一道中考数学压轴题评析

合集下载

2023年广东中考数学压轴题评析

2023年广东中考数学压轴题评析

2023年广东中考数学压轴题评析
好的,以下是根据您的要求为您撰写的文档。

一、题目分析
2023年的广东中考数学压轴题是一道综合性强、难度较高的题目,它涉及到三角形、圆和扇形统计图等多个知识点。

考生在解答这道题时,需要充分理解题目的要求,并能够灵活运用所学的数学知识。

二、解题思路
首先,考生需要认真观察题目中的图形和数据,找出它们之间的关联。

其次,根据所学的数学知识,建立适当的数学模型,如方程、不等式、函数等,来解决问题。

在解题过程中,考生需要细心谨慎,确保每一步的解题思路都是正确的。

最后,根据题目的要求,选择合适的解题方法,如代数法、几何法等,进行求解。

三、技巧总结
这道题的解题技巧主要有两点。

一是要善于观察题目中的图形和数据,找出它们之间的关联;二是要根据所学的数学知识,选择合适的解题方法。

此外,考生还需要注意解题过程中的细节和准确性,避免因粗心而失分。

四、难度评价
这道题难度较高,需要考生具备较高的数学基础知识和解题能力。

对于一些基础薄弱的考生来说,这道题可能会成为他们失分的主要原因之一。

因此,考生在备考时,应该注重加强数学基础知识的理解和掌握。

综上所述,这道题是一道具有较高难度和综合性强的题目,需要考生具备一定的数学基础知识和解题能力。

在备考过程中,考生可以通过加强数学基础知识的学习和掌握、提高解题能力和速度、善于利用题目中所给的提示信息等方式来应对这道难题。

希望以上回答对您有所帮助!。

中考数学压轴题的分析探索与反思

中考数学压轴题的分析探索与反思
细或者是灵活应用知识的能力不强等原因,那么就导致学生的
数学科目分值比较低。因此就需要针对中考数学压轴题进行
更加深入的分析,这样有利于找出其中存在的一些共同点,帮
助学生提高中考数学压轴题的解题能力。本文将对中考数学
压轴题相关要点进行反思。
关键词:中考压轴题;分析;反思
一、提高对动态问题的解决能力
在中考压轴题中,不可避免的是会使用到较多的数学结
也能够使用几何建模方法来进行分析,更好地展现出中考压轴
题的一些隐藏条件。在一些中考压轴题中还需要注重分类讨
论思想的运用,根据不同的情况确定出多个分类,这样有利于
提高求解的精准度。在解决动态问题时,要有效地坚持动静结
合的思想来进行分析,大胆猜想,科学验证。
参考文献
[1]胡德胜 . 对一道中考压轴题的探究及变式[J]. 学苑教
B
点 、B 点 重 合 ,点 D 为 弦 BC 的 中 点 ,
DE⊥BC,DE 与 AC 的延长线交于点 E,
射线 AO 与射线 EB 交于点 F,与⊙O 交
F G
D
O
C
A
于点 G,设∠GAB=α,∠ACB=β,∠EAG+
∠EBA=γ。
图一
并且题目已经给出了条件,某一位同学直接通过工具来对
圆以及直线进行测量,得到了一部分数据,如表一所示。
表一
α
30 度
40 度
50 度
60 度
β
120 度
130 度
140 度
150 度
γ
150 度
140 度
130 度
120 度
猜想:γ 关于 α 的函数表达式,并给出证明。
在面对该题目时,学生需要进行充分的联想,然后根据已

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围

2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围通用的解题思路:第一步:先判定函数的增减性:一次函数、反比例函数看k ,二次函数看对称轴与区间的位置关系;第二步:当a x =时,min y y =;当b x =时,max y y =;所以max min y y y ≤≤.二次函数求取值范围之动轴定区间或者定轴动区间的分类方法:分对称轴在区间的左边、右边、中间三种情况。

(1)若自变量x 的取值范围为全体实数,如图①,函数在顶点处abx 2-=时,取到最值.(2)若abn x m 2-<≤≤,如图②,当m x =时,max y y =;当n x =时,min y y =.(3)若n x m ab≤≤<-2,如图③,当m x =,min y y =;当n x =,max y y =.(4)若n x m ≤≤,且n a b m ≤-≤2,m a b a b n -->+22,如图④,当a bx 2-=,min y y =;当n x =,max y y =.1.(中考真题)设a 、b 是任意两个不等实数,我们规定:满足不等式a ⩽x ⩽b 的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m ⩽x ⩽n 时,有m ⩽y ⩽n,我们就称此函数是闭区间[m,n]上的“闭函数”。

(1)反比例函数xy 2013=是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若二次函数5754512--=x x y 是闭区间[a,b]上的“闭函数”,求实数a ,b 的值。

【解答】解:(1)反比例函数y=是闭区间[1,2013]上的“闭函数”.理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2013;当x=2013时,y=1,所以,当1≤x≤2013时,有1≤y≤2013,符合闭函数的定义,故反比例函数y=是闭区间[1,2013]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣x﹣=(x﹣2)2﹣,∴该二次函数的图象开口方向向上,最小值是﹣,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大;①当b≤2时,此二次函数y随x的增大而减小,则根据“闭函数”的定义知,,解得,(不合题意,舍去)或;②当a<2<b时,此时二次函数y=x2﹣x﹣的最小值是﹣=a,根据“闭函数”的定义知,b=a2﹣a﹣或b=b2﹣b﹣;a)当b=a2﹣a﹣时,由于b=(﹣)2﹣×(﹣)﹣=<2,不合题意,舍去;b)当b=b2﹣b﹣时,解得b=,由于b>2,所以b=;③当a≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵<0,∴舍去.综上所述,或.2.(中考真题)若关于x 的函数y ,当1122t x t -≤≤+时,函数y 的最大值为M ,最小值为N ,令函数2M N h -=,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数4044y x =,当1t =时,求函数y 的“共同体函数”h 的值;②若函数y kx b =+(0k ≠,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数21y x x=≥(),求函数y 的“共同体函数”h 的最大值;(3)若函数24y x x k =-++,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.解析:(1)解:①当1t =时,则111122x -≤≤+,即1322x ≤≤, 4044y x =,4044k =0>,y 随x 的增大而增大,314044404422202222M N h ⨯-⨯-∴===,②若函数y kx b =+,当0k >时,1122t x t -≤≤+,∴11,22M k t b N k t b ⎛⎫⎛⎫=++=-+ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==,当0k <时,则11,22M k t b N k t b ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==-,综上所述,0k >时,2k h =,0k <时,2kh =-,(2)解:对于函数()21y x x=≥, 20>,1x ≥,函数在第一象限内,y 随x 的增大而减小,112t ∴-≥,解得32t ≥,当1122t x t -≤≤+时,∴2424,11212122M N t t t t ====-+-+,()()()()()()2221221144442221212121212141t t M N h t t t t t t t +---⎛⎫∴==-=== ⎪-+-+-+-⎝⎭,∵当32t ≥时,241t -随t 的增大而增大,∴当32t =时,241t -取得最小值,此时h 取得最大值,最大值为()()4412121242h t t ===-+⨯;(3)对于函数24y x x k =-++()224x k =--++,10a =-<,抛物线开口向下,2x <时,y 随x 的增大而增大,2x >时,y 随x 的增大而减小,当2x =时,函数y 的最大值等于4k +,在1122t x t -≤≤+时,①当122t +<时,即3t 2<时,211422N t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422M t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=22111114422222t t k t t k ⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫-++++---+-+⎢⎥⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭=2t -,∴h 的最小值为12(当32t =时),若124k =+,解得72k =-,但32t <,故72k =-不合题意,故舍去;②当122t ->时,即5t 2>时,211422M t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422N t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=2t -,∴h 的最小值为12(当52t =时),若124k =+,解得72k =-,但52t >,故72k =-不合题意,故舍去③当11222t t -≤≤+时,即3522t ≤≤时,4M k =+,i )当112222t t ⎛⎫⎛⎫--≥+- ⎪ ⎪⎝⎭⎝⎭时,即322t ≤≤时,211422N t t k⎛⎫⎛⎫=--+-+ ⎪ ⎝⎭⎝⎭22114415252222228k t t k M N h t t ⎛⎫⎛⎫++---- ⎪ ⎪-⎝⎭⎝⎭===-+ 对称轴为52t =,102>,抛物线开口向上,在322t ≤≤上,当t =2时,h 有最小值18,148k ∴=+,解得318k =-;i i )当112222t t ⎛⎫⎛⎫--≤+- ⎪ ⎪⎝⎭⎝⎭时,即522t ≤≤时,4M k =+,N =211422t t k ⎛⎫⎛⎫-++++ ⎪ ⎝⎭⎝⎭,∴2211441392222228k t t kM N h t t ⎛⎫⎛⎫+++-+- ⎪ ⎪-⎝⎭⎝⎭===-+, 对称轴为32t =,102>,抛物线开口向上,在522t <≤上,当t =2时,h 有最小值18,148k ∴=+解得318k =-,综上所述,2t =时,存在318k =-.3.(中考真题)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =()②my (m 0)x=≠()③31y x =-()(2)若点()1,A m 与点(),4B n -关于x 的“H 函数”()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值或取值范围;(3)若关于x 的“H 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,②(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【详解】(1)①2y x =是“H 函数”②my (m 0)x=≠是“H 函数”③31y x =-不是“H 函数”;故答案为:√;√;×;(2)∵A,B 是“H 点”∴A,B 关于原点对称,∴m=4,n=1∴A(1,4),B (-1,-4)代入()20y ax bx c a =++≠,得44a b c a b c ++=⎧⎨-+=-⎩,解得40b ac =⎧⎨+=⎩,又∵该函数的对称轴始终位于直线2x =的右侧,∴-2b a >2,∴-42a >2,∴-1<a <0,∵a+c=0,∴0<c <1,综上,-1<a <0,b=4,0<c <1;(3)∵223y ax bx c =++是“H 函数”,∴设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩,解得ap 2+3c=0,2bp=q ,∵p 2>0,∴a,c 异号,∴ac <0,∵a+b+c=0,∴b=-a-c ,∵(2)(23)0c b a c b a +-++<,∴(2)(23)0c a c a c a c a -----+<,∴(2)(2)0c a c a -+<,∴c 2<4a 2,∴22c a<4,∴-2<c a <2,∴-2<c a <0,设t=c a ,则-2<t <0,设函数与x 轴的交点为(x 1,0)(x 2,0),∴x 1,x 2是方程223ax bx c ++=0的两根,∴12x x -=,又∵-2<t <0,∴2<12x x -<4.(2022春•芙蓉区校级期末)在y 关于x 的函数中,对于实数a ,b ,当a ≤x ≤b 且b =a +3时,函数y 有最大值y max ,最小值y min ,设h =y max ﹣y min ,则称h 为y 的“极差函数”(此函数为h 关于a 的函数);特别的,当h =y max ﹣y min 为一个常数(与a 无关)时,称y 有“极差常函数”.(1)判断下列函数是否有“极差常函数”?如果是,请在对应()内画“√”,如果不是,请在对应()内画“×”.①y =2x ();②y =﹣2x +2();③y =x 2().(2)y 关于x 的一次函数y =px +q ,它与两坐标轴围成的面积为1,且它有“极差常函数”h =3,求一次函数解析式;(3)若,当a ≤x ≤b (b =a +3)时,写出函数y =ax 2﹣bx +4的“极差函数”h ;并求4ah 的取值范围.【解答】解:(1)①∵y =2x 是一次函数,且y 随x 值的增大而增大,∴h =2(a +3)﹣2a =6,∴y =2x 是“极差常函数”,故答案为:√;②∵y =﹣2x +2是一次函数,且y 随x 值的增大而减小,∴h =﹣2a +2﹣[﹣2(a +3)+2]=6,∴y =﹣2x +2是“极差常函数”,故答案为:√;∵y =x 2是二次函数,函数的对称轴为直线x =0,当a +3≤0时,h =a 2﹣(a +3)2=﹣9﹣6a ;当a ≥0时,h =(a +3)2﹣a 2=9+6a ;∴y =x 2不是“极差常函数”,故答案为:×;(2)当x =0时,y =q ,∴函数与y 轴的交点为(0,q ),当y =0时,x =﹣,∴函数与x 轴的交点为(﹣,0),∴S =×|q |×|﹣|=1,∴=2,当p >0时,h =p (a +3)+q ﹣(pa +q )=3,∴p =1,∴q =±,∴函数的解析式为y =x ;当p <0时,h =pa +q ﹣[p (a +3)+q ]=3,∴p =﹣1,∴q =±,∴函数的解析式为y =﹣x;综上所述:函数的解析式为y =x 或y =﹣x;(3)y =ax 2﹣bx +4=a (x ﹣)2+4﹣,∴函数的对称轴为直线x =,∵b =a +3,∴x ==+,∵,∴≤+≤,≤a +3≤,∵(a +3﹣﹣)﹣(+﹣a )=2a +2﹣,∵,∴2a +2﹣>0,∴a +3到对称轴的距离,大于a 到对称轴的距离,∴当x =a +3时,y 有最大值a (a +3)2﹣(a +3)2+4,当x =时,y 有最小值4﹣=4﹣,∴h =a (a +3)2﹣(a +3)2+4﹣4+=(a +3)2(a ﹣1+),∴4ah =(2a 2+5a ﹣3)2,∵2a 2+5a ﹣3=2(a +)2﹣,,∴≤2a 2+5a ﹣3≤9,∴≤4ah ≤81.5.(雅实)若函数1y 、2y 满足12y y y =+,则称函数y 是1y 、2y 的“融合函数”.例如,一次函数121y x =+和二次函数2234y x x =+-,则1y 、2y 的“融合函数”为21253y y y x x =+=+-.(1)若反比例函数12y x=和一次函数23y kx =-,它们的“融合函数”过点()1,5,求k 的值;(2)若21y ax bx c =++为二次函数,且5a b c ++=,在x t =时取得最值,函数2y 为一次函数,且1y 、2y 的“融合函数”为224y x x =+-,当12x -≤≤时,求函数1y 的最小值(用含t 的式子表示);(3)若二次函数21y ax bx c =++与一次函数2y ax b =--,其中0a b c ++=且a b c >>,若它们的“融合函数”与x 轴交点为()1,0A x 、()2,0B x 12x -的取值范围.【解答】解:(1)由题意可得y 1、y 2的融合函数23y kx x=+-,将点()1,5代入,可得:523k =+-,解得6k =.(2)∵12y y y =+,∴()()2222124214y y y x x ax bx c a x b x c =-=+----=-+---,∵y 2为一次函数,∴20a -=,即2a =,∴212y x bx c =++在x =t 处取得最值,∴4bt =-,即4b t =-,∴5a b c ++=,即54234c t t =+-=+,∴212434y x tx t =-++,对称轴:x t =.①若1t ≤-时,即当1x =-时,min 58y t =+,②若12t -<<时,即当x t =时,2min 234y t t =-++,③若2t ≥时,即当2x =时,min 114y t =-.(3)y 1、y 2的融合函数()2y ax b a x c b =+-+-,∵与y 轴交于点()1,0A x 、()2,0B x ,∴12b a x x a -+=,12c b x x a -⋅=,∵12||x x a -==,又∵0a b c ++=,∴b a c =--,∴12x x ==,∵a b c >>∴a a c c >--<,∴122c a -<<-,当2ca=-时,12maxx x -=,当12c a =-时,12min32x x -=12x <-<.6.(立信)已知:抛物线1C :2y ax bx c =++(0a >).(1)若顶点坐标为(1,1),求b 和c 的值(用含a 的代数式表示);(2)当0c <时,求函数220221y ax bx c =-++-的最大值;(3)若不论m 为任何实数,直线()214m y m x =--与抛物线1C 有且只有一个公共点,求a ,b ,c 的值;此时,若1k x k ≤≤+时,抛物线1C 的最小值为k ,求k 的值.【解答】解:(1)∵抛物线的顶点坐标为(1,1),∴y =a (x ﹣1)2+1=ax 2﹣2ax +a +1,∴b =﹣2a ,c =a +1;(2)∵y =ax 2+bx +c ,a >0,c <0,∴Δ=b 2﹣4ac >0,∴抛物线y =ax 2+bx +c (a >0)与x 轴有两个交点,∴|ax2+bx+c|≥0,∴﹣2022|ax2+bx+c|≤0,∴﹣2022|ax2+bx+c|﹣1≤﹣1,∴函数y=﹣2022|ax2+bx+c|﹣1的最大值为﹣1;(3)∵直线与抛物线C1有且只有一个公共点,∴方程组只有一组解,∴ax2+(b﹣m)x++m+c=0有两个相等的实数根,∴Δ=0,∴(b﹣m)2﹣4a(+m+c)=0,整理得:(1﹣a)m2﹣2(2a+b)m+b2﹣4ac=0,∵不论m为任何实数,(1﹣a)m2﹣2(2a+b)m+b2﹣4ac =0恒成立,∴,∴a=1,b=﹣2,c=1.此时,抛物线解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的对称轴为直线x=1,开口向上,∵当k≤x≤k+1时,抛物线的最小值为k,∴分三种情况:k<0或0≤k≤1或k>1,①当k<0时,k+1<1,当k≤x≤k+1时,y随着x的增大而减小,则当x=k+1时,y的最小值为k,∴(k+1﹣1)2=k,解得:k=0或1,均不符合题意,舍去;②当0≤k≤1时,当x=1时,抛物线的最小值为0,∴k=0;③当k>1时,y随着x的增大而增大,则当x=k时,y的最小值为k,∴(k﹣1)2=k,解得:k=或,∵k>1,∴k=,综上所述,若k≤x≤k+1时,抛物线的最小值为k,k的值为0或.7.(长郡)对于一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k (b﹣a),则称此函数为“k属和合函数”,例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3属和合函数”.(1)若一次函数y=kx﹣1(1≤x≤3)为“4属和合函数”,求k的值;(2)反比例函数kyx(k>0,a≤x≤b,且0<a<b)是“k属和合函数”,且a+b=3,请求出a﹣b的值;(3)已知二次函数y=﹣x2+2ax+3,当﹣1≤x≤1时,y是“k属和合函数”,求k的取值范围.【详解】解:(1)当k >0时,y 随x 的增大而增大,∵1≤x ≤3,∴k ﹣1≤y ≤3k ﹣1,∵函数y =kx ﹣1(1≤x ≤3)为“k 属和合函数”,∴(3k ﹣1)﹣(k ﹣1)=4(3﹣1),∴k =4;当k <0时,y 随x 的增大而减小,∴3k ﹣1≤y ≤k ﹣1,∴(k ﹣1)﹣(3k ﹣1)=4(3﹣1),∴k =﹣4,综上所述,k 的值为4或﹣4;(2)∵反比例函数y =kx,k >0,∴在第一象限,y 随x 的增大而减小,当a ≤x ≤b 且0<a <b 是“k 属和合函数”,∴k a ﹣kb=k (b ﹣a ),∴ab =1,∵a +b =3,∴(a ﹣b )2=(a +b )2﹣4ab =9﹣4=5,∴a ﹣b (3)∵二次函数y =﹣x 2+2ax +3的对称轴为直线x =a ,∵当﹣1≤x ≤1时,y 是“k 属和合函数”,∴当x =﹣1时,y =2﹣2a ,当x =1时,y =2+2a ,当x =a 时,y =a 2+3,①如图1,当a ≤﹣1时,当x =﹣1时,有y 最大值=2﹣2a ,当x =1时,有y 最小值=2+2a ∴(2﹣2a )﹣(2+2a )=k •[1﹣(﹣1)]=2k ,∴k =﹣2a ,而a ≤﹣1,∴k ≥2;②如图2,当﹣1<a ≤0时,当x =a 时,有y 最大值=a 2+3,当x =1时,有y 最小值=2+2a ,∴a 2+3﹣(2+2a )=2k ,∴k =2(1)2a -,∴12≤k <2;③如图3,当0<a ≤1时,当x =a 时,有y 最大值=a 2+3,当x =﹣1时,有y 最小值=2﹣2a ,∴a 2+3﹣(2﹣2a )=2k ,∴k =2(1)2a +,∴12<k ≤2;④如图4,当a >1时,当x =1时,有y 最大值=2+2a ,当x =﹣1时,有y 最小值=2﹣2a ,∴(2+2a )﹣(2﹣2a )=2k ,∴k =2a ,∴k >2.综上所述,当﹣1≤x ≤1时,y 是“k 属和合函数”,k 的取值范围为k ≥12.8.(师大附中博才)已知a 、b 是两个不相等的实数且a b <,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],.a b 对于一个函数,如果它的自变量x 与函数值y 满足:当a x b ≤≤时,有(ta y tb t ≤≤为正数),我们就称此函数是闭区间[],a b 上的“t 倍函数”.例如:正比例函数2y x =,当13x ≤≤时,26y ≤≤,则2y x =是13x ≤≤上的“2倍函数”.(1)已知反比例函数4yx=是闭区间[],m n 上的“2倍函数”,且m n +=22m n +的值;(2)①已知正比例函数y x =是闭区间[]1,2023上的“t 倍函数”,求t ;②一次函数()0y kx b k =+≠是闭区间[],m n 上的“2倍函数”,求此函数的解析式.(3)若二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,求实数a 、b 的值.【详解】(1)已知反比例函数4y x=是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,当x m =时,4y m =;当x n =时,4y n=,又40k => ,∴当0x >时,y 随x 的增大而减小,当0x <时,y随x 的增大而减小,42n m ∴=,且42m n=,24mn ∴=,又m n += ,()22222023m n m mn n ∴+=++=,2220232202342019m n mn ∴+=-=-=.(2)①已知正比例函数y x =,y 随x 的增大而增大,且当1x =时,1y =;当2023x =时,2023y =,∴当12023x ≤≤时,12023y ≤≤,y x ∴=是闭区间[]1,2023上的“1倍函数”,即1t =.② 一次函数0y kx b k =+≠()是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,若0k >时,y 随x 的增大而增大,∴当x m =,则2y km b m =+=;当x n =,则2y kn b n =+=,()()2m n k m n ∴-=-,2k ∴=,将2k =代入2km b m +=,得22m b m +=,0b ∴=.∴若0k >时,函数解析式为2y x =.若0k <时,y 随x 的增大而减小,∴当x m =时,2y km b n =+=;当x n =时,2y kn b m =+=,2k ∴=-,22b m n =+.∴若0k <时,函数解析式为()22y x m n =-++,综合以上分析,函数的解析式为2y x =或()22y x m n =-++.(3)由二次函数269y x x =--解析式可知,抛物线开口向上,对称轴3x =,∴当3x <时,y 随x 的增大而减小;当3x >时,y 随x 的增大而增大, 二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,∴当a x b ≤≤时,()770a y b a ≤≤≠,若3b ≤时,根据增减性,当x a =时,2697y a a b =--=;当x b =时,2697y b b a =--=,两式相减得:226677a b a b b a --+=-,()()a b a b b a ∴+-=-,1b a ∴=--,将1b a =--代入2697a a b --=得:220a a +-=,2a ∴=-或1a =,当2a =-时,1b =;当1a =时,2b =-(舍去,a b <).若3a ≥时,当x a =时,2697y a a a =--=,解得a =a =x b =时,2697y b b b =--=.解得132b =或b =均不符合a b <,舍去.若3a <,3b >时,当3x =时,236397y a =-⨯-=,187a ∴=-,则x a =时,26396949y a a =--=,若639749b =,6393343b =<,(舍去),当x b =时,2697y b b b =--=,则b =b =综上分析,2a =-,1b =或者187a =-,b =9.(长郡)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值的和叫做点P (x ,y )的勾股值,记为[]P x y =+.(1)已知点A (1,3),B (2-,4),C 22),直接写出[]A,[]B ,[]C 的值;(2)已知点D 是直线2y x =+上一点,且[]4D =,求点D 的坐标;(3)若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且[]24M ≤≤.令2242022t b a =-+,试求t 的取值范围.【详解】(1)解:∵A (1,3),B (−2,4),C ),∴[A ]=|1|+|3|=4,[B ]=|-2|+|4|=6,[C ;(2)设D (m ,n ),∵D 是直线y =x +2上一点,且[D ]=4,∴42m n n m ⎧+⎨+⎩==,解得13m n =⎧⎨=⎩或31m n =-⎧⎨=-⎩,∴点D 的坐标(1,3)或(-3,-1);(3)由题意方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解,消去y 得2(1)10ax b x +-+=,由题意224(1)40b ac b a -=--=,∴24(1)a b =-,∴方程可以化为()()2214140b x b x -+-+=,∴1221x x b ==-,∴22,11M b b ⎛⎫ ⎪--⎝⎭,∵[]24M ≤≤,∴2121b ≤≤-或2211b -≤≤--,解得10b -≤≤或23b ≤≤,∵点M 在第一象限,∴10b -≤≤,∵22222420222(1)202222021t b a b b b b =-+=--+=++=2(1)2020b ++,∵10b -≤≤,∴20202021t ≤≤.10.(雅礼)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=11b ab a≥⎧⎨-⎩,,<,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).(1)①点1)的限变点的坐标是;②在点A(-2,-1),B(-1,2)中有一个点是函数y=2x图象上某一个点的限变点,这个点是;(填“A”或“B”)(2)若点P在函数y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点Q的纵坐标b′的取值范围是-5≤b′≤2,求k的取值范围;(3)若点P在关于x的二次函数y=x2-2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m-n,求s关于t的函数解析式及s的取值范围.【详解】(1)①根据限变点的定义可知点1)1);②(-1,-2)限变点为(-1,2),即这个点是点B.(2)依题意,y=-x+3(x≥-2)图象上的点P的限变点必在函数y=31321x xx x-+≥⎧⎨--≤⎩,,<的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=-2时,-2=-x+3.∴x=5.当b′=-5时,-5=x-3或-5=-x+3.∴x=-2或x=8.∵-5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.。

对几道中考数学压轴题的评析与思考

对几道中考数学压轴题的评析与思考

t值 主 的为 、


() 3 由已知, 得 =O +b L a+a = + , 。
6 +CT=t , + b t+ C ,
. —O= (— (+ +6, . . L t ) t )
题 目1 已知函数Y =X Y = +b c l ,2 x -, H

数 学教 学
21 年第 4 01 期
对几道 中考数学压轴题 的评析与思考
6 5 四川省仁寿教育局教研室 余立峰 20 00
近年各地为改进和完善中考试题命制, 进行
了许多有益的探索和创新, 设计 出了许多立意新 颖、问题创设和谐 自然、能力要求恰 当的精彩压 轴题. 但纵观各地 中考数学压轴题, 《 超 课标》 要
都超 《 课标》. 证题所用作差 比较大 小的方法是
到关于 t 的方程, 从而求得 t 值.
置情况按 同样 思路 求解.以上解法是求解这类 面积 问题的通性通法. 因此, 标准答案应首先考
21 年第 4 01 期
数 学教 学
4— —5 3
虑这 种解法, 以减少评分误 差对学 生的影 响. 并
关 系为— — ; 当推 出 L C = 1。 可 DA 5 时, 可得到 且, 原解答对lt+ 一去 = — t I 去掉绝对值 进 一步推出ADBC的度数为— — ; L DBC与 A BC的度数的 比值为— — . A 符号后解得的t 值是否满足条件, t ) ) 由 — = ( a+C 一( +6 O +b z ) +c, )


为方程 一Y 0 1 2= 的两个根, 点M ( T t ) ,
得( — ( +b ) . O ) z + 一1 =0

一道中考数学压轴题的解法探究及教学启示

一道中考数学压轴题的解法探究及教学启示

一道中考数学压轴题的解法探究及教学启示1. 引言中考数学作为学生升学的重要关卡,其中数学压轴题更是考查学生数学思维和解决问题能力的重要环节。

今天我将带你一起深入探究一道中考数学压轴题的解法,同时分析其教学启示,希望能为老师们提供一些有益的参考。

2. 题目概述这道压轴题是一道关于三角函数的应用题,涉及角度的变化、三角函数的性质和解三角形的相关知识。

题目要求学生计算一个特定角度下的三角函数值,并且利用得出的结论解决实际问题,是一道综合性很强的数学问题。

3. 解题过程我们需要通过数学关系和公式来得出特定角度下三角函数值的具体计算方法。

这一步需要考虑各种可能的情况,比如角度的范围、三角函数的定义等。

我们需要应用得出的三角函数值来解决实际问题,这就需要学生在运用数学知识的结合实际情境进行思考和分析,找出最合适的解决方案。

4. 解题思路在解题过程中,我们可以通过列出角度与对应三角函数值的表格来寻找规律,从而找到正确的解题思路。

利用图形辅助、代数运算等方法也是解题的常用手段,学生需要在解题过程中多角度思考,寻找最合适的解题方法。

5. 教学启示通过对这道压轴题的解题过程和思路的深入探究,我们可以得出一些教学启示。

我们要注重学生数学知识的系统性和逻辑性,只有建立起扎实的数学基础,学生才能更好地应对各种复杂的数学问题。

我们要培养学生的数学思维和解决问题能力,让他们能够从解题的过程中感受到数学的美妙和乐趣。

我们要注重引导学生进行多角度思考,让他们能够从不同的角度去解决问题,培养其灵活的数学思维。

6. 个人观点作为数学老师,我认为数学不仅仅是一门工具性学科,更是一门能够培养学生思维和创新能力的学科。

通过深入探究数学问题和解题思路,我能更好地感受到这种魅力。

我希望通过我的教学,能够激发学生学习数学的兴趣,培养他们的数学思维和解决问题的能力。

总结通过对一道中考数学压轴题的深入探究,我们不仅能够学习到更加全面、深刻的数学知识,同时也可以得出一些有益的教学启示。

2024年中考数学压轴题重难点知识剖析及训练—圆与射影定理结合型压轴题(含解析)

2024年中考数学压轴题重难点知识剖析及训练—圆与射影定理结合型压轴题(含解析)

2024年中考数学压轴题重难点知识剖析及训练—圆与射影定理结合型压轴题(含解析)射影定理模型:射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项。

射影定理是数学图形计算的重要定理,在初三各名校的数学和各地中考试题中都多次考查了这一模型的应用。

图形推导过程结论因为⎩⎨⎧∠=∠∠=∠ACDABCAA∴ABC∆∽ACD∆∴ACABADAC=①ABADAC ⋅=2;②BABDBC⋅=2;③BDADCD⋅=21.(长沙中考)如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)+=.(2)若PN2=PM•MN,则=.【解答】解:(1)∵MN 为⊙O 的直径,∴∠MPN =90°,∵PQ ⊥MN ,∴∠PQN =∠MPN =90°,∵NE 平分∠PNM ,∴∠MNE =∠PNE ,∴△PEN ∽△QFN ,∴,即①,∵∠PNQ +∠NPQ =∠PNQ +∠PMQ =90°,∴∠NPQ =∠PMQ ,∵∠PQN =∠PQM =90°,∴△NPQ ∽△PMQ ,∴②,∴①×②得,∵QF =PQ ﹣PF ,∴=1﹣,∴+=1,故答案为:1;(2)∵∠PNQ =∠MNP ,∠NQP =∠NPM ,∴由射影定理得:PN 2=QN •MN ,∵PN 2=PM •MN ,∴PM =QN ,∴,∵,∴,∴,∴NQ 2=MQ 2+MQ •NQ ,即,设,则x 2+x ﹣1=0,解得,x =,或x =﹣<0(舍去).2.(北雅)如图,点P 在以MN 为直径的半圆上运动(不与M 、N 重合),PH MN ⊥于H 点,过N 点作NQ 与PH 平行交MP 的延长线于Q 点.(1)求QPN ∠的度数;(2)求证:QN 与O 相切;(3)若2PN PM MN =⋅,求MH NH 的值.【解答】(1)解:MN 是直径,90MPN ∴∠=︒,90QPN ∴∠=︒;(2)证明:PH MN ⊥ ,90PHM ∴∠=︒,//QN PH ,90QNM PHM ∴∠=∠=︒,ON QN ∴⊥,ON 是半径,QN ∴与O 相切;(3)解:90MNP PNQ ∠+∠=︒ ,90PNQ Q ∠+∠=︒,MNP Q ∴∠=∠,MPN QPN ∠=∠ ,NPM QPN ∴∆∆∽,∴PN PM QP PN=,2PN PM QP ∴=⋅,2PN PM MN =⋅ ,QP MN ∴=,//PH QN ,∴MH MP HN PQ=,∴MH MP HN MN =,同理得,MHP MPN ∆∆∽,∴MP MH MN MP =,HN MP ∴=,设PQ MN a ==,MP b =,∴MH MP HN PQ=,∴a b b b a -=,(12a b -∴=(舍)或1)2a b =∴12MH a b HN b -==.3.(长沙中考)如图,点A ,B ,C 在O 上运动,满足222AB BC AC =+,延长AC 至点D ,使得DBC CAB ∠=∠,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交O 于点M (点M 在劣弧 AC 上).(1)BD 是O 的切线吗?请作出你的判断并给出证明;(2)记BDC ∆,ABC ∆,ADB ∆的面积分别为1S ,2S ,S ,若212()S S S ⋅=,求2(tan )D 的值;(3)若O 的半径为1,设FM x =,FE FN y ⋅=,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.【解答】解:(1)BD 是O 的切线.证明:如图,在ABC ∆中,222AB BC AC =+,90ACB ∴∠=︒.又点A ,B ,C 在O 上,AB ∴是O 的直径.90ACB ∠=︒ ,90CAB ABC ∴∠+∠=︒.又DBC CAB ∠=∠,90DBC ABC ∴∠+∠=︒.90ABD ∴∠=︒.BD ∴是O 的切线.(2)由题意得,112S BC CD =⋅,212S BC AC =⋅,12S AD BC =⋅.212()S S S ⋅= ,∴2111()222BC CD AD BC BC AC ⋅⋅⋅=⋅.2CD AD AC ∴⋅=.2()CD CD AC AC ∴+=.又90D DBC ∠+∠=︒ ,90ABC A ∠+∠=︒,DBC A ∠=∠,D ABC ∴∠=∠.tan tan BC AC D ABC CD BC∴∠==∠=.2BC CD AC ∴=.又2()CD CD AC AC +=,∴4222BC BC AC AC +=.4224BC AC BC AC ∴+⋅=.241(()AC AC BC BC ∴+=.由题意,设2(tan )D m ∠=,2(AC m BC∴=.21m m ∴+=.152m ±∴=.0m > ,152m ∴=.2(tan )D ∴∠=.(3)设A α∠=,90A ABC ABC DBC ABC N ∠+∠=∠+∠=∠+∠=︒ ,A DBC N α∴∠=∠=∠=.如图,连接OM .∴在Rt OFM ∆中,OF =.1BF BO OF ∴=+=+,1AF OA OF =-=.∴在Rt AFE ∆中,tan (1tan EF AF αα=⋅=⋅,1cos cos AF AE αα==.在Rt ABC ∆中,sin 2sin BC AB αα=⋅=.(1r = ,2AB ∴=.)cos 2cos AC AB αα=⋅=.在Rt BFN ∆中,sin BF BN α==tan BF FN α==.y FE FN ∴=⋅2x =2x =2x =21x x=⋅x =.即y x =.FM AB ⊥ ,FM ∴最大值为F 与O 重合时,即为1.01x ∴< .综上,y x =,01x <.4.(长沙中考)如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .(1)求∠CDE 的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.解:(1)∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)设DE=1,则AC=2,由射影定理得:AC2=AD×AE,∴20=AD(AD+1),∴AD=4或﹣5(舍去),∵DC2=AC2﹣AD2,∴DC=2,∴tan∠ABD=tan∠ACD==2;5.(青竹湖三模)如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.(1)求证:AE=CE;(2)EF与⊙O相切于点E,交AC的延长线于点F,若CD=CF=2cm,求⊙O的直径;(3)在(2)的条件下,若CF:CD=n(n>0),求sin∠CAB.解:(1)证明:连接DE,∵∠ABC=90°∴∠ABE=90°∴AE是⊙O直径,∴∠ADE =90°∴DE ⊥AC 又∵D 是AC 的中点∴DE 是AC 的垂直平分线∴AE =CE ;(2)解:在△ADE 和△EFA 中,∵∠ADE =∠AEF =90°,由射影定理得:AE 2=AD ×AF,∴AE 2=2×6,∴AE =2cm ;(3)解:∵AE 是⊙O 直径,EF 是⊙O 的切线,∵CF:CD=n,令CD=1,则CF=n ,∵∠ADE =∠AEF =90°,由射影定理得:AE 2=AD ×AF ,∴AE 2=1×(n+2),∴AE ==CE ,∵∠CAB =∠DEC,∴sin ∠CAB =sin ∠DEC ===.6.(长郡)如图,AB 为⊙O 的直径,弦CD 与AB 相交于E ,DE =EC ,过点B 的切线与AD 的延长线交于F ,过E 作EG ⊥BC 于G ,延长GE 交AD 于H .(1)求证:AH =HD ;(2)若BFBD =,DF =9,求⊙O 的半径.【解答】(1)证明:∵AB 为⊙O 的直径,DE =EC ,∴AB ⊥CD ,∴∠C +∠CBE =90°,∵EG ⊥BC ,∴∠C +∠CEG =90°,∴∠CBE =∠CEG ,∵∠CBE =∠CDA ,∠CEG =∠DEH ,∴∠CDA =∠DEH ,∴HD =EH ,∵∠A +∠ADC =90°,∠AEH +∠DEH =90°,∴AH =EH ,∴AH =HD ;(2)解:∵∠BDF =90°,BFBD =,令BD=4x ,BF=5x ,则222)5(94x x =+)(,∴2=x ,BD=12,由射影定理得:BD 2=DF •DA ,∴144=9×DA ,∴DA=16,又由射影定理得:AB 2=AF •DA ,∴AB 2=25×16,∴AB=20,即半径为10.10.如图,AB 是O 的直径,点C 是O 上一点,AD 与过点C 的切线垂直,垂足为D ,直线DC 与AB的延长线交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE ,BE =.(1)求证:AC 平分DAB ∠;BC=,求阴影部分的面积;(2)若5CD=,求PC的长度(射影定理).(3)若3【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)解:连接AE.∵∠ACE=∠BCE,∴,∴AE=BE.又∵AB是直径,∴∠AEB=90°.∴AB=BE=×5=10,∵OB=5,∴BC=OB=OC=5,即△OBC是等边三角形,=×5×=,∴∠BOC=60°,∴OH==,CH=OH=,∴S△BOCS扇形BOC=×π×52=π,∴阴影部分的面积为π﹣;(3)解:过点C作CH⊥AB垂足为点H,如图:由(2)得:OC=OB=5,(2)∵AC平分∠DAB,CH⊥AB,CD⊥AD,∴CH=CD=3,∵∠ACB=∠BHC=90°,由射影定理得:CH2=BH•AH,设BH=x,AH=10-x,∴32=x(10﹣x),解得:x=1或9(舍),又由射影定理得:CH2=O H•HP,∴32=4HP,解得:HP=.7.(雅礼)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.(1)连接OP,证明:△ADM∽△APO;(2)证明:PD是⊙O的切线;(3)若AD=24,AM=MC,求的值.解:(1)证明:连接OD、OP、CD.∵AD•AO=AM•AP,∴=,∠A=∠A,∴△ADM∽△APO.(2)∵△ADM∽△APO,∴∠ADM=∠APO,∴MD∥PO,∴∠1=∠4,∠2=∠3,∵OD=OM,∴∠3=∠4,∴∠1=∠2,∵OP=OP,OD=OC,∴△ODP≌△OCP,∴∠ODP=∠OCP,∵BC⊥AC,∴∠OCP=90°,∴OD⊥AP,∴PD是⊙O的切线.(2)连接CD.由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+242=9R2,∴R=6,∴OD=6,MC=12,∵==,∴DP=12,∵O是MC的中点,∴==,∴点P是BC的中点,∴BP=CP=DP=12,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=24,MC=12,∴BM=12,由射影定理得:MC2=MD×MB,∴122=12×MD,∴MD=4,∴=.8.(广益)如图,已知PB与⊙O相切于点B,A是⊙O上的一点,满足PA=PB,连接PO,交AB于E,交⊙O于C,D两点,E在线段OD上,连接AD,OB。

中考数学压轴题赏析

中考数学压轴题赏析

中考数学压轴题赏析中考数学压轴题赏析我校一直将这一部分作为重点来抓,因为有些同学,虽然成绩不错,但就是拉分的项目,不会做,那么该怎么办呢?中考临近,希望对大家有帮助。

现结合数学课本中的例题和本次模拟考试中所出现的试题进行如下探讨。

一、有关椭圆的概念与性质的压轴题及其解法(一)教材中的相关例题1、例1.已知点p( 4, 0), e( 6, -2),直线l1:y=1/4*x+5/2,与椭圆x=1/4*x-3/2相交于o,连接pn.首先明确题目要求,在这道题中只要求出“两个点的坐标,即可求出a, b, d, r,从而求得三个点间距离”,根据前面所述,只需要考虑出椭圆上的点P的位置坐标,再将三者联立求解即可.解法:利用点P的坐标( 4, 0),结合题目条件,得到点P的坐标为( 4,-0.5, 0),解得P的坐标为( 4,-0.5, -2),连接ac得到椭圆方程,利用二次函数的性质,可求出第一根据,因为该椭圆的离心率为c=1/2,所以半径为6,又知椭圆x=1/4*x-3/2,所以圆心到点A的距离为a,所以C的长为6.5,故P的坐标为( 4, 6.5, -2).即可求得椭圆方程.2、利用椭圆的方程求一元二次方程的根,得到一元二次方程的根是[5, 9].二、有关简单几何体的压轴题及其解法教材中的相关例题1、例2.已知椭圆上点a的坐标,分别画出图形的椭圆方程,再求出椭圆上点b, c, d, f的坐标.4、最后解答这道题时应注意的是,由于任意两个椭圆的交点都在双曲线中,所以相邻的交点的横坐标之差必须等于其中一个椭圆上各点的纵坐标之差,因此这个问题的解决并不难,在椭圆上作点D,E,则可通过a,D, F在双曲线上的点求得B, C, D, E在双曲线上的点,从而解出CDE,进而可求出CDf,进而可求出点B的横坐标.7、点D的横坐标为4,当E点纵坐标为-1时,点D的纵坐标为3.8、点D的横坐标为4,当E点纵坐标为3时,点D的纵坐标为5.8、实在做不出可以把已知条件去掉,找到另外的解法,切忌因求不出来而去胡乱猜想。

一道中考压轴题的解法分析与教学反思

一道中考压轴题的解法分析与教学反思

一道中考压轴题的解法分析与教学反思中考数学题目解析与教学反思一、题目分析在中考数学试卷中,有一道压轴题目被称为压轴题,通常是难度较大,较具挑战性的题目。

本文将对一道中考压轴题进行解法分析与教学反思,以帮助学生更好地应对这类题目。

二、题目描述假设有一个等差数列,其中第1项为a,公差为d。

1. 当n为正整数时,数列的前n项和Sn的公式为Sn = (2a + (n-1)d)n/2。

2. 已知数列的前4项和是60,求数列的前6项和。

三、解法分析根据题目描述,我们已知数列的前4项和是60,即S4 = 60。

我们需要求解数列的前6项和S6。

步骤一:列出已知条件和待求解已知条件:Sn = S4 = 60待求解:S6 = ?步骤二:利用已知条件求解待求解根据等差数列前n项和公式Sn = (2a + (n-1)d)n/2,代入已知条件Sn = 60和n = 4,得到等式60 = (2a + 3d)4/2。

步骤三:化简等式将等式60 = (2a + 3d)4/2进行化简,得到120 = 2(2a + 3d)。

步骤四:求解待求解根据前6项和公式Sn = (2a + (n-1)d)n/2,代入已知条件n = 6,得到等式S6 = (2a + 5d)6/2。

将步骤三中的等式120 = 2(2a + 3d)代入步骤四的等式中,得到S6 = (120/2) = 60。

因此,数列的前6项和S6为60。

四、教学反思本题考察了学生对等差数列和数学公式的理解与运用能力。

在解答这类题目时,学生需要熟悉等差数列的概念和相关公式,并能够灵活运用这些知识。

教师在教学中可以采用以下方法帮助学生更好地理解与掌握解题方法:1. 引导学生从已知条件入手,列出清晰的解题步骤,培养学生的逻辑思维和解决问题的能力。

2. 鼓励学生多思考,将所学知识与实际问题进行联系,提高解决实际问题的能力。

3. 指导学生用图形、图表等形式辅助解题,帮助学生更直观地理解问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一道中考数学压轴题评析1试题如图1,抛物线y =ax 2-3ax +b 经过A (–1,0),C (3,2)两点,与y 轴交于点D ,与x 轴交于另一点B .(1) 求此抛物线的解析式;(2) 若直线y =kx -1(k ≠0)将四边形ABCD 面积二等分,求k 的值;(3) 如图2,过点E (1,–1)作EF ⊥x 轴于点后得△MNQ (点M ,N ,Q 分别与点A ,求M ,N 的坐标.2试题解析(1)如图1, ∵抛物线y =ax 2-3ax +b 经过∴⎩⎨⎧+-=++=.992,30b a a b a a 解得,.221⎪⎩⎪⎨⎧=-=b a ∴抛物线的解析式y =–223212++x x . (2)方法1:如图1,由y =–223212++x x 得B (4,0)、D ∴CD ∥AB , ∴S ABCD 梯形=21(5+3)×2=8设直线y =kx –1分别交AB 、CD 于点H 、T ,则∵直线y =kx –1平分四边形ABCD 面积, ∴S ∴21(k 1+1+k 3)×2=4 , ∴k =34. ∴k =34时,直线y =34x –1将四边形ABCD 面积二等分. 方法2:过点C 作CG ⊥AB 与点G ..由y =-223212++x x 得B (4,0)、D (0,2). ∴CD ∥AB . 由抛物线的对称性得四边形ABCD 是等腰梯形, ∴BCG AOD S S ∆∆=.设矩形ODCH 的对称中心为R ,则R (23,1).. 由矩形的中心对称性知:过R 点任一直线将它的面积平分,∴过R 点且与CD 相交的任一直线将梯形ABCD 面积平分.当直线y =kx –1经过点R 时,得1=23k -1 ∴k =34, ∴k =34时,直线y =34x –1将四边形ABCD 面积二等分. (3)方法1:如图2,由题意知,四边形AEMN 是平行四边形, ∴AN ∥EM 且AN =EM .. ∵E (1,–1)、A (–1,0) ∴设M (m ,n ),则N (m –2,n +1).∵M 、N 在抛物线上,∴⎪⎪⎩⎪⎪⎨⎧+-+--=+++-=2)2(23)2(2112232122m m n m m n 解得⎩⎨⎧==.1,3n m ∴M (3,2),N (1,3).方法2:如图2,由题意知△AEF ≌△MNQ .∴MQ =AF =2,NQ =EF =1,∠MQN =∠AFE =90°.设M (m ,223212++-m m ),N (n ,223212++-n n∴⎪⎩⎪⎨⎧=++--++-=-;1)22321(22321,222m m n n n m 解得⎩⎨⎧==.1,3n m ∴M (3,2),N (1,3).对学生的解法提炼出来的.方法3:如图2,设旋转中心P (m ,n ), ∵A (–1根据中点坐标公式得M (2m +1,2n ) N (2∵M 、N 在抛物线上,∴⎪⎪⎩⎪⎪⎨⎧+-+--=+++++-=2)12(23)12(21122)12(23)12(21222m m n m m n 解得⎩⎨⎧==.1,1n m ∴M (3,2),N (1,3).方法4:如图2,由题意知,四边形AEMN 是平行四边形,∴NM ∥AE 且MN =AE =5, ∵直线AE 的解析式为y =2121--x , ∴可设MN 的解析式为y =x 21-+b ,联立方程组⎪⎪⎩⎪⎪⎨⎧++-=+=.22321,21- 2x x y b x y 消去y ,整理得 2x –4x –4+2b =0.设M (),11y x 、N (22,y x ),由根与系数关系得421=+x x , 21x x =2b-4.∴(221)x x -=(221)x x +-421x x =32-8b .而MN 2=(221)x x -+(21y y -)2=(221)x x -+[(–211x +b )–(–212x +b )]2 =45(221)x x -. ∴45(221)x x -=5 ∴32-8b=4 , 解得b =27. 将b =27代入方程组解得⎩⎨⎧==.1,311y x ,⎩⎨⎧==.3,122y x ∴M (3,2),N (1,3).3.试题评价从试题的编拟来看,试题简洁,设计的三个问题有层次性,体现了压轴题的选拔功能.整道试题阅读量较小,文字表达简练,图形简洁.试题的第(1)问比较常规,学生比较容易上手,增加了学生解决综合题和战胜困难的信心;第(2)问出现的等腰梯形学生应该是比较熟悉的,这样可以让学生能够心平气和的思考问题,但在思维的层次上作了一个适当的提升,对中等偏下的学生设置了障碍,第(3)问是为一些优秀学生提供了充分展示自己智力的平台,让这些学生能够脱颖而出.这样,逐步增加试题思维的难度,达到通过压轴题增加试卷区分度的目的.并且,在问题的设置中,第(2)、(3)问是两个并列式的问题,这里也体现了试题编拟中人性化的艺术,学生如何第(2)问不会做,不影响他们解决第(3)问,真正作到人尽其才,试卷抽样发现就有一部分学生做出了第(3)问,而第(2)问没有做出来.从所考查的知识点和数学思想方法上看,考点全面,涉及到初中数学中核心内容.本题以抛物线为载体,综合了函数、方程、点的坐标、直线方程、平行四边形、等腰梯形、图形面积,图形的对称、平移与旋转,还有三角形全等和勾股定理等初中数学的主要知识点.在数学思想方法方面,考查了待定系数法,渗透了数形结合和转化等数学思想.第(1)是求二次函数的解析式;在第(2)问中,通过图形的分割将等腰梯形转化为一个矩形和两个全等的三角形,求一次函数的解析式中k 的值;在第(3)问中将直线与抛物线的交点问题转化为方程组的问题,求点的坐标,这些都是初中数学是的核心内容,也是学生后续学习的必备知识.本题旨在考查学生的思维能力、运算能力和创新意识,在学生的学习生涯中起着承前启后的作用,是一道具有一定思维深度的试题.从能力要求上看,对学生的解题能力提出了较高的要求.首先,要求考生对图形的性质能够灵活运用.在第(2)问中,结合点的坐标,推出四边形ABCD 是等腰梯形.在此基础上方法1:求出直线y=kx-1与梯形上下底的交点坐标;方法2:充分运用等腰梯形的对称性进行图形的分割.在第(3)问中灵活运用平行四边形对边或对角线的性质.其次,要求考生对问题的条件进行适当的转化,能够将一个陌生的问题转化为自己熟悉的问题.在试卷抽样过程中,发现大量学生在解决第(3)问时,对问题中条件“将△AEF绕平面内某点旋转180°后得△MNQ,使点M,N在抛物线上”有点不知所云,从而导致不能继续思考.其实,从解答中发现,这一条件就是等价于“在抛物线上分别找两点M、N,使AEMN为平行四边形”.正是因为改变了问题的呈现方式,从而增加了试题的难度.对学生来说,下一个障碍就是如何将几何问题转化为代数问题了.可以说:数学解题过程就是一个不停地转化过程.从抽样结果看,本题满分为12分,学生实际均分为2.9分,难度系数仅有0.25,可见此题对学生的能力要求是比较高的.从试题的解答来看,体现了关注差异、以人为本的新理念.学生个体差异表现在认知方式与思维策略的不同,以及认知水平和学习能力的差异.从试题的解析中,我们可以看到在试题的编拟和设计中注重解决问题策略的多样性,每一问学生解题的入口宽,尊重了学生在解决问题过程中所表现出来的不同水平,给不同的学生创造成功的机会.有利于增强学生进一步学习数学的兴趣和信心,体现了人文关怀,凸现了以人为本的新理念.在第(2)问学生可以从代数和图形特征两个角度进行思考;在第(3)问可以从平移、三角形全等、中点坐标、一元二次方程根与系数的关系等角度进行解决.比较几种解法,方法的技术含量越高,显得解决过程(往往表现为计算过程或推理过程)越简捷,例如第(3)问的方法1,这里体现了新教材中新增内容——图形变换的考查,这种方法的运用也给学生的创新意识提出了更高的要求.并且该问还考虑到不同学生的能力水平的差异,设计了辅助△AEF,达到让部分学生能够“跳起来就可以摘到桃子”的目的.从初中、高中教学的衔接上看,本题有很好的发展性和导向性.从初中数学的视角来看,如上所述,本题考查了初中阶段所学的诸如函数、方程、变换、面积等重要知识点.同时又要求学生有扎实的数学功底、较强的分析问题和解决问题的能力,特别是问题的转化和联想能力.从高中数学的视角来看,本题为高中阶段进一步学习直线的斜率、向量的平移、直线与曲线的交点坐标的求法等知识埋下了“伏笔”.从追求完美来看,本题有一点小小的遗憾.从解答中,我们发现在(3)问中所求N点坐标为(1,3),而E点坐标是(1,-1),所以EN∥y轴,从而发现条件E点坐标有点特殊(因为导致结果有点特殊).于是在试卷抽样中发现了如下的“投机取巧”的方法.如图3,延长EF交抛物线于N,再过D作DM⊥NE,垂足为点Q,DQ交抛物线于点M.再连MN、AN、EM、AM,并且AM与EN交于点P.很易求得N(1,3)、Q(1,2)、M(3,2).∴AE=MQ,∠MNQ=∠AEF.∴AE∥MQ.∴四边形AEMN是平行四边形.∴将△AEF绕平行四边形AEMN的中心P旋转180后得到的△MNQ,顶点M,N在抛物线上.∴M(3,2),N(1,3).该方法的基本思路是先找出点的位置,点满足条件.上面的解法肯定是没有问题的,只是学生在无意识中发现了结论,就构造了这种“投机取巧”的方法.为完美起见,我们可以将E点的坐标改为(0,–1),这样不但可以避免上面“投机取巧”的方法,而且把辅助△AEF隐藏起来了,使试题的构图更加简洁.其实,追求完美始终是试题的命制的一个永无止境的目标.瑕不掩瑜,该道压轴试题是一道好题!。

相关文档
最新文档