2013年中考数学复习考点跟踪训练22特殊三角形(全解全析)

合集下载

2012年中考复习考点跟踪训练《特殊三角形》

2012年中考复习考点跟踪训练《特殊三角形》

2012年中考复习考点跟踪训练(二十二)《特殊三角形》一、选择题1.(2011·贵阳)如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能...是( )A .3.5B .4.2C .5.8D .7答案 D解析 在Rt △ABC 中,AC =3,∠B =30°,得AB =2AC =6,而AC ≤AP ≤AB ,即3≤AP ≤6,不可能是7.2.(2011·枣庄)如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能...是( )A .(2,0)B .(4,0)C .(-2 2,0)D .(3,0)答案 D解析 当点P 的坐标为(3,0)时,OP =3,而AO =2 2,AP =5,△APO 不是等腰三角形.3.(2011·烟台)如图,等腰△ ABC 中,AB =AC ,∠A =20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A .80°B .70°C .60°D .50° 答案 C解析 在△ABC 中,AB =AC ,∠A =20°,所以∠ABC =12×(180°-20°)=80°.DE 垂直平分AB ,有EA =EB ,∠EBA =∠A =20°,所以∠CBE =∠ABC -∠EBA =80°-20°=60°.4.(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600 mB .500 mC .400 mD .300 m答案 B解析 如图,易证△ABC ≌△DEA ,BC =AE =300,而AC =500,所以CE =200,最近路程BC +CE =300+200=500.5.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个数是( )A .1个B .2个C .3个D .4个 答案 D解析 ∵△ABC 和△CDE 都是等腰直角三角形,∴△ABC ∽△EDC ,AC CE =BC CD .∴∠ACE =180°-45°-45°=90°,∴在Rt △ACE 中,tan ∠AEC =AC CE =BC CD;设△ABC 、△CDE 的直角边分别是a 、b ,则AC =2a ,EC =2b ,S △ABC =12a 2,S △CDE =12b 2,S △ACE =12(2a )(2b )=ab ,而(a -b )2≥0,a 2+b 2≥2ab ,12a 2+12b 2≥ab ,即S △ABC +S △CDE ≥S△ACE ;过M 画MN ⊥BD 于N ,有AB ∥MN ∥ED ,点M 是AE 的中点,则点N 是BD 的中点,MN 垂直平分BD ,BM =DM ;MN 是梯形ABDE 的中位线,MN =12(a +b )=BN =DN ,∵△BMN 与△DMN 都是等腰直角三角形,∴∠BMN =∠DMN =45°,∠BMD =90°,BM ⊥DM .故结论①、②、③、④都正确.二、填空题6.(2011·衡阳)如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.答案 7解析 在Rt △ABC 中,AB =3,AC =5,则BC =52-32=4,又AE =EC ,所以△ABE 的周长AB +BE +AE =AB +BE +EC =AB +BC =7.7.(2011·凉山)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2”的逆命题改写成“如果……,那么……”的形式:_____________________答案 如果三角形三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.8.(2011·无锡)如图,在Rt △ABC 中,∠ACB =90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD =5 cm ,则EF =_________cm.答案 5解析 ∵点D 是AB 中点,∴CD 是Rt △ABC 斜边AB 的中线,CD =12AB ,AB =2CD .∵点E 、F 是BC 、CA 的中点,∴EF 是△ABC 的中位线,EF =12AB ,AB =2EF .∴EF =CD =5 cm. 9.(2011·温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图①).图②由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1、S 2、S 3,若S 1+S 2+S 3=10,则S 2的值是______________.答案 103解析 设直角三角形AEH 的面积为S ,则S 1=8S +S 3,S 2=4S +S 3.∵S 1+S 2+S 3=10,∴(8S +S 3)+(4S +S 3)+S 3=10,12S +3S 3=10,4S +S 3=103,即S 2=103.10.(2011·乐山)如图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连接A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连接A 2B 2…按此规律下去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn 则(1)θ1=_____________;(2)θn =________________.答案 (1)180°+α2;(2)()2n-1·180°+α2n解析 ∵∠AOB =α,OA 1=OB 1,∴∠OB 1A 1=∠OA 1B 1=180°-α2,∴θ1=180°-180°-α2=180°+α2;类似地,θ2=3×180°+α4,θ3=7×180°+α8,……,∴θn=(2n-1)·180°+α2n.三、解答题11.(2011·广安)某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长分别为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形............求扩建后的等腰三角形花圃的周长.解由题意可得,扩建后的花圃是等腰直角三角形,花圃的周长=8+8+8 2=16+8 2.12.(2011·乐山)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.解∵AD平分∠CAB,∴∠CAD=∠BAD.∵DE垂直平分AB,∴AD=BD,∠B=∠BAD,∴∠CAD=∠BAD=∠B.∵在Rt△ABC中,∠C=90°,∴∠CAD+∠DAE+∠B=90°,∴∠B=30°.13.(2011·德州)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2) 连接OA、BC,试判断直线OA、BC的关系并说明理由.解(1)证明:在△ACD与△ABE中,∵∠A=∠A,∠ADC=∠AEB=90°,AC=AB,∴△ACD≌△ABE.∴AD=AE.(2) 互相垂直,理由如下:在Rt△ADO与Rt△AEO中,∵OA=OA,AD=AE,∴△ADO≌△AEO.∴∠DAO=∠EAO.即OA是∠BAC的平分线.又∵AB=AC,∴OA⊥BC.14.(2011·日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E 为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.解(1)在等腰直角△ABC中,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°-15°=30°,∴BD=AD.∵AC=BC,CD=CD,∴△BDC≌△ADC,∴∠DCA=∠DCB=45°.由∠BDM=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,∴∠BDM=∠EDC,∴DE平分∠BDC.(2)如图,连接MC,∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,∴CM=CD.又∵∠EMC=180°-∠DMC=180°-60°=120°,∠ADC=180°-∠MDC=180°-60°=120°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM,∴△ADC≌△EMC,∴ME=AD=DB.15.(2011·达州)如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图1中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)(2)将△DEF沿直线m向左平移到图2的位置时,DE交AC于点G,连结AE、BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.解(1)AB=AE,AB⊥AE.(2) 将△BCG绕点C顺时针旋转90°后能与△ACE重合(或将△ACE绕点C逆时针旋转90°后能与△BCG重合),理由如下:∵AC⊥BC,DF⊥EF,B、F、C、E共线,∴∠ACB=∠ACE=∠DFE=90°.又∵AC=BC,DF=EF,∴∠DEF=∠D=45°.在△CEG中,∵∠ACE=90°,∴∠CGE+∠DEF=90°,∴CG =CE .在△BCG 和△ACE 中, ∵⎩⎪⎨⎪⎧BC =AC ,∠ACB =∠ACE ,CG =CE ,∴△BCG ≌△ACE (SAS ).∴将△BCG 绕点C 顺时针旋转90°后能与△ACE 重合(或将△ACE 绕点C 逆时针旋转90°后能与△BCG 重合).。

中考数学总复习 特殊三角形考点跟踪突破22(含13年中考

中考数学总复习 特殊三角形考点跟踪突破22(含13年中考

考点跟踪突破22 特殊三角形一、选择题(每小题6分,共30分)1.(2013·武汉)如图,△ABC 中,AB=AC ,∠A=36°,BD 是AC 边上的高,则∠DBC 的度数是( )A.18°B.24°C.30°D.36°2.(2013·攀枝花)如图,在△ABC 中,∠CAB=75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′=( )A.30°B.35°C.40°D.50°3.(2013·广安)等腰三角形的一条边长为6,另一条边长为13,则它的周长为( )A.25B.25或32C.32D.194.(2012·黄石)如图,在矩形纸片ABCD 中,AB =6cm ,BC =8cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( ) A. 825cm B. 425cm C. 225cm D.8cm5.(2012·乐山)如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E ,F 分别在AC ,BC 边上运动(点E 不与点A ,C 重合),且保持AE=CF ,连接DE ,DF ,EF.在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化;④点C 到线段EF 的最大距离为2. 其中正确结论有( )A.1个B.2个C.3个D.4个二、填空题(每小题6分,共30分)6.(2013·荆门)若等腰三角形的一个角为50°,则它的顶角为 .7.(2013·巴中)若直角三角形的两直角边长为a,b ,且满足962+-a a +|b-4|=0,则该直角三角形的斜边长为 .8.(2013·黄冈)已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .9.(2013·张家界)如图,OP=1,过P 作1PP ⊥OP ,得1OP =2;再过1P 作21P P ⊥1OP 且21P P =1,得2OP =3;又过2P 作32P P ⊥2OP 且32P P =1,得3OP =2……依此法继续作下去,得2012OP = .10.(2012·丽水)如图,在等腰△ABC 中,AB=AC ,∠BAC=50°.∠BAC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是 .三、解答题(共40分)11.(10分)(2013·内江)如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为AB 边上一点,求证:BD =AE.12.(10分)(2013·遵义)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM=CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求DNMN 的值.13.(10分)(2012·泰安)如图,在△ABC 中,∠ABC=45°,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,F 为BC 中点,BE 与DF ,DC 分别交于点G ,H ,∠ABE=∠CBE.(1)线段BH 与AC 相等吗,若相等给予证明,若不相等请说明理由;(2)求证:2BG -2GE =2EA .14.(10分)(2013·常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF= 90°,连接AF,M是AF的中点,连接MB,ME.(1)如图①,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图①,若CB=a,CE=2a,求BM,ME的长;(3)如图②,当∠BCE=45°时,求证:BM=ME.。

中考专题复习—三角形(相似三角形、特殊三角形、全等三角形)

中考专题复习—三角形(相似三角形、特殊三角形、全等三角形)

三角形(相似三角形、特殊三角形、全等三角形)三角形(一)一、知识点回顾二、错题重做如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数y=(k≠0)的图象经过点C.(1)求反比例函数的解析式;(2)若点P是反比例函数图象上的一点,△PAD的面积恰好等于正方形ABCD的面积,求点P的坐标.如图,已知直线m x y 1+=与x 轴、y 轴分别交于点A 、B 与双曲线x k y 2=(x<0)分别交于点C 、D ,且点C 的坐标为(-1,2).(1)分别求出直线AB 及双曲线的解析式;(2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,21y y >.3、(2010广州)已知反比例函数y=(m 为常数)的图象经过点A (﹣1,6). (1)求m 的值;(2)如图,过点A 作直线AC 与函数y=的图象交于点B ,与x 轴交于点C ,且AB=2BC ,求点C 的坐标.三、内容讲解(二)相交线与平行线1、同位角、内错角、同旁内角2、平行线、相交线3、平行线的判定:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

4、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

(三)三角形1、三角形的边、角、三边关系|b−c|<a<b+c2、三角形的角平分线、中线、高(可能在外部)3、等腰三角形性质:两腰相等,两底角相等,三线合一等边三角形判定:2个内角是60°、三边相等、1个角是60°的等腰直角三角形的性质:30°所对直角边等于斜边的一半,斜边上的中线等于斜边的一半4、外角、内角和、外角和、多边形内角和和外角和、平面镶嵌(四)全等三角形1、全等形、全等三角形的性质:对应边相等、对应角相等、面积相等、周长相等2、全等三角形的判定:SSS 、SAS 、ASA 、AAS 、HL3、角的平分线的判定和性质4、线段垂直平分线的判定和性质5、作图:角平分线、垂直平分线6、轴对称和轴对称图形(将军饮马)(五)勾股定理1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方:c b a =+222、勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系: 222c b a =+(四)相似1、比、比的前项、比的后项、比例、比例外项、比例内项、比例线段、比例的基本性质2、合比性质:如果d c b a =,那么dd c b b a +=+ 等比性质:如果n m d c b a === ,(0≠+++m d b ),那么b a n d b m c a =++++++ 3、黄金分割:215-倍、黄金分割点。

中考总复习(特殊三角形)

中考总复习(特殊三角形)

中考总复习:特殊三角形—知识讲解【考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定.2. 能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题.3. 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1. 等腰三角形:有两条边相等的三角形叫做等腰三角形2.性质:(1) 具有三角形的一切性质;(2) 两底角相等(等边对等角);(3) 顶角的平分线,底边中线,底边上的高互相重合(三线合一);(4) 等边三角形的各角都相等,且都等于60°.要点诠释:等边三角形中高线,中线,角平分线三线合一,共有三条.3.判定:(1) 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ;(2) 三个角都相等的三角形是等边三角形;(3) 有一个角为60°的等腰三角形是等边三角形.要点诠释:(1) 腰、底、顶角、底角是等腰三角形特有的概念;(2) 等边三角形是特殊的等腰三角形.考点二、直角三角形1. 直角三角形:有一个角是直角的三角形叫做直角三角形.2 性质:(1) 直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半;(3) 在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;(4) 勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方;(5) 勾股定理逆定理:如果三角形的三边长a,b,c 满足a2+b2=c2,那么这个三角形是直角三角形;(6) 直角三角形中,斜边上的中线等于斜边的一半. 要点诠释:1直角三角形中,SRS ABC=ch=ab ,其中a、b为两直角边,c 为斜边,h 为斜边上的高;2 圆内接三角形,当一条边为直径时,该三角形是直角三角形.3判定:(1)两内角互余的三角形是直角三角形;(2)—条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形;(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.特殊三角形的性质(含勾股定理)中考要求:A级:等腰三角形(等边三角形)、直角三角形的有关概念;C级:等腰三角形(等边三角形)的性质判定;应用勾股定理解决简单问题,用勾股定理的逆定理判定直角三角形;D级:直角三角形的性质、判定;教学过程:一、回忆知识点学生活动:以小组为单位完善第一轮中考总复习P.87回忆知识点1〜乙建立知识结构图(要求课堂展示)师生活动:①交流知识结构图;②明确重点;③重要知识点的简单应用;1、在Rt△ ABC 中,/ A=36 °,则/ B=2、如图:在Rt△ ABC 中,/ A=30° , AB=4,则AC=—BC= ___ ,斜边上中线CD= —;,△ ABC中三边长分别为3、4、5,试判断△ ABC形状?4、如图:已知AD=CD=BD,试判断厶ABC形状?5、如图:已知AB为圆0的直径,试判断厶ABC -形状?.「B二、理解知识点学生活动:校对第一轮中考总复习P.87理解知识点师生活动:①有无分类讨论思想?②有无方程思想?③在交流过程中有哪些困难?三、整合知识点1、△ ABC 是等腰三角形,BAC=90 ,AB=AC,AD丄BC,图中有几个等腰直角三角形?2、如图,若有一个Rt / EDF顶点为D点,两边分别与AB AC相交于E、F,试问△ DEF是怎样特殊的三角形?为什么?3、在第二题中,若BE=2 CF=3求EF的长。

中考复习:特殊三角形

中考复习:特殊三角形

中考内容中考要求ABC等腰三角形与直角三角形了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题⎧⎧⎧⎪⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩定义等边对等角等腰三角形性质三线合一等腰三角形判定定义特殊三角形等边三角形性质判定定义直角三角形性质判定一、 等腰三角形1、定义:有两边相等的三角形是等腰三角形.相等的两边叫做腰,第三边为底.2、性质:(1)轴对称性:等腰三角形是轴对称图形,有1条对称轴. (2)定理1:等腰三角形的两个底角相等,简称“等边对等角”.(3)定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”. 3、判定:如果一个三角形有两角相等,那么这两个角所对的边也相等,简称“等角对等边”.知识精讲中考大纲 特殊三角形知识网络图【补充】1、等腰三角形两腰上的高相等;2、等腰三角形两腰上的中线相等;3、等腰三角形两底角的平分线相等;二、等边三角形1、定义:三边相等的三角形是等边三角形.2、性质:(1)轴对称性:等边三角形是轴对称图形,有3条对称轴.(2)等边三角形的各角都相等,并且每一个角都等于60°.3、判定:(1)判定1:三个角都相等的三角形是等边三角形.(2)判定2:有一个角等于60°的等腰三角形是等边三角形.三、线段的垂直平分线1、定义:经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2、性质:线段垂直平分线上的点与这条线段两个端点的距离相等.3、判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4、实质构成:线段的垂直平分线可以看作到线段两个端点距离相等的所有点的集合.四、直角三角形1、直角三角形30°角所对的边等于斜边的一半.2、直角三角形斜边的中线等于斜边的一半.解题方法技巧1、等腰三角形一腰上的高与底边的夹角等于顶角的一半.AC 2、等腰三角形顶角的外角平分线与底边平行3、等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.如图,即DE DF BG +=.本结论可以用面积列等式推得.ABCABCDE F G4、等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高.5、要证明一个三角形是等腰三角形,必须得到两边相等,得到两边相等的方法主要有:(1)通过等角对等边;(2)通过三角形全等得两边相等;(3)利用垂直平分线的性质得到两边相等.1、遇到等腰三角形的问题时,注意边有腰与底之分,角有底角和顶角之分.2、遇到高线的问题要考虑高在形内和形外两种情况.3、等腰三角形三线合一定理没有逆定理,定理的逆推论需要用全等去证明.易错点辨析题型一:等腰三角形的性质与判定【例1】 已知ABC △中,AB AC =.36A ∠=︒,则C ∠______. 【例2】 等腰三角形一个底角为75°,它的另外两个角为_______. 【例3】 等腰三角形一个角为70°,它的另外两个角为__________. 【例4】 已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( ) A .4.8cm B .9.6cm C .2.4cm D .1.2cm【例5】 在等腰ABC △中,AB AC =,其周长为20cm ,则AB 边的取值范围是__________.(2014年玉林中考)【例6】 如图,在ABC △中,AB AC =,且D 为BC 上一点,CD AD =,AB BD =,则B ∠的度数为__________.(2014年南充中考)DCBA【例7】 如图,在Rt ABC △中,D E ,为斜边AB 上的两个点,且BD BC AE AC ==,,则DCE ∠的大小为__________.(2014年天津)EDCBA【例8】 如图,ABC ∆中,30A ∠=︒,CD 是BCA ∠的平分线,ED 是CDA ∠的平分线,EF 是DEA ∠的平分线,DF FE =,求B ∠.ABCDEF特殊三角形习题集课堂练习【例9】 如图,P 为等腰三角形ABC 的底边AB 上的任意一点,PE AC ⊥于点E ,PF ⊥BC 于点F ,AD BC ⊥点D ,求证:PE PF AD +=.ABCE D PF【例10】 如图,点P 为等腰三角形ABC 的底边BA 的延长线上的一点,PE CA ⊥的延长线于点E ,PF BC⊥于点F ,AD BC ⊥于点D .PE 、PF 、AD 之间存在着怎样的数量关系?ABCEDP F【例11】 如图所示,已知ABC △中,D 、E 为BC 边上的点,且AD AE =,BD EC =,求证:AB AC =.AB CD E【例12】 如图,请在下列四个等式中,选出两个作为条件,推出AED △是等腰三角形,并予以证明.(写出一种即可)等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠. 已知:____________________ 求证:AED △是等腰三角形. 证明:【例13】 如图1,已知矩形ABED ,点C 是边DE 的中点,且2AB AD =.(1)判断ABC △的形状,并说明理由;(2)保持图1中ABC △固定不变,绕点C 旋转DE 所在的直线MN 到图2中(当垂线段AD 、BE 在直线MN 的同侧),试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明; (3)保持图2中ABC △固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.(2010年临沂)题型二:等腰三角形的作图题【例14】 已知ABC ∆中,90A ∠=︒,67.5B ∠=︒.请画一条直线,把这个三角形分割成两个等腰三角形.(请你利用下面给出的备用图,画出两种不同的分割方法.只需画图,不必说明理由,但要在图中标出相等两角的度数).CB ACB A【例15】 已知菱形ABCD 中,72A ∠=︒,请设计两种不同的分法,将菱形ABCD 分割成四个三角形,使得分割成的每个三角形都是等腰三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,例如第20题图,不要求写出画法,不要求证明.)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.36︒36︒36︒18︒18︒54︒72︒72︒72︒54︒DCBAA分A BC D分法2A BC D分法1题型三:等边三角形的性质【例16】 如图,DAC △和EBC △均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① ACE DCB △≌△;②CM CN =;③AC DN =.其中正确结论的个数是_____ A . 3个 B .2个 C .1个 D .0个NM ED BA【例17】 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,BD AE =,AD 与CE 交于点F .(1)求证:AD CE =; (2)求DFC ∠的度数.FE DCBA【例18】 如图,已知ABC △为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.F EDCBA【例19】 已知,如图,延长ABC △的各边,使得BF AC =, AE CD AB ==,顺次连接D ,E ,F ,得到DEF △为等边三角形.求证:(1)AEF △≌CDE △; (2)ABC △为等边三角形.F DECB A【例20】 如下图,ABC ∆是等边三角形,122CBF ACD BAE ∠∠∠=∶∶∶∶,38DEF DFE ∠-∠=︒.求出DEF∆的每个内角度数.FEDCBA【例21】 如图,三角形ABC 中,AB BC CA ==,AE CD =,AD ,BE 相交于P ,BQ 垂直AD 于Q ,求证:2BP PQ =.P QA BC DE【例22】 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,BD AE =,AD 与CE 交于点F .(1)求证:AD CE =;(2)求DFC ∠的度数.FE DCBA题型四:直角三角形的性质与判定【例23】 在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,6cm BC AB +=,则AB =_______cm .【例24】 如图,在Rt ABC ∆中,9060B ACB D ∠=︒∠=︒,,是BC 延长线上一点,且AC CD =,则:BC CD =_________.DCBA【例25】 若AD 为ABC ∆的高,且1AD =,1BD =,DC BAC ∠=____________.【例26】 已知:如图,在ABC △中,AB BC =,90ABC ∠=︒.F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接AE 、EF 和CF . (1)求证:AE CF =;(2)若30CAE ∠=︒,求EFC ∠的度数.FECBA【例27】 如图,在ABC ∆中,BF AC ⊥于F ,CG AB ⊥于G D E ,,分别是BC FG ,的中点.求证:DE GF ⊥.GFE D CB A【练1】 等腰三角形的一边长为3cm ,另一边长为4cm ,则它的周长是 ___________.【练2】 如图,ABC ∆和BDE ∆都是等边三角形,AB BD <,若ABC ∆不 动,将BDE ∆绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( ).A . AE CD =B . AE CD >C . AE CD < D . 无法确定EDCBA【练3】 MON ∠是一个钢架,10MON ∠=︒,在其内部添加一些钢管BC ,CD ,DE ,EF ,FG ,…添加的钢管长度都与OB 相等.(1)当添加到第五根钢管时,求FGM ∠的度数.(2)假设OM 、ON 足够长,能无限地添加下去吗?如果能,请说明理由.如果不能,则最多能添加几根?D NMFEO CBG【练4】 如图,在ABC ∆中,AB AC =,D 是ABC ∆外的一点,且60ABD ∠=,60ACD ∠=.求证:BD DC AB +=.DCBA课后作业【练5】 如图,在Rt ABC ∆中,90BAC ∠=,CA BA =,15DAC DCA ∠=∠=,求证:BA BD =.DACB【练6】 如图ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC ⊥于F .⑴说明BE CF =的理由;⑵如果AB a =,AC b =,求AE ,BE 的长.GFE DC BA。

北师大初中数学中考总复习:特殊三角形--知识讲解(提高)-精品

北师大初中数学中考总复习:特殊三角形--知识讲解(提高)-精品

中考总复习:特殊三角形—知识讲解(提高)【考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定.2. 能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题.3. 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质;(2)两底角相等(等边对等角);(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一);(4)等边三角形的各角都相等,且都等于60°.要点诠释:等边三角形中高线,中线,角平分线三线合一,共有三条.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半;(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方;(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形;(6)直角三角形中,斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形中,S Rt△ABC=ch=ab,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)圆内接三角形,当一条边为直径时,该三角形是直角三角形.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形;(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.(2014秋?自贡期末)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?【思路点拨】(1)首先根据已知条件可以证明△BOC≌△ADC,然后利用全等三角形的性质可以求出∠ADO 的度数,由此即可判定△AOD的形状;(2)利用(1)和已知条件及等腰三角形的性质即可求解.【答案与解析】解:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,在△BOC与△ADC中,∵,∴△BOC≌△ADC,∴∠BOC=∠ADC,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°﹣60°=90°,∴△ADO是直角三角形;(2)∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,a+d=50°∠DAO=50°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠CAO=50°,①要使AO=AD,需∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.【总结升华】此题主要考查了等边三角形的性质与判定,以及等腰三角形的性质和旋转的性质等知识,根据旋转前后图形不变是解决问题的关键.举一反三:【变式】把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是________.【答案】.2.已知: 如图, 菱形ABCD中, E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF.(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【思路点拨】菱形的定义和性质.【答案与解析】(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D ,又∵BE=DF,∴≌.∴AE=AF.(2)连接AC, ∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA ,∴△ABC和△ACD都是等边三角形.∴, .∴.又∵AE=AF ∴是等边三角形.【总结升华】此题涉及到三角形全等的判定与性质,等边三角形的判定与性质.举一反三:【变式】如图,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE. 求证:CE=DE. 【答案】延长BD到F,使DF=BC,连接EF,∵等边△ABC,∴AB=BC=AC,∠B=60.∵BF=BD+DF,BE=AB+AE,AE=BD,BC=DF,∴BF=BE,∴等边△BEF,∴EF=BE,∠F=∠B,∴△BCE≌△FDE(SAS).∴CE=DE.类型二、直角三角形3.(2015秋?东海县校级期中)如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.【思路点拨】(1)根据直角三角形斜边上的中线等于斜边的一半可得MF=BM=CM=BC,再求出ME=BM=CM=BC,再根据直角三角形斜边上的中线等于斜边的一半证明;(2)根据三角形的内角和定理求出∠ABC+∠ACB,再根据等腰三角形两底角相等求出∠BMF+∠CME,然后根据平角等于180°列式计算即可得解.【答案与解析】(1)证明:∵CF⊥AB,垂足为F,M为BC的中点,∴MF=BM=CM=BC,∵ME=MF,∴ME=BM=CM=BC,∴BE⊥AC;(2)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,,∵ME=MF=BM=CM∴∠BMF+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB)=360°﹣2×130°=100°,在△MEF中,∠FME=180°﹣100°=80°.【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的判定与性质,熟记性质是解题的关键,难点在于(2)中整体思想的利用.4.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.【思路点拨】△ACD 和△BCE 都是等腰直角三角形,为证明全等提供了等线段的条件.【答案与解析】猜测AE =BD ,AE ⊥BD.理由如下:∵∠ACD =∠BCE =90°,∴∠ACD +∠DCE =∠BCE +∠DCE ,即∠ACE =∠DCB .∵△ACD 和△BCE 都是等腰直角三角形,∴AC =CD ,CE =CB .∴△ACE ≌△DCB (SAS ).∴AE =BD ,∠CAE =∠CDB .∵∠AFC =∠DFH ,∴∠DHF =∠ACD =90°,∴AE ⊥BD .【总结升华】两条线段的关系包括数量关系和位置关系两种.举一反三:【变式】 .以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S n =________. 【答案】.类型三、综合运用5 .(2012?牡丹江)如图①,△ABC 中.AB=AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E 、F 、H .易证PE+PF=CH .证明过程如下:如图①,连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴ABP S △=12AB ?PE ,ACP S △=12AC ?PF ,ABC S △=12AB ?CH .又∵ABPACP ABC S S S △△△,∴12AB ?PE+12AC ?PF=12AB ?CH .∵AB=AC ,∴PE+PF=CH .(1)如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC 的面积为49,点P 在直线BC 上,且P 到直线AC 的距离为PF ,当PF=3时,则AB 边上的高CH=______.点P 到AB 边的距离PE=________. 【思路点拨】运用面积证明可使问题简便,(2)中分情况讨论是解题的关键.【答案与解析】(1)如图②,PE=PF+CH .证明如下:∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴ABP S △=12AB ?PE ,ACP S △=12AC ?PF ,ABC S △=12AB ?CH ,∵ABP S △=ACP S △+ABC S △,∴12AB ?PE=12AC ?PF+12AB ?CH ,又∵AB=AC ,∴PE=P F+CH ;(2)∵在△ACH 中,∠A=30°,∴AC=2CH .∵ABC S △=12AB ?CH ,AB=AC ,∴12×2CH ?CH=49,∴CH=7.分两种情况:①P 为底边BC 上一点,如图①.∵PE+PF=CH ,∴PE=CH -PF=7-3=4;②P为BC 延长线上的点时,如图②.∵PE=PF+CH ,∴PE=3+7=10.故答案为7;4或10.【总结升华】本题考查了等腰三角形的性质与三角形的面积,难度适中.6.在△ABC中,AC=BC,,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作,交直线AB于点H.判断FH与FC的数量关系并加以证明.(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【思路点拨】根据条件判断FH=FC,要证FH=FC一般就要证三角形全等.【答案与解析】(1)FH与FC的数量关系是:.延长交于点G,由题意,知∠EDF=∠ACB=90°,DE=DF.∴DG∥CB.∵点D为AC的中点,∴点G为AB的中点,且.∴DG为的中位线.∴.∵AC=BC,∴DC=DG.∴DC- DE =DG- DF.即EC =FG.∵∠EDF =90°,,∴∠1+∠CFD =90°,∠2+∠CFD=90°.∴∠1 =∠2.∵与都是等腰直角三角形,∴∠DEF =∠DGA = 45°.∴∠CEF =∠FGH = 135°.∴△CEF ≌△FGH .∴ FH=FC .(2)FH 与FC 仍然相等.【总结升华】对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养.举一反三:【变式】如图,△ABC 和△CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CD BC ; ②S ⊿ABC +S ⊿CDE ≥S ⊿ACE ; ③BM ⊥DM;④BM=DM.正确结论的个数是()A.1个B.2个 C.3个 D.4个【答案】D.MEDCBA。

中考数学总复习:特殊三角形--考点例题讲解+练习(基础).doc

中考数学总复习:特殊三角形--考点例题讲解+练习(基础).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】中考总复习:特殊三角形—知识讲解(基础)【考纲要求】【:等腰三角形与直角三角形考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定;2.能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题;3.会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2性质:(1)直角三角形中两锐角互余.(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.3.判定:(1)有两内角互余的三角形是直角三角形.(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边. 【典型例题】类型一、等腰三角形1.如图,等腰三角形一腰上的高与底边所成的角等于( )A.顶角的2倍B.顶角的一半C.顶角D.底角的一半【思路点拨】等角的余角相等.【答案】B.【解析】如图,△ABC中,AB=AC,BD⊥AC于D,所以∠ABC=∠C,∠BDC=90°,所以∠DBC=90°-∠C= 90°-(180-∠A)= ∠A,【总结升华】本题适用于任何一种等腰三角形,可以试着证明在钝角三角形中结论一样成立;总结规律,等腰三角形一腰上的高与底边所成的角等于顶角的一半.举一反三:【变式】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有()A.5个B.4个 C.3个 D.2个【答案】A.2.(2015秋•南通校级月考)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=30cm,DE=2cm,则BC= cm.【思路点拨】作出辅助线后根据等腰三角形的性质得出BE=30,DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【答案】32;【解析】解:延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=30,DE=2,∴DM=28,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=14,∴BN=16,∴BC=2BN=32,故答案为32.【总结升华】本题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.类型二、直角三角形3.将一张矩形纸片如图所示折叠,使顶点落在点.已知,,则折痕的长为( )A. B. C. D.【思路点拨】直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理和直角三角形中,30°角所对的边等于斜边的一半.【答案】C.【解析】由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,所以在Rt△DCE中,DE=2CD=4.故选C.【总结升华】折叠题型一定要注意对应的边相等,对应的角相等.【变式】如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为( ).A. B. C. D.5【答案】B.解析:由折叠可知,AD=BD,DE⊥AB,∴BE=AB设BD为x,则CD=8-x∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2∴AB2=42+82=80,∴AB=,∴BE=在Rt△ACD中,AC2+CD2=AD2 ,∴42+(8-x)2=x2,解得x=5在Rt△BDE中,BE2+DE2=BD2,即()2+DE2=52,∴DE=,故选B.4.已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.(1)若∠BAC=30°,求证: AD=BD;(2)若AP平分∠BAC且交BD于P,求∠BPA的度数.图1 图2【思路点拨】(1)利用直角三角形两锐角互余,求得∠ABD=∠A=30°,得出AD=BD.(2)利用三角形内角和及角平分线定义或利用三角形外角性质.【答案与解析】(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°又∵ BD平分∠ABC,∴∠ABD=30°,∴∠BAC =∠ABD,∴BD=AD;(2)解法一:∵∠C=90°,∴∠BAC+∠ABC=90°∴=45°∵ BD 平分∠ABC ,AP 平分∠BAC ∠BAP=,∠ABP=即∠BAP+∠ABP=45° ∴∠APB=180°-45°=135°解法二: ∵∠C=90°,∴∠BAC+∠ABC=90° ∴=45°∵BD 平分∠ABC ,AP 平分∠BAC ∠DBC=,∠PAC=∴∠DBC+∠PAD=45°∴∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.【总结升华】本题利用了:1、直角三角形的性质,两锐角互余,2、角的平分线的性质,3、三角形的外角与内角的关系. 类型三、综合运用5 . 已知ABC 的两边AB 、AC 的长是关于x 的一元二次方程x 2-(2k+3)x+k 2+3k+2=0的两个实数根,第三边BC 的长为5.(1)k 为何值时,ΔABC 是以BC 为斜边的直角三角形?(2)k 为何值时,ΔABC 是等腰三角形?并求出ΔABC 的周长。

2012年中考数学复习考点跟踪训练22特殊三角形

2012年中考数学复习考点跟踪训练22特殊三角形

考点跟踪训练22 特殊三角形一、选择题1.(2011·贵阳)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能...是( )A.3.5 B.4.2 C.5.8 D.7答案 D解析在Rt△ABC中,AC=3,∠B=30°,得AB=2AC=6,而AC≤AP≤AB,即3≤AP≤6,不可能是7.2.(2011·枣庄)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能...是( )A.(2,0) B.(4,0) C.(-2 2,0) D.(3,0)答案 D解析当点P的坐标为(3,0)时,OP=3,而AO=2 2,AP =5,△APO不是等腰三角形.3.(2011·烟台)如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于( )A.80°B.70°C.60°D.50°答案 C解析在△ABC中,AB=AC,∠A=20°,所以∠ABC=1 2×(180°-20°)=80°.DE垂直平分AB,有EA=EB,∠EBA=∠A=20°,所以∠CBE=∠ABC-∠EBA=80°-20°=60°.4.(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600 m B.500 mC.400 m D.300 m答案 B解析如图,易证△ABC≌△DEA,BC=AE=300,而AC =500,所以CE=200,最近路程BC+CE=300+200=500.5.如图,△ABC和△CDE均为等腰直角三角形,点B、C、D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=BCCD;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是( ) A.1个B.2个C.3个D.4个答案 D解析∵△ABC和△CDE都是等腰直角三角形,∴△ABC ∽△EDC,AC CE =BC CD .∴∠ACE =180°-45°-45°=90°,∴在Rt △ACE 中,tan ∠AEC =AC CE =BC CD;设△ABC 、△CDE 的直角边分别是a 、b ,则AC =2a ,EC =2b ,S △ABC =12a 2,S △CDE =12b 2,S △ACE =12(2a )(2b )=ab ,而(a -b )2≥0,a 2+b 2≥2ab ,12a 2+12b 2≥ab ,即S △ABC +S △CDE ≥S △ACE ;过M 画MN ⊥BD 于N ,有AB ∥MN ∥ED ,点M 是AE 的中点,则点N 是BD 的中点,MN 垂直平分BD ,BM =DM ;MN 是梯形ABDE 的中位线,MN =12(a +b )=BN =DN ,∵△BMN 与△DMN 都是等腰直角三角形,∴∠BMN =∠DMN =45°,∠BMD =90°,BM ⊥DM .故结论①、②、③、④都正确.二、填空题6.(2011·衡阳)如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.答案 7解析 在Rt △ABC 中,AB =3,AC =5,则BC =52-32=4,又AE =EC ,所以△ABE 的周长AB +BE +AE =AB +BE +EC =AB +BC =7.7.(2011·凉山)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2”的逆命题改写成“如果……,那么……”的形式:_____________________答案 如果三角形三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.8.(2011·无锡)如图,在Rt △ABC 中,∠ACB =90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD =5 cm ,则EF =_________cm.答案 5解析 ∵点D 是AB 中点,∴CD 是Rt △ABC 斜边AB 的中线,CD =12AB ,AB =2CD . ∵点E 、F 是BC 、CA 的中点,∴EF 是△ABC 的中位线,EF =12AB ,AB =2EF . ∴EF =CD =5 cm.9.(2011·温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图①).图②由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1、S 2、S 3,若S 1+S 2+S 3=10,则S 2的值是______________.答案 103解析 设直角三角形AEH 的面积为S ,则S 1=8S +S 3,S 2=4S +S 3.∵S 1+S 2+S 3=10,∴(8S +S 3)+(4S +S 3)+S 3=10,12S +3S 3=10,4S +S 3=103,即S 2=103. 10.(2011·乐山)如图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连接A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连接A 2B 2…按此规律下去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn 则(1)θ1=_____________;(2)θn =________________.答案 (1)180°+α2;(2)()2n -1·180°+α2n解析 ∵∠AOB =α,OA 1=OB 1,∴∠OB 1A 1=∠OA 1B 1=180°-α2, ∴θ1=180°-180°-α2=180°+α2; 类似地,θ2=3×180°+α4,θ3=7×180°+α8,……, ∴θn =错误!.三、解答题11.(2011·广安)某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长分别为6m 、8m.现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形............求扩建后的等腰三角形花圃的周长.解 由题意可得,扩建后的花圃是等腰直角三角形,花圃的周长=8+8+8 2=16+8 2.12.(2011·乐山)如图,在直角△ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数.解 ∵AD 平分∠CAB ,∴∠CAD =∠BAD .∵DE 垂直平分AB ,∴AD =BD ,∠B =∠BAD ,∴∠CAD =∠BAD =∠B .∵在Rt △ABC 中,∠C =90°,∴∠CAD+∠DAE+∠B=90°,∴∠B=30°.13.(2011·德州)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA、BC,试判断直线OA、BC的关系并说明理由.解(1)证明:在△ACD与△ABE中,∵∠A=∠A,∠ADC=∠AEB=90°,AC=AB,∴△ACD≌△ABE.∴AD=AE.(2) 互相垂直,理由如下:在Rt△ADO与Rt△AEO中,∵OA=OA,AD=AE,∴△ADO≌△AEO.∴∠DAO=∠EAO.即OA是∠BAC的平分线.又∵AB=AC,∴OA⊥BC.14.(2011·日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.解(1)在等腰直角△ABC中,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°-15°=30°,∴BD=AD.∵AC=BC,CD=CD,∴△BDC≌△ADC,∴∠DCA=∠DCB=45°.由∠BDM=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,∴∠BDM=∠EDC,∴DE平分∠BDC.(2)如图,连接MC,∵DC=DM,且∠MDC=60°,∴△MDC是等边三角形,∴CM=CD.又∵∠EMC=180°-∠DMC=180°-60°=120°,∠ADC=180°-∠MDC=180°-60°=120°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM,∴△ADC≌△EMC,∴ME=AD=DB.15.(2011·达州)如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.(1)在图1中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)(2)将△DEF沿直线m向左平移到图2的位置时,DE交AC于点G,连结A E、BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.解(1)AB=AE,AB⊥AE.(2) 将△BCG绕点C顺时针旋转90°后能与△ACE重合(或将△ACE绕点C逆时针旋转90°后能与△BCG重合),理由如下:∵AC⊥BC,DF⊥EF,B、F、C、E共线,∴∠ACB=∠ACE=∠DFE=90°.又∵AC =BC ,DF =EF ,∴∠DEF =∠D =45°.在△CEG 中,∵∠ACE =90°,∴∠CGE +∠DEF =90°, ∴CG =CE .在△BCG 和△ACE 中,∵⎩⎪⎨⎪⎧ BC =AC ,∠ACB=∠ACE,CG =CE ,∴△BCG ≌△ACE (SAS ).∴将△BCG 绕点C 顺时针旋转90°后能与△ACE 重合(或将△ACE 绕点C 逆时针旋转90°后能与△BCG 重合).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点跟踪训练22 特殊三角形一、选择题 1.(2011·贵阳)如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不.可能..是( )A .3.5B .4.2C .5.8D .7 答案 D解析 在Rt △ABC 中,AC =3,∠B =30°,得AB =2AC =6,而AC ≤AP ≤AB ,即3≤AP ≤6,不可能是7.2.(2011·枣庄)如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能...是( )A .(2,0)B .(4,0)C .(-2 2,0)D .(3,0)答案 D解析 当点P 的坐标为(3,0)时,OP =3,而AO =2 2,AP =5,△APO 不是等腰三角形.3.(2011·烟台)如图,等腰△ ABC 中,AB =AC ,∠A =20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A .80°B .70°C .60°D .50° 答案 C解析 在△ABC 中,AB =AC ,∠A =20°,所以∠ABC =12×(180°-20°)=80°.DE 垂直平分AB ,有EA=EB ,∠EBA =∠A =20°,所以∠CBE =∠ABC -∠EBA =80°-20°=60°.4.(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600 mB .500 mC .400 mD .300 m 答案 B解析 如图,易证△ABC ≌△DEA ,BC =AE =300,而AC =500,所以CE =200,最近路程BC +CE =300+200=500.5.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个数是( )A .1个B .2个C .3个D .4个 答案 D解析 ∵△ABC 和△CDE 都是等腰直角三角形,∴△ABC ∽△EDC ,AC CE =BC CD .∴∠ACE =180°-45°-45°=90°,∴在Rt △ACE 中,tan ∠AEC =AC CE =BC CD;设△ABC 、△CDE 的直角边分别是a 、b ,则AC =2a ,EC =2b ,S △ABC =12a 2,S △CDE =12b 2,S △ACE =12(2a )(2b )=ab ,而(a-b )2≥0,a 2+b 2≥2ab ,12a 2+12b 2≥ab ,即S △ABC +S △CDE ≥S △ACE ;过M 画MN ⊥BD 于N ,有AB ∥MN ∥ED ,点M 是AE 的中点,则点N 是BD 的中点,MN 垂直平分BD ,BM =DM ;MN 是梯形ABDE 的中位线,MN =12(a +b )=BN =DN ,∵△BMN 与△DMN 都是等腰直角三角形,∴∠BMN =∠DMN =45°,∠BMD =90°,BM ⊥DM .故结论①、②、③、④都正确.二、填空题6.(2011·衡阳)如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.答案 7解析 在Rt △ABC 中,AB =3,AC =5,则BC =52-32=4,又AE =EC ,所以△ABE 的周长AB +BE +AE =AB +BE +EC =AB +BC =7.7.(2011·凉山)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2”的逆命题改写成“如果……,那么……”的形式:_____________________答案 如果三角形三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.8.(2011·无锡)如图,在Rt △ABC 中,∠ACB =90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD =5 cm ,则EF =_________cm.答案 5解析 ∵点D 是AB 中点,∴CD 是Rt △ABC 斜边AB 的中线,CD =12AB ,AB =2CD .∵点E 、F 是BC 、CA 的中点,∴EF 是△ABC 的中位线,EF =12AB ,AB =2EF .∴EF =CD =5 cm. 9.(2011·温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图①).图②由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1、S 2、S 3,若S 1+S 2+S 3=10,则S 2的值是______________.答案 103解析 设直角三角形AEH 的面积为S ,则S 1=8S +S 3,S 2=4S +S 3.∵S 1+S 2+S 3=10,∴(8S +S 3)+(4S+S 3)+S 3=10,12S +3S 3=10,4S +S 3=103,即S 2=103.10.(2011·乐山)如图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连接A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连接A 2B 2…按此规律下去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn 则(1)θ1=_____________;(2)θn =________________.答案 (1)180°+α2;(2)()2n-1·180°+α2n解析 ∵∠AOB =α,OA 1=OB 1,∴∠OB 1A 1=∠OA 1B 1=180°-α2,∴θ1=180°-180°-α2=180°+α2;类似地,θ2=3×180°+α4,θ3=7×180°+α8,……,∴θn =(2n -1)·180°+α2n. 三、解答题 11.(2011·广安)某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长分别为6m 、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形............求扩建后的等腰三角形花圃的周长.解由题意可得,扩建后的花圃是等腰直角三角形,花圃的周长=8+8+8 2=16+8 2.12.(2011·乐山)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.解∵AD平分∠CAB,∴∠CAD=∠BAD.∵DE垂直平分AB,∴AD=BD,∠B=∠BAD,∴∠CAD=∠BAD=∠B.∵在Rt△ABC中,∠C=90°,∴∠CAD+∠DAE+∠B=90°,∴∠B=30°.13.(2011·德州)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2) 连接OA、BC,试判断直线OA、BC的关系并说明理由.解(1)证明:在△ACD与△ABE中,∵∠A=∠A,∠ADC=∠AEB=90°,AC=AB,∴△ACD≌△ABE.∴AD=AE.(2) 互相垂直,理由如下:在Rt△ADO与Rt△AEO中,∵OA=OA,AD=AE,∴△ADO≌△AEO.∴∠DAO=∠EAO.即OA是∠BAC的平分线.又∵AB=AC,∴OA⊥BC.14.(2011·日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.解(1)在等腰直角△ABC中,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°-15°=30°,∴BD=AD.∵AC=BC,CD=CD,∴△BDC ≌△ADC, ∴∠DCA =∠DCB =45°.由∠BDM =∠ABD +∠BAD =30°+30°=60°, ∠EDC =∠DAC +∠DCA =15°+45°=60°, ∴∠BDM =∠EDC , ∴DE 平分∠BDC .(2)如图,连接MC ,∵DC =DM ,且∠MDC =60°, ∴△MDC 是等边三角形, ∴CM =CD .又∵∠EMC =180°-∠DMC =180°-60°=120°, ∠ADC =180°-∠MDC =180°-60°=120°, ∴∠EMC =∠ADC . 又∵CE =CA ,∴∠DAC =∠CEM ,∴△ADC ≌△EMC , ∴ME =AD =DB . 15.(2011·达州)如图,△ABC 的边BC 在直线m 上,AC ⊥BC ,且AC =BC ,△DEF 的边FE 也在直线m 上,边DF 与边AC 重合,且DF =EF .(1)在图1中,请你通过观察、思考,猜想并写出AB 与AE 所满足的数量关系和位置关系;(不要求证明)(2)将△DEF 沿直线m 向左平移到图2的位置时,DE 交AC 于点G ,连结AE 、BG .猜想△BCG 与△ACE 能否通过旋转重合?请证明你的猜想.解 (1)AB =AE ,AB ⊥AE .(2) 将△BCG 绕点C 顺时针旋转90°后能与△ACE 重合(或将△ACE 绕点C 逆时针旋转90°后能与△BCG 重合),理由如下:∵AC ⊥BC ,DF ⊥EF ,B 、F 、C 、E 共线, ∴∠ACB =∠ACE =∠DFE =90°.又∵AC =BC ,DF =EF ,∴∠DEF =∠D =45°. 在△CEG 中,∵∠ACE =90°,∴∠CGE +∠DEF =90°, ∴CG =CE .在△BCG 和△ACE 中,∵⎩⎪⎨⎪⎧BC =AC ,∠ACB =∠ACE ,CG =CE ,∴△BCG ≌△ACE (SAS ).∴将△BCG 绕点C 顺时针旋转90°后能与△ACE 重合(或将△ACE 绕点C 逆时针旋转90°后能与△BCG 重合).。

相关文档
最新文档