty cycle 40/60% to 60/40%(HCMOS)Rise / fall time 10nS Max. (HCMOS,10%~90%Vout, 90%~10%Vout) Short term Stability (10MHz) 1 E-10 /Sec 5 E-11 /SecPhase Noise typical under static conditions(Sine Output 10MHZ) Offset Phase Noise10Hz -95 dBc/Hz100Hz -125 dBc/Hz1000Hz -135 dBc/Hz10000Hz -150 dBc/HzOffset Phase Noise10Hz -115 dBc/Hz100Hz -135 dBc/Hz1000Hz -145 dBc/Hz10000Hz -150 dBc/HzNote: All Typical parameters for a 10MHz output and 5V Supply, for different frequencies consult factoryn HOW TO ORDER (PART NUMBER)Prefix Output Type Cut TypeSeries Revision Temperature Range Stability FrequencySupply Voltage OX1:TTL 2:HCMOS 3:ACMOS 4:LVCMOS 5:100K ECL 6:SINE 7:10K ECL 8: PECL 9:CUSTOM0:AT (No Vcontrol ) 1: SC (No Vcontrol ) 2: AT (Mechanical Adj) 3: SC (Mechanical Adj) 4: AT (Elect Vcontrol) 5: SC (Elect Vcontrol) 6: AT (Mech & Elect.) 7: SC (Mech & Elect.)4X:4000 40:Height=1”/25.4mm41:Height=2”/50.8mm42:Height=4”/101.6mm44~49:Odd HeightAFirst letter Lowest Temperature,Second letter Highest Temperature: From A=-55°C to Z=+70°C, Then: 1=+75°C, 2=+80°C, 3=+85°C… in 5°C steps Example: LZ: +0°C to +70°C LX: +0°C to +60°C FZ: -30°C to +70°C D3: -40°C to +85°CValue x10E-2 in PPMExample 28=0.28PPM 10= 0.1PPMIn MHZ5: 5V 12; 12V 15; 15V。
BL0972 交 直流电能计量芯片 数据手册 V1.0说明书

BL0972交/直流电能计量芯片数据手册V1.0目录1、产品简述 (5)2、基本特征 (6)2.1主要特点 (6)2.2系统框图 (7)2.3管脚排列(TSSOP20) (7)2.4性能指标 (8)2.4.1电参数性能指标 (8)2.4.2极限范围 (9)3、工作原理 (10)3.1电流电压波形产生原理 (10)3.1.1PGA增益调整 (10)3.1.2相位补偿 (11)3.1.3通道偏置校正 (11)3.1.4通道增益校正 (12)3.1.5电流电压波形输出 (12)3.2有功功率计算原理 (13)3.2.1有功波形的选择 (14)3.2.2有功功率输出 (14)3.2.3有功功率校准 (14)3.2.4有功功率的防潜动 (15)3.2.5有功功率小信号补偿 (15)3.3有功能量计量原理 (16)3.3.1有功能量输出 (16)3.3.2有功能量输出选择 (16)3.3.3有功能量输出比例 (17)3.4电流电压有效值计算原理 (17)3.4.1有效值输出 (18)3.4.2有效值输入信号的设置 (18)3.4.3有效值刷新率的设置 (18)3.4.4电流电压有效值校准 (19)3.4.5有效值的防潜动 (19)3.5快速有效值检测原理 (20)3.5.1快速有效值输出 (20)3.5.2快速有效值输入选择 (21)3.5.3快速有效值累计时间和阈值 (21)3.5.4电网频率选择 (21)3.5.5快速有效值超限数据保存 (22)3.5.6过流指示 (22)3.5.7继电器控制 (22)3.6温度计量 (23)3.7.1线周期计量 (23)3.7.2线频率计量 (23)3.7.3相角计算 (24)3.7.4功率符号位 (24)3.8故障检测 (25)3.8.1过零检测 (25)3.8.2峰值超限 (25)3.8.3线电压跌落 (26)3.8.4过零超时 (27)3.8.5电源供电指示 (28)4、内部寄存器 (30)4.1电参量寄存器(只读) (30)4.2校表寄存器(外部写) (30)4.3OTP寄存器 (32)4.4模式寄存器 (33)4.4.1 MODE1寄存器 (33)4.4.2 MODE2寄存器 (33)4.4.3 MODE3寄存器 (34)4.5中断状态寄存器 (34)4.5.1 STATUS1寄存器 (34)4.5.2 STATUS3寄存器 (34)4.6校表寄存器详细说明 (34)4.6.1 通道PGA增益调整寄存器 (34)4.6.2 相位校正寄存器 (35)4.6.3 有效值增益调整寄存器 (35)4.6.4 有效值偏置校正寄存器 (36)4.6.5 有功小信号补偿寄存器 (36)4.6.7 防潜动阈值寄存器 (36)4.6.8 快速有效值相关设置寄存器 (37)4.6.9 过流报警及控制 (38)4.6.11 能量读后清零设置寄存器 (39)4.6.12 用户写保护设置寄存器 (39)4.6.13 软复位寄存器 (39)4.6.14 通道增益调整寄存器 (40)4.6.15 通道偏置调整寄存器 (40)4.6.16 有功功率增益调整寄存器 (40)4.6.17 有功功率偏置调整寄存器 (41)4.6.20 CF缩放比例寄存器 (41)4.7电参数寄存器详细说明 (42)4.7.1 波形寄存器 (42)4.7.2 有效值寄存器 (42)4.7.3 快速有效值寄存器 (42)4.7.7 电能脉冲计数寄存器 (43)4.7.8 波形夹角寄存器 (44)4.7.9 快速有效值保持寄存器 (44)4.7.11 线电压频率寄存器 (44)5、SPI通讯接口 (45)5.1概述 (45)5.2工作模式 (45)5.3帧结构 (45)5.4读出操作时序 (46)5.5写入操作时序 (47)5.6SPI接口的容错机制 (48)6、典型应用图 (49)7、封装信息 (50)1、产品简述BL0972是一颗内置时钟的单相交/直流电能计量芯片。
AD9952 Evaluation Board Datasheet说明书

功能框图图1.DC/PHASE CORRECTION DC/PHASE CORRECTIONC SS C L KS D I OSERIAL PORT INTERFACE15141323892325262838VPOS_3P3DECL1TO DECL4211119303136273340101VPOS_5VLDO VCOLDO 2.5VRFIN0RFIN12922POLYPHASE FILTERLOIN–REFINLOIN+I+I–Q–Q+QUAD DIVIDERPLL343935547611990-001Rev. ADocument FeedbackInformation furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Speci cations subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved. Technical Support 695 MHz 至2700 MHz 正交解调器,集成小数N 分频PLL 和VCOADRF6820产品特性集成小数N 分频PLL 的I/Q 解调器RF 输入频率范围:695 MHz 至2700 MHz 内部LO 频率范围:356.25 MHz 至2850 MHz 输入P1dB :14.5 dBm (1900 MHz RF) 输入IP3:35 dBm (1900 MHz RF) 可编程HD3/IP3调整单刀双掷(SPDT) RF 输入开关RF 数字步进衰减范围:0 dB 至15 dB集成式RF 可调谐巴伦,支持单端50 Ω输入 多核集成式VCO解调1 dB 带宽:600 MHz 4个可选基带增益和带宽模式数字可编程LO 相位失调和直流零点可通过三线式串行端口接口(SPI)进行编程 40引脚、6 mm x 6 mm LFCSP 封装应用蜂窝W-CDMA/GSM/LTE 数字预失真(DPD)接收器 微波点对点无线电概述ADRF6820是一款高度集成的解调器和频率合成器,非常适合用于下一代通信系统中。
MAX232ECWE中文资料

________________________________________________________________Maxim Integrated Products 1General DescriptionThe MAX202E–MAX213E, MAX232E/MAX241E line drivers/receivers are designed for RS-232 and V.28communications in harsh environments. Each transmitter output and receiver input is protected against ±15kV electrostatic discharge (ESD) shocks, without latchup.The various combinations of features are outlined in the Selector Guide.The drivers and receivers for all ten devices meet all EIA/TIA-232E and CCITT V.28specifications at data rates up to 120kbps, when loaded in accordance with the EIA/TIA-232E specification.The MAX211E/MAX213E/MAX241E are available in 28-pin SO packages, as well as a 28-pin SSOP that uses 60% less board space. The MAX202E/MAX232E come in 16-pin TSSOP, narrow SO, wide SO, and DIP packages. The MAX203E comes in a 20-pin DIP/SO package, and needs no external charge-pump capacitors. The MAX205E comes in a 24-pin wide DIP package, and also eliminates external charge-pump capacitors. The MAX206E/MAX207E/MAX208E come in 24-pin SO, SSOP, and narrow DIP packages. The MAX232E/MAX241E operate with four 1µF capacitors,while the MAX202E/MAX206E/MAX207E/MAX208E/MAX211E/MAX213E operate with four 0.1µF capacitors,further reducing cost and board space.________________________ApplicationsNotebook, Subnotebook, and Palmtop Computers Battery-Powered Equipment Hand-Held EquipmentNext-Generation Device Featureso For Low-Voltage ApplicationsMAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected Down to10nA, +3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in a UCSP™Package)o For Low-Power ApplicationsMAX3221/MAX3223/MAX3243: 1µA SupplyCurrent, True +3V to +5.5V RS-232 Transceivers with Auto-Shutdown™o For Space-Constrained ApplicationsMAX3233E/MAX3235E: ±15kV ESD-Protected,1µA, 250kbps, +3.0V/+5.5V, Dual RS-232Transceivers with Internal Capacitorso For Low-Voltage or Data Cable ApplicationsMAX3380E/MAX3381E: +2.35V to +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic PinsMAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversSelector Guide19-0175; Rev 6; 3/05Pin Configurations and Typical Operating Circuits appear at end of data sheet.YesPARTNO. OF RS-232DRIVERSNO. OF RS-232RECEIVERSRECEIVERS ACTIVE IN SHUTDOWNNO. OF EXTERNAL CAPACITORS(µF)LOW-POWER SHUTDOWNTTL TRI-STATE MAX202E 220 4 (0.1)No No MAX203E 220None No No MAX205E 550None Yes Yes MAX206E 430 4 (0.1)Yes Yes MAX207E 530 4 (0.1)No No MAX208E 440 4 (0.1)No No MAX211E 450 4 (0.1)Yes Yes MAX213E 452 4 (0.1)Yes Yes MAX232E 220 4 (1)No No MAX241E454 (1)YesFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .AutoShutdown and UCSP are trademarks of Maxim Integrated Products, Inc.Ordering InformationOrdering Information continued at end of data sheet.2_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EABSOLUTE MAXIMUM RATINGSV CC ..........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................-14V to +0.3V Input VoltagesT_IN............................................................-0.3V to (V+ + 0.3V)R_IN...................................................................................±30V Output VoltagesT_OUT.................................................(V- - 0.3V) to (V+ + 0.3V)R_OUT......................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T_OUT....................................Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C).....696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C)...........755mW20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...889mW 20-Pin SO (derate 10.00mW/°C above +70°C).............800mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C) ...............................1.07W 24-Pin Wide Plastic DIP(derate 14.29mW/°C above +70°C)................................1.14W 24-Pin SO (derate 11.76mW/°C above +70°C).............941mW 24-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 28-Pin SO (derate 12.50mW/°C above +70°C)....................1W 28-Pin SSOP (derate 9.52mW/°C above +70°C)..........762mW Operating Temperature RangesMAX2_ _EC_ _.....................................................0°C to +70°C MAX2_ _EE_ _...................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +165°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V CC = +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC = +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF for MAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICS (continued)MAX202E–MAX213E, MAX232E/MAX241E (V CC= +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC= +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF forMAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A= T MIN to T MAX; unless otherwise noted. Typical valuesare at T A= +25°C.)Note 1:MAX211EE_ _ tested with V CC= +5V ±5%._______________________________________________________________________________________34______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E__________________________________________Typical Operating Characteristics(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)5.00MAX211E/MAX213ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)V O H , -V O L (V )5.56.06.57.07.58.0100020003000400050000MAX211E/MAX213E/MAX241E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )5101520253010002000300040005000_______________________________________________________________________________________5MAX202E–MAX213E, MAX232E/MAX241E____________________________Typical Operating Characteristics (continued)(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)2MAX202E/MAX203E/MAX232E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )468101214100020003000400050005.07.5-7.53000MAX205E–MAX208ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCE-5.02.5LOAD CAPACITANCE (pF)O U T P U T V O L T A G E (V )10002000400050000-2.54550203000MAX205E–MAX208E SUPPLY CURRENT vs. LOAD CAPACITANCE2540LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )100020004000500035302.55.0-10.0180MAX205E –MAX208EOUTPUT VOLTAGE vs. DATA RATE-7.50DATA RATE (kbps)O U T P U T V O L T A G E (V )601202401503090210-2.5-5.010.07.56_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX203EMAX205E_____________________________________________________________Pin DescriptionsMAX202E/MAX232E_______________________________________________________________________________________7MAX202E–MAX213E, MAX232E/MAX241EMAX208E________________________________________________Pin Descriptions (continued)MAX206EMAX207E8_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX211E/MAX213E/MAX241E)(MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)________________________________________________Pin Descriptions (continued)MAX211E/MAX213E/MAX241EFigure 3. Transition Slew-Rate Circuit_______________Detailed Description The MAX202E–MAX213E, MAX232E/MAX241E consist of three sections: charge-pump voltage converters, drivers (transmitters), and receivers. These E versions provide extra protection against ESD. They survive ±15kV discharges to the RS-232 inputs and outputs, tested using the Human Body Model. When tested according to IEC1000-4-2, they survive ±8kV contact-discharges and ±15kV air-gap discharges. The rugged E versions are intended for use in harsh environments or applications where the RS-232 connection is frequently changed (such as notebook computers). The standard (non-“E”) MAX202, MAX203, MAX205–MAX208, MAX211, MAX213, MAX232, and MAX241 are recommended for applications where cost is critical.+5V to ±10V Dual Charge-PumpVoltage Converter The +5V to ±10V conversion is performed by dual charge-pump voltage converters (Figure 4). The first charge-pump converter uses capacitor C1 to double the +5V into +10V, storing the +10V on the output filter capacitor, C3. The second uses C2 to invert the +10V into -10V, storing the -10V on the V- output filter capacitor, C4.In shutdown mode, V+ is internally connected to V CC by a 1kΩpull-down resistor, and V- is internally connected to ground by a 1kΩpull up resistor.RS-232 Drivers With V CC= 5V, the typical driver output voltage swing is ±8V when loaded with a nominal 5kΩRS-232 receiver. The output swing is guaranteed to meet EIA/TIA-232E and V.28 specifications that call for ±5V minimum output levels under worst-case conditions. These include a 3kΩload, minimum V CC, and maximum operating temperature. The open-circuit output voltage swings from (V+ - 0.6V) to V-.Input thresholds are CMOS/TTL compatible. The unused drivers’ inputs on the MAX205E–MAX208E, MAX211E, MAX213E, and MAX241E can be left unconnected because 400kΩpull up resistors to V CC are included on-chip. Since all drivers invert, the pull up resistors force the unused drivers’ outputs low. The MAX202E, MAX203E, and MAX232E do not have pull up resistors on the transmitter inputs._______________________________________________________________________________________9MAX202E–MAX213E, MAX232E/MAX241E10______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E±15kV ESD-Protected, +5V RS-232 Transceivers When in low-power shutdown mode, the MAX205E/MAX206E/MAX211E/MAX213E/MAX241E driver outputs are turned off and draw only leakage currents—even if they are back-driven with voltages between 0V and 12V. Below -0.5V in shutdown, the transmitter output is diode-clamped to ground with a 1k Ωseries impedance.RS-232 ReceiversThe receivers convert the RS-232 signals to CMOS-logic output levels. The guaranteed 0.8V and 2.4V receiver input thresholds are significantly tighter than the ±3V thresholds required by the EIA/TIA-232E specification.This allows the receiver inputs to respond to TTL/CMOS-logic levels, as well as RS-232 levels.The guaranteed 0.8V input low threshold ensures that receivers shorted to ground have a logic 1 output. The 5k Ωinput resistance to ground ensures that a receiver with its input left open will also have a logic 1 output. Receiver inputs have approximately 0.5V hysteresis.This provides clean output transitions, even with slow rise/fall-time signals with moderate amounts of noise and ringing.In shutdown, the MAX213E’s R4 and R5 receivers have no hysteresis.Shutdown and Enable Control (MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)In shutdown mode, the charge pumps are turned off,V+ is pulled down to V CC , V- is pulled to ground, and the transmitter outputs are disabled. This reduces supply current typically to 1µA (15µA for the MAX213E).The time required to exit shutdown is under 1ms, as shown in Figure 5.ReceiversAll MAX213E receivers, except R4 and R5, are put into a high-impedance state in shutdown mode (see Tables 1a and 1b). The MAX213E’s R4 and R5 receivers still function in shutdown mode. These two awake-in-shutdown receivers can monitor external activity while maintaining minimal power consumption.The enable control is used to put the receiver outputs into a high-impedance state, to allow wire-OR connection of two EIA/TIA-232E ports (or ports of different types) at the UART. It has no effect on the RS-232 drivers or the charge pumps.N ote: The enabl e control pin is active l ow for the MAX211E/MAX241E (EN ), but is active high for the MAX213E (EN). The shutdown control pin is active high for the MAX205E/MAX206E/MAX211E/MAX241E (SHDN), but is active low for the MAX213E (SHDN ).Figure 4. Charge-Pump DiagramMAX202E–MAX213E, MAX232E/MAX241EV+V-200µs/div3V 0V 10V 5V 0V -5V -10VSHDNMAX211EFigure 5. MAX211E V+ and V- when Exiting Shutdown (0.1µF capacitors)X = Don't care.*Active = active with reduced performanceSHDN E N OPERATION STATUS Tx Rx 00Normal Operation All Active All Active 01Normal Operation All Active All High-Z 1XShutdownAll High-ZAll High-ZTable 1a. MAX205E/MAX206E/MAX211E/MAX241E Control Pin ConfigurationsTable 1b. MAX213E Control Pin ConfigurationsThe MAX213E’s receiver propagation delay is typically 0.5µs in normal operation. In shutdown mode,propagation delay increases to 4µs for both rising and falling transitions. The MAX213E’s receiver inputs have approximately 0.5V hysteresis, except in shutdown,when receivers R4 and R5 have no hysteresis.When entering shutdown with receivers active, R4 and R5 are not valid until 80µs after SHDN is driven low.When coming out of shutdown, all receiver outputs are invalid until the charge pumps reach nominal voltage levels (less than 2ms when using 0.1µF capacitors).±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity. Maxim’s engineers developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup, whereas competing RS-232products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:1)±15kV using the Human Body Model2)±8kV using the contact-discharge method specifiedin IEC1000-4-23)±15kV using IEC1000-4-2’s air-gap method.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test set-up, test methodology, and test results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5k Ωresistor.S H D N ENOPERATION STATUS Tx 1–400Shutdown All High-Z 01Shutdown All High-Z 10Normal Operation 11Normal OperationAll ActiveAll Active Active1–34, 5High-Z ActiveHigh-Z High-Z High-Z Active*High-Z RxM A X 202E –M A X 213E , M A X 232E /M A X 241EIEC1000-4-2The IEC1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX202E/MAX203E–MAX213E, MAX232E/MAX241E help you design equipment that meets level 4 (the highest level) of IEC1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2, because series resistance is lower in the IEC1000-4-2 model. Hence, the ESD withstand voltage measured to IEC1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7b shows the current waveform for the 8kV IEC1000-4-2 level-four ESD contact-discharge test.The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just RS-232 inputs and outputs. Therefore,after PC board assembly,theMachine Model is less relevant to I/O ports.Figure 7a. IEC1000-4-2 ESD Test ModelFigure 7b. IEC1000-4-2 ESD Generator Current WaveformFigure 6a. Human Body ESD Test ModelFigure 6b. Human Body Model Current Waveform__________Applications InformationCapacitor Selection The capacitor type used for C1–C4 is not critical for proper operation. The MAX202E, MAX206–MAX208E, MAX211E, and MAX213E require 0.1µF capacitors, and the MAX232E and MAX241E require 1µF capacitors, although in all cases capacitors up to 10µF can be used without harm. Ceramic, aluminum-electrolytic, or tantalum capacitors are suggested for the 1µF capacitors, and ceramic dielectrics are suggested for the 0.1µF capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2x) nominal value. The capacitors’ effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.Use larger capacitors (up to 10µF) to reduce the output impedance at V+ and V-. This can be useful when “stealing” power from V+ or from V-. The MAX203E and MAX205E have internal charge-pump capacitors. Bypass V CC to ground with at least 0.1µF. In applications sensitive to power-supply noise generated by the charge pumps, decouple V CC to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1–C4).V+ and V- as Power Supplies A small amount of power can be drawn from V+ and V-, although this will reduce both driver output swing and noise margins. Increasing the value of the charge-pump capacitors (up to 10µF) helps maintain performance when power is drawn from V+ or V-.Driving Multiple Receivers Each transmitter is designed to drive a single receiver. Transmitters can be paralleled to drive multiple receivers.Driver Outputs when Exiting Shutdown The driver outputs display no ringing or undesirable transients as they come out of shutdown.High Data Rates These transceivers maintain the RS-232 ±5.0V minimum driver output voltages at data rates of over 120kbps. For data rates above 120kbps, refer to the Transmitter Output Voltage vs. Load Capacitance graphs in the Typical Operating Characteristics. Communication at these high rates is easier if the capacitive loads on the transmitters are small; i.e., short cables are best.Table 2. Summary of EIA/TIA-232E, V.28 SpecificationsMAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)Table 3. DB9 Cable ConnectionsCommonly Used for EIA/TIAE-232E and V.24 Asynchronous Interfaces____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)______________________________________________________________________________________21MAX202E–MAX213E, MAX232E/MAX241E Ordering Information (continued)*Dice are specified at T A= +25°C.M A X 202E –M A X 213E , M A X 232E /M A X 241E22________________________________________________________________________________________________________________________________________________Chip Topographies___________________Chip InformationC1-V+C1+V CC R2INT2OUT R2OUT0.117"(2.972mm)0.080"(2.032mm)V-C2+ C2-T2IN T1OUT R1INR1OUT T1INGNDR5INV-C2-C2+C1-V+C1+V CC T4OUTR3IN T3OUTT1OUT 0.174"(4.420mm)0.188"(4.775mm)T4IN R5OUT R4OUT T3IN R4IN EN (EN) SHDN (SHDN)R3OUT T2OUT GNDR1IN R1OUT T2IN R2OUTR2IN T1IN ( ) ARE FOR MAX213E ONLYTRANSISTOR COUNT: 123SUBSTRATE CONNECTED TO GNDTRANSISTOR COUNT: 542SUBSTRATE CONNECTED TO GNDMAX202E/MAX232EMAX211E/MAX213E/MAX241EMAX205E/MAX206E/MAX207E/MAX208E TRANSISTOR COUNT: 328SUBSTRATE CONNECTED TO GNDMAX202E–MAX213E, MAX232E/MAX241E Package InformationM A X 202E –M A X 213E , M A X 232E /M A X 241EPackage Information (continued)MAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________25©2005 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。