八年级数学下学期第17周周测试卷(含解析) 苏科版

合集下载

xx中学八年级下学期数学第17周周测试题

xx中学八年级下学期数学第17周周测试题

礼乐中学八年级下学期数学第17试题班别:__________ 姓名:____________学号:________一、选择题(每小题5分,共30分)1、若y=x+2-b是正比例函数,则b的值是()A.0 B.﹣2 C.2 D.﹣0.52、P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2 C.当x1<x2时,y1>y D.当x1<x2时,y1<y23、小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家、下面哪一个图象能大致描述他回家过程中离学校的距离S(千米)与所用时间t(分)之间的关系()A.B. C.D.4、函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限5、某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为( )A.y=40x B.y=32x C.y=8x D.y=48x6、已知一次函数y=kx+b的图象如图,则关于x的不等式k(x-4)-2b>0解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<3二、填空题(每小题5分,共20分)1、在平面直角坐标系中,将直线l1:y=-3x-1平移后,得到直线l2:y=-3x+2,则下列平移方式正确的是2、函数y=﹣2x+3与x轴的交点坐标3、如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线y=kx+3上,则k的值为________.4、某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.5元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.15元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.三、解答题(每小题20分,共40分)1.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a,8),求点A的坐标.2、在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0) (1)写出y与x之间的函数解析式;(2)画出此函数的图象.。

最新人教版数学八年级下册第十七章测试卷(含答案解析)

最新人教版数学八年级下册第十七章测试卷(含答案解析)

人教版数学八年级下册第十七章测试卷姓名:分数:一、选择题1.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm25.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.56.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1: B.1::2 C.1::D.1:4:17.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C.+2 D.8.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.210.直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185二、填空题11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.13.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.14.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为度.16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.17.命题:“同角的余角相等”的逆命题是.18.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)19.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.20.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.三、解答题21.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).22.三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所示的图形,则△ABC一定是直角三角形吗?说明理由.23.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?25.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.26.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?27.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.答案1.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个【考点】勾股定理的逆定理;三角形内角和定理.【专题】选择题.【分析】计算出三角形的角利用定义判定或在知道边的情况下利用勾股定理的逆定理判定则可.【解答】解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是.故选A.【点评】本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【考点】勾股定理的逆定理;完全平方公式.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.【点评】本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°【考点】勾股定理.【专题】选择题.【分析】根据斜边的平方等于两条直角边乘积的2倍,以及勾股定理可以列出两个关系式,直接解答即可.【解答】解:设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,根据勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选C.【点评】已知直角三角形的边长问题,不要忘记三边的长,满足勾股定理.4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【考点】勾股定理;翻折变换(折叠问题).【专题】选择题.【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.5.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1: B.1::2 C.1::D.1:4:1【考点】勾股定理.【专题】选择题.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选B.【点评】本题考查了三角形的内角和定理和勾股定理,通过知道角的度数计算特殊三角形边的比.7.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C.+2 D.【考点】勾股定理;含30度角的直角三角形.【专题】选择题.【分析】根据直角三角形的性质及勾股定理即可解答.【解答】解:如图所示,Rt△ABC中,∠B=60°,AB=1,则∠A=90°﹣60°=30°,故BC=AB=×1=,AC===,故此三角形的周长是.故选D.【点评】考查了勾股定理和含30度角的直角三角形,熟悉直角三角形的性质:直角三角形中,30°所对的直角边是斜边的一半.熟练运用勾股定理.8.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】选择题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2【考点】勾股定理.【专题】选择题.【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.10.直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185【考点】勾股定理.【专题】选择题.【分析】设出另一直角边和斜边,根据勾股定理列出方程,再根据边长都是自然数这一特点,写出二元一次方程组,求解即可.【解答】解:设另一直角边长为x,斜边为y,根据勾股定理可得x2+132=y2,即(y+x)(y﹣x)=169×1因为x、y都是连续自然数,可得,∴周长为13+84+85=182;故选A.【点评】本题综合考查了勾股定理与二元一次方程组,解这类题的关键是利用勾股定理来寻求未知系数的等量关系.11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.【考点】勾股定理;等腰三角形的性质.【专题】填空题.【分析】根据等腰三角形的三线合一得BD=8,再根据勾股定理即可求出AB的长.【解答】解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.【点评】注意等腰三角形的三线合一,熟练运用勾股定理.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.【考点】勾股定理的应用.【专题】填空题.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480米.【点评】考查了勾股定理的应用,是实际问题但比较简单.13.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.【考点】勾股定理的应用.【专题】填空题.【分析】根据题意画出图形根据勾股定理解答.【解答】解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,根据勾股定理得AB====15m.【点评】本题很简单,只要根据题意画出图形即可解答,体现了数形结合的思想.14.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.【考点】勾股定理;三角形内角和定理.【专题】填空题.【分析】根据三角形的三个内角之比是1:2:3,求出各角的度数,再根据直角三角形的性质解答即可.【解答】解:设一份是x,则三个角分别是x,2x,3x.再根据三角形的内角和定理,得:x+2x+3x=180°,解得:x=30°,则2x=60°,3x=90°.故此三角形是有一个30°角的直角三角形.根据30°的角所对的直角边是斜边的一半,得,最长边的长度是16.【点评】此题要首先根据三角形的内角和定理求得三个角的度数,再根据直角三角形的性质求得最长边的长度即可.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为度.【考点】勾股定理的逆定理.【专题】填空题.【分析】一个三角形的三边符合a2+b2=c2,根据勾股定理的逆定理,这个三角形是直角三角形,依此可得这个三角形中最大的角的度数.【解答】解:设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形.则这个三角形中最大的角为90度.故答案为:90.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.【考点】勾股定理.【专题】填空题.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.17.命题:“同角的余角相等”的逆命题是.【考点】互逆命题.【专题】填空题.【分析】先把同角的余角相等写成“如果…那么…”的形式,然后交换题设和结论即可得到逆命题.【解答】解:“同角的余角相等”的逆命题为“如果两个角相等,那么这两个角是同一个角的余角”.故答案为:如果两个角相等,那么这两个角是同一个角的余角.【点评】本题考查了命题与定理,正确理解原命题与逆命题的关系是解题关键.18.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)【考点】勾股定理的应用.【专题】填空题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为25dm,宽为(3+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=252+[(3+3)×3]2=949,解得x=.故答案为dm.【点评】此题主要考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.19.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.【考点】勾股定理的应用.【专题】填空题.【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果.【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.【点评】本题主要是考查学生对勾股定理的熟练掌握,解题的关键是从实际问题中整理出直角三角形并正确的利用勾股定理.20.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.【考点】勾股定理的应用.【专题】填空题.【分析】正东方向与正南方向正好构成直角,因而两船所经过的路线,与10:00时,两船之间的连线正好构成直角三角形.根据勾股定理即可求解.【解答】解:在直角△OAB中,OB=2×8=16海里.OA=12海里,根据勾股定理:AB===20海里.故答案为:20.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.21.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】解答题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.22.三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所示的图形,则△ABC一定是直角三角形吗?说明理由.【考点】勾股定理的逆定理.【专题】解答题.【分析】根据S1、S2、S3,可得出AC2,BC2及AB2,根据勾股定理的逆定理可得出三角形是直角三角形.【解答】解:∵S1=π()2=4.5π,S2=π()2=8π,S3=π()2=12.5π,∴AC2=36,BC2=64,AB2=100,又∵AC2+BC2=AB2,∴△ABC一定是直角三角形.【点评】本题考查了勾股定理的逆定理的知识,关键是根据面积表示出AC2,BC2及AB2,要求熟练掌握勾股定理的逆定理.23.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【考点】勾股定理的应用;勾股定理的逆定理.【专题】解答题.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC 为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?【考点】勾股定理的应用.【专题】解答题.【分析】先作A关于MN的对称点,连接A′B,构建直角三角形,利用勾股定理即可得出答案.【解答】解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线,在Rt△A′DB中,由勾股定理求得A′B=DA==17km,答:他要完成这件事情所走的最短路程是17km.【点评】本题考查的是勾股定理和轴对称在实际生活中的运用,需要同学们联系实际,题目是一道比较典型的题目,难度适中.25.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.【考点】勾股定理的应用.【专题】解答题.【分析】红莲在水中的长度,花离原位的长度和花的总长可构成直角三角形,设出湖水的深度为x,根据勾股定理列出方程可求出.【解答】解:设湖水深为x尺,则红莲总长为(x+0.5)尺,根据勾股定理得:在Rt△ABC中,有:x2+s2=(x+0.5)2,在Rt△ADC中,有:0.52+s2=22,由以上两式解得:x=3.5,即湖水深3.5尺.【点评】本题的关键是读懂题意,找出题中各个量之间的关系,建立等式进行求解.26.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【考点】勾股定理的应用.【专题】解答题.【分析】(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【解答】解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).【点评】此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.27.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.【考点】勾股定理;平面展开﹣最短路径问题.【专题】解答题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.【解答】解:如图:根据题意,如上图所示,最短路径有以下三种情况:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,所以AB′2=25,即AB′=5cm.【点评】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。

2021-2022学年八年级数学下册第17章《勾股定理》单元测试卷附答案解析

2021-2022学年八年级数学下册第17章《勾股定理》单元测试卷附答案解析

2021-2022学年八年级数学下册第17章《勾股定理》单元测试卷一、选择题(每小题3分,共30分)1.(3分)三角形的三边a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c=5:4:3B.a2=b2=c2C.a2=(b+c)(b﹣c)D.a:b:c=13:5:122.(3分)下列各比值中,是直角三角形的三边之比的是()A.1:2:3B.2:3:4C.3:4:6D.1:√3:23.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.104.(3分)已知a,b,c是三角形的三边长,如果满足(a﹣5)2+√b−12+|c﹣13|=0,则三角形为()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形5.(3分)如图,△ABC的三边BC,CA,AB分别用a,b,c表示,下列说法错误的是()A.若a2+b2=c2,则∠C=90°B.若a2﹣b2=c2,则∠A=90°C.若c2+a2=b2,则∠B=90°D.若a2﹣b2+c2=0,则∠A=90°6.(3分)在如图的网格中,每个小正方形的边长为1,A、B、C三点均在正方形格点上,则下列结论错误的是()A.AB=2√5B.∠BAC=90°C.S△ABC=10D.点A到直线BC的距离是27.(3分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,DE=3,BD=2CD,则BE=()A.6B.7C.3√3D.2√68.(3分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB 长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.√3B.√5C.√6D.√79.(3分)直角三角形斜边的平方等于两直角边乘积的2倍,这个三角形有一个锐角是()A.15度B.30度C.60度D.45度10.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S9的值为()A.(12)6B.(12)7C.(12)8D.(12)9二、填空题(每小题3分,共15分)11.(3分)命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题是.12.(3分)如图,三个正方形中的两个的面积分别为S1=25cm2,S2=144cm2,则第三个正方形的面积S3=cm2.13.(3分)如图,在四边形ABCD中,∠A=90°,AD∥BC,BC=BD,CE⊥BD,垂足为E.若AD=4,CE=3,则DE的长为.14.(3分)在△ABC中,AB=10,AC=2√10,BC边上的高AD=6,则另一边BC等于.15.(3分)如图所示的一段楼梯,BC=2m,AB=4m,每层楼梯的宽均为√3m,若在楼梯上铺地毯,则至少要用地毯m2.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,已知某山的高度AC为800米,在山上A处与山下B处各建一个索道口,且BC=1500米,欢欢从山下索道口坐缆车到山顶,已知缆车每分钟走50米,那么大约多少分钟后,欢欢才能到达山顶?17.(9分)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.18.(9分)一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边长如图2所示.(1)你认为这个零件符合要求吗?为什么?(2)求这个零件的面积.19.(9分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米?(假设绳子是直的,结果保留根号)20.(9分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.21.(10分)如图,在正方形ABCD纸片上有一点P,P A=1,PD=2,PC=3.现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合).求:(1)线段PG的长;(2)∠APD的度数.22.(10分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿BC方向移动.已知AD⊥BC且AD=12AB,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?23.(11分)已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动的时间为t秒,(1)当△ABP为直角三角形时,求t的值:(2)当△ABP为等腰三角形时,求t的值.(本题可根据需要,自己画图并解答)2021-2022学年八年级数学下册第17章《勾股定理》单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)三角形的三边a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c=5:4:3B.a2=b2=c2C.a2=(b+c)(b﹣c)D.a:b:c=13:5:12【解答】解:A、∵32+42=25=52,∴此三角形是直角三角形,故本选项正确;B、∵a2=b2=c2,∴不符合勾股定理的逆定理,故本选项错误;C、∵a2=(b+c)(b﹣c),∴a2=b2﹣c2,即a2+c2﹣=b2,∴此三角形是直角三角形,故本选项正确;D、∵52+122=132,∴此三角形是直角三角形,故本选项正确.故选:B.2.(3分)下列各比值中,是直角三角形的三边之比的是()A.1:2:3B.2:3:4C.3:4:6D.1:√3:2【解答】解:A、∵x+2x=3x,∴三条线段不能组成三角形,不能组成直角三角形,故A 选项错误;B、∵(2x)2+(3x)2≠(4x)2,∴三条线段不能组成直角三角形,故B选项错误;C、∵(3x)2+(4x)2≠(6x)2,∴三条线段不能组成直角三角形,故C选项错误;D、∵x2+(√3x)2=(2x)2,∴三条线段能组成直角三角形,故D选项正确;故选:D.3.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.10【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD=√AB2−AD2=4,∴BC=2BD=8,故选:C.4.(3分)已知a,b,c是三角形的三边长,如果满足(a﹣5)2+√b−12+|c﹣13|=0,则三角形为()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形【解答】解:∵(a﹣5)2+√b−12+|c﹣13|=0,∴a﹣5=0,b﹣12=0,c﹣13=0,∴a=5,b=12,c=13,∵52+122=132,即a2+b2=c2,∴此三角形是直角三角形.故选:A.5.(3分)如图,△ABC的三边BC,CA,AB分别用a,b,c表示,下列说法错误的是()A.若a2+b2=c2,则∠C=90°B.若a2﹣b2=c2,则∠A=90°C.若c2+a2=b2,则∠B=90°D.若a2﹣b2+c2=0,则∠A=90°【解答】解:A、若a2+b2=c2,则∠C=90°,故选项A不合题意;B、若a2﹣b2=c2,所以a2=b2+c2,则∠A=90°,故选项B不合题意;C、若c2+a2=b2,则∠B=90°,故选项C不合题意;D、若a2﹣b2+c2=0,所以c2+a2=b2,则∠B=90°,故选项D符合题意;故选:D.6.(3分)在如图的网格中,每个小正方形的边长为1,A、B、C三点均在正方形格点上,则下列结论错误的是()A .AB =2√5 B .∠BAC =90°C .S △ABC =10D .点A 到直线BC 的距离是2【解答】解:由题意可得,AB =√22+42=2√5,故选项A 正确; AC =√12+22=√5, BC =√32+42=5, ∴AB 2+AC 2=BC 2,∴△ABC 是直角三角形,∠BAC =90°,故选项B 正确; ∴S △ABC =AB⋅AC 2=2√5×√52=5,故选项C 错误; 作AD ⊥BC 于点D , 则BC⋅AD 2=5, 即5×AD 2=5,解得,AD =2,即点A 到直线BC 的距离是2,故选项D 正确; 故选:C .7.(3分)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E ,DE =3,BD =2CD ,则BE =( )A.6B.7C.3√3D.2√6【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=3,∴BD=2CD=2×3=6,∴BE=√BD2−DE2=3√3.故选:C.8.(3分)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB 长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.√3B.√5C.√6D.√7【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则OC=√22+12=√5,故点M对应的数是:√5.故选:B.9.(3分)直角三角形斜边的平方等于两直角边乘积的2倍,这个三角形有一个锐角是()A.15度B.30度C.60度D.45度【解答】解:设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab =c 2,根据勾股定理得到:a 2+b 2=c 2,因而a 2+b 2=2ab ,即:a 2+b 2﹣2ab =0,(a ﹣b )2=0,所以a =b ,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选:D .10.(3分)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 9的值为( )A .(12)6B .(12)7C .(12)8D .(12)9 【解答】解:在图中标上字母E ,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴DE 2+CE 2=CD 2,DE =CE ,∴S 2+S 2=S 1.观察,发现规律:S 1=22=4,S 2=12S 1=2,S 3=12S 2=1,S 4=12S 3=12,…,∴S n =(12)n ﹣3. 当n =9时,S 9=(12)9﹣3=(12)6, 故选:A .二、填空题(每小题3分,共15分)11.(3分)命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2”的逆命题是如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形.【解答】解:根据逆命题的定义得:命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题是:如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形;故答案为:如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形.12.(3分)如图,三个正方形中的两个的面积分别为S1=25cm2,S2=144cm2,则第三个正方形的面积S3=119cm2.【解答】解:根据图形及勾股定理得:S2=S1+S3,∵S1=25cm2,S2=144cm2,∴S3=S2﹣S1=144﹣25=119(cm2),故答案为:119.13.(3分)如图,在四边形ABCD中,∠A=90°,AD∥BC,BC=BD,CE⊥BD,垂足为E.若AD=4,CE=3,则DE的长为1.【解答】解:∵AD∥BC,∴∠ADB=∠EBC,∵CE⊥BD,∠A=90°,∴∠A=∠BEC=90°,在△ABD和△ECB中,{∠A =∠BEC ∠ADB =∠EBC BD =CB,∴△ABD ≌△ECB (AAS ),∴AD =BE =4,AB =CE =3,BD =BC ,由勾股定理可得:BC =√BE 2+CE 2=√42+32=5,∴DE =BD ﹣BE =5﹣4=1,故答案为:1.14.(3分)在△ABC 中,AB =10,AC =2√10,BC 边上的高AD =6,则另一边BC 等于 10或6 .【解答】解:根据题意画出图形,如图所示,如图1所示,AB =10,AC =2√10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD =√AB 2−AD 2=8,CD =√AC 2−AD 2=2,此时BC =BD +CD =8+2=10;如图2所示,AB =10,AC =2√10,AD =6,在Rt △ABD 和Rt △ACD 中,根据勾股定理得:BD =√AB 2−AD 2=8,CD =√AC 2−AD 2=2,此时BC =BD ﹣CD =8﹣2=6,则BC 的长为6或10.故答案为:10或6.15.(3分)如图所示的一段楼梯,BC =2m ,AB =4m ,每层楼梯的宽均为√3m ,若在楼梯上铺地毯,则至少要用地毯 (6+2√3) m 2.【解答】解:在Rt△ABC中,AC=√AB2−BC2=√42−22=2√3(m),∴AC+BC=(2√3+2)m,∴地毯的面积至少要(2√3+2)×√3=(6+2√3)(m2).故答案为:(6+2√3).三、解答题(本大题共8个小题,满分75分)16.(8分)如图,已知某山的高度AC为800米,在山上A处与山下B处各建一个索道口,且BC=1500米,欢欢从山下索道口坐缆车到山顶,已知缆车每分钟走50米,那么大约多少分钟后,欢欢才能到达山顶?【解答】解:∵AC⊥BC,AC=800米,BC=1500米,在Rt△ABC中,由勾股定理可得:AB=√AC2+BC2=√8002+15002=1700(米),∵缆车每分钟走50米,∴欢欢达到山顶的时间=1700÷50=34(分钟).答:大约34分钟后,欢欢才能达到山顶.17.(9分)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF中,∵∠DEF=90°,DE=2,∠F=30°,∴DF=2DE=4,∴EF=√DF2−DE2=√42−22=2√3.18.(9分)一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边长如图2所示.(1)你认为这个零件符合要求吗?为什么?(2)求这个零件的面积.【解答】解:(1)∵AD=4,AB=3,BD=5,DC=13,BC=12,∴AB2+AD2=BD2,BD2+BC2=DC2,∴△ABD、△BDC是直角三角形,∴∠A=90°,∠DBC=90°,故这个零件符合要求.(2)这个零件的面积=△ABD的面积+△BDC的面积=3×4÷2+5×12÷2=6+30=36.故这个零件的面积是36.19.(9分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【解答】解:在Rt△ABC中,BC=13m,AC=5m,则AB=√BC2−AC2=12m,6秒后,BC=10,则AB=√BC2−AC2=5√3(m),则船向岸边移动距离为(12﹣5√3)m.20.(9分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.【解答】解:(1)∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;(2)∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt△DCE中,DC2+CE2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.21.(10分)如图,在正方形ABCD纸片上有一点P,P A=1,PD=2,PC=3.现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合).求:(1)线段PG的长;(2)∠APD的度数.【解答】解:四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∵P A=1,PD=2,PC=3,将△PCD剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),∴PD=GD=2,∠CDP=∠ADG,AG=PC=3,∴∠PDG=∠ADC=90°,∴△PDG是等腰直角三角形,∴∠GPD=45°,PG=√2PD=2√2,(2)由(1)知∠GPD=45°,PG=√2PD=2√2,∵AG=PC=3,AP=1,∴12+(2√2)2=32,∴AP2+PG2=AG2,∴∠GP A=90°,∴∠APD=90°+45°=135°.22.(10分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿BC方向移动.已知AD⊥BC且AD=12AB,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【解答】解:(1)该城市会受到这次台风的影响.理由是:如图,在Rt△ABD中,∵AD=12AB∴∠ABD=30°,AB=240千米,∴AD=12AB=120千米,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200千米.∵120<200,∴该城市会受到这次台风的影响.(2)如图以A为圆心,200为半径作⊙A交BC于E、F.则AE=AF=200.∴台风影响该市持续的路程为:EF=2DE=2√2002−1202=320.∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2≈8(级).23.(11分)已知:如图,在Rt △ABC 中,∠ACB =90°,AB =5cm ,AC =3cm ,动点P 从点B 出发沿射线BC 以2cm /s 的速度运动,设运动的时间为t 秒,(1)当△ABP 为直角三角形时,求t 的值:(2)当△ABP 为等腰三角形时,求t 的值.(本题可根据需要,自己画图并解答)【解答】解:(1)∵∠C =90°,AB =5cm ,AC =3cm ,∴BC =4 cm .①当∠APB 为直角时,点P 与点C 重合,BP =BC =4 cm ,∴t =4÷2=2s .②当∠BAP 为直角时,BP =2tcm ,CP =(2t ﹣4)cm ,AC =3 cm ,在Rt △ACP 中,AP 2=32+(2t ﹣4)2,在Rt △BAP 中,AB 2+AP 2=BP 2,∴52+[32+(2t ﹣4)2]=(2t )2,解得t =258s .综上,当t =2s 或258s 时,△ABP 为直角三角形.(2)①当BP =BA =5时,∴t =2.5s .②当AB =AP 时,BP =2BC =8cm ,∴t =4s .③当PB =P A 时,PB =P A =2t cm ,CP =(4﹣2t )cm ,AC =3 cm ,在Rt △ACP 中,AP 2=AC 2+CP 2,∴(2t )2=32+(4﹣2t )2,解得t =2516s . 综上,当△ABP 为等腰三角形时,t =2.5s 或4s 或2516s .。

苏教版初中数学八年级上册第一学期第17周周考试卷

苏教版初中数学八年级上册第一学期第17周周考试卷

苏教版初中数学八年级上册第一学期第17周周考试卷一、选择题 (每题3分,共24分)1.函数y=中自变量x的取值范围是( ) A. 3x≥- B.3x≥-且1x≠C. 1x≠ D. 3x≠-且1x≠2.下列一次函数中,y的值随x值的增大而增大的是 ( ) A.y=-5x+3 B.y=-x-7C.yD.y+43.若一次函数y=kx+b的图象经过一、二、三象限,则k,b应满足的条件是 ( ) A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<04.一次函数y=2x-1的图象大致是 ( )5.关于一次函数23y x=-+,下列结论正确的是( )A.图像经过点(1,1)- B.图像经过第一、二、三象限C. y随x的增大而增大D.当32x>时,0y<6.已知11(,)A x y是一次函数1y x b=-++图像上一点,若1x<,1y<,则b的取值范围是( )A.0b< B.0b> C.1b>- D.1b<-7.正比例函数2y kx=的图像如图所示,则(2)1y k x k=-+-的图像大致是( )8.若式子k -1+(k -1)0有意义,则一次函数y =(k -1)x +1-k 的图象可能是( )二、填空题 (每题3分,共30分)9.一条直线经过点(2,1)-,且与直线31y x =-+平行,则这条直线的函数表达式为 .10.若点(1,1)M k k -+关于y 轴的对称点在第四象限,则一次函数(1)y k x k =-+的图像不经过第 象限.11.在直线112y x =+上,且到坐标轴的距离为2的点的坐标是 . 12.点A(1,m)在函数y =2x 的图象上,则点A 关于y 轴对称的点的坐标为_______13.若一次函数y =(k -1)x +|k|-1的图象经过坐标原点,则k = .14.若一次函数y =(m -1)x +m +3(m 为常数)的图象经过第一、二、四象限,则m 的取值范围是 .15.已知点(-3,3)在函数y =ax -6的图象上,则a =_______.16.已知函数y =3+(m -2)23mx -是一次函数,则m =_______,此函数图象经过第_______象限. 17.直线y =2x -3可以由直线y =2x 沿y 轴而得到;直线y =-3x +2可以由直线y =-3x 沿y 轴____ ___而得到.18.已知:(1)图象不经过第二象限;(2)图象经过点(2,5),请你写出一个同时满足(1)(2)的一次函数关系式:___ ___.三、 解答题19. (9分)已知一次函数2(3)218y k x k =--+.(1) 当k 为何值时,该函数图像经过原点?(2) 当k 为何值时,该函数图像经过点(0,2)-?(3) 当k 为何值时,该函数图像平行于直线y x =-?20.(7分)已知一次函数的图象经过(2,5)和(-1,-1)两点.(1)在坐标系中画出这个函数图象;(2)求这个一次函数解析式.21.(8分)已知一次函数图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上?22.(10分)已知一次函数y=kx-4,当x=2时,y=-3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.23.(12分)已知一次函数(42)4y m x m =++-,求: (l) m 为何值时,y 随x 的增大而减少?(2) m 为何值时,函数图象与y 轴的交点在x 轴下方?(3) m 为何值时,图象经过第一、三、四象限?(4) 图象能否过第一、二、三象限?。

苏州十六中八年级数学下册第十七章《勾股定理》阶段测试(答案解析)

苏州十六中八年级数学下册第十七章《勾股定理》阶段测试(答案解析)

一、选择题1.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45° 2.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )A .2B .3C .4D .53.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 4.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD = D .CAB DAB ∠=∠5.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 6.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30° 7.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.1<10<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .38.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒ 9.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒ 10.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .4011.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 12.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL 13.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°14.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC15.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题16.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.17.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).18.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .19.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.20.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.21.如图,已知ABC 的周长是8,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且3OD =,ABC 的面积是______.22.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.23.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.24.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.25.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.26.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.三、解答题27.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由;(2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 28.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .29.如图,已知点D ,E 分别在等边三角形ABC 的边BC ,CA 上,且BD CE =,连接AD ,BE 相交于点F ,AH BE ⊥于点H ,求FAH ∠的度数.30.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求: (1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB∥CD,BE、DE分别是∠ABC、∠ADC的n等分线,ABE ∠=1ABCn∠,1CDE ADCn∠=∠,∠BAD=α,∠BCD=β,请猜想∠BED= .。

八年级数学下册第十七章过关检测试卷及答案

八年级数学下册第十七章过关检测试卷及答案

八年级数学下册第十七章过关检测试卷及答案(全卷三个大题,共24个小题,共4页;满分100分;建议用时90分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷,草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一.单选题(每题3分,共36分)1.下列各组数中,不是勾股数的一组是( )A .3,4,5B .4,5,6C .6,8,10D .5,12,132.下列各组数中,能构成直角三角形的是( )A .4,5,6B .C .6,8,11D .5,12,233.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A .25B .14C .7D .7或254.直角三角形两边长为3,4,则第三边长为( )A .5BC .5D .不能确定5.如图,一根垂直于地面的旗杆在离地面5m 的B 处撕裂折断,旗杆顶部落在离旗杆底部12m 的A 处,则旗杆折断部分AB 的高度是( )A .5mB .12mC .13mD .18m6.如图,正方形网格中的ABC ,若小方格边长为1,则ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对7.直角三角形两直角边长度为5,12,则斜边上的高为( )A .6.B .8C .1813D .60138.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .35海里D .40海里9.在ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,下列命题中,属于假命题的是( )A .C AB ∠=∠+∠,则△ABC 是直角三角形B .若222c b a =-,则△ABC 是直角三角形,且90C ∠=︒C .若()()2c a c a b +-=,则△ABC 是直角三角形D .若::5:2:3A B C ∠∠∠=,则△ABC 是直角三角形10.已知三角形三边长为a ,b ,c ,2|8|(6)0b c -+-=,则ABC 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形11.如图,在ABC 中,90C ︒∠=,2AC =,点D 在BC 上,ADC 2B ∠=∠,AD =则BC 的长为( )A 1B 1C 1D 1+12.如图所示,已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第2个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第3个等腰Rt △ADE ……以此类推,第2022个等腰直角三角形的斜边长是( )A B.2C.10112D.2022二.填空题(每题2共8分)13.如图所示,在数轴上点A所表示的数为a,则a的值为 _______.14.若一直角三角形两直角边长分别为6和8,则斜边长为__.15.《九章算术》是我国古代最重要的数学著作之一,在"勾股"章中记载了一道"折竹抵地"问题:"今有竹高中,∠ACB=90°,AC+AB=一丈,末折抵地,去本三尺,问折者高几何?"翻译成数学问题是:如图所示,ABC10,BC=3,求AC的长,如果设AC=x,则可列方程为________(方程不用化简).16.如图是一个三级台阶,它的每一级的长.宽.高分别为20dm.3 dm.2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是_________ dm.三.解答题(共56分)17.在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;(2)已知求b,c.a c-=.18.已知a,b,c满足等式20(1)求a.b.c的值;(2)判断以a.b.c为边能否构成三角形?若能构成三角形,此三角形是什么形状的三角形?若不能,请说明理由.19.如图,一架长5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为3m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了2m,那么梯子的顶端B在水平方向上向右滑动了多远?20.为了求出湖两岸A,B两点之间的距离,观测者小林在点C设桩,使△ABC恰好为直角三角形(∠B=90°),如图所示,通过测量得AC长为160m,BC长为128m,请求出图中A.B两点之间的距离.21.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.若每平方米草皮需要200元,问学校需要投入多少资金买草皮?22.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?23.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =10,OC =8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.24.如图,ABC 中,,AB AC AD >是BC 边上的高,将ADC △沿AD 所在的直线翻折,使点C 落在BC 边上的点E 处.()1若20,13,5===,求ABCAB AC CD∆的面积;()2求证:22-=⋅.AB AC BE BC参考答案(全卷三个大题,共24个小题,共4页;满分100分;建议用时90分钟)注意事项:3.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷,草稿纸上作答无效.4.考试结束后,请将试题卷和答题卡一并交回.一.选择题(共12题,每题3分,共36分)题号123456789101112答案B B D C C A D D B A D A二、填空题(共4题,每题2分,共8分)14.1015.()222310x x +=-16、25三.解答题(共6题,共46分)17.解:(1)如图,∵Rt △ABC 中,∠C =90°,c =25,b =15,∴20a ===;(2)∵60a A ,=∠=30,B ∴∠= 则c =2b ,∵222,a b c +=()2222,b b ∴+=.18.解:(1) 20a c -=,由二次根式的非负性可知:a b =5,c =(2)∵a +b >c >b -a ,满足三边关系,∴a .b .c 能构成三角形,∵a 2=7,b 2=25,c 2=32,可得a 2+b 2=c 2,∴三角形为直角三角形.19.(1)解:∵90C ∠=︒,∴222225316AC AB BC =-=-=,∴4AC =.(2)解:2AA '=,∴422CA CA AA ''=-=-=,∴222225221B C A B A C '''''=-=-=,∴B C '=∴3BB ',答:梯子的顶端B 在水平方向上向右滑动了)3m .20.解:∵在Rt△ABC 中,90B Ð=°,160AC =,128BC =,∴222AC AB BC =+∴222160128AB =-,∴96AB =(m)答:A .B 两点之间的距离为96m .21.解:连接AC ,∵∠B =90°,AB =3m,BC =4m,CD =12m,AD =13m,222223425AC AB BC =+=+=,则AC =5m,∴2222514416913AC CD +=+==,又∵2213AD =,∴222AC CD CD +=,∴∠ACD =90°,∴△ACD 是直角三角形,∴四边形ABCD 的面积=12×3×4+12×5×12=6+30=36(2m ),∴学校要投入资金为:200×36=7200(元);答:学校需要投入7200元买草皮.22.因为CD =AB =3.8 m ,所以PD =PC -CD =9 m .在Rt△ADP 中,AP 2=AD 2+PD 2,得AP =15 m .所以此消防车的云梯至少应伸长15 m .23解:依题意可知,折痕AD 是四边形OAED 的对称轴,∴在Rt △ABE 中,AE =AO =10,AB =8,6BE ===,∴CE =4,∴E (4,8)在Rt △DCE 中,DC 2+CE 2=DE 2,又∵DE =OD ,∴(8-OD )2+42=OD 2∴OD =5∴D (0,5)24.解:AD 是BC 边上的高,90ADB ADC ∴∠=∠= ,在Rt ADC 中,13,5,AC CD ==12AD ∴==,在Rt ADB 中,20,12,AB AD ==16BD ∴===,16521,BC BD CD ∴=+=+=11211212622ABC S BC AD ∴=⨯⨯=⨯⨯= (平方单位).(2)证明:ADC 沿AD 所在的直线翻折得到,ADE ,,AC AE DC DE ∴==在Rt ADC 中,由勾股定理,得222,AC AD DC =+在Rt ADB 中,由勾股定理,得222BD AB AD =-,()22222AB AC AB AD DC ∴-=-+,222AB AD DC =--,22BD DE =-,()(),BD DE BD DE =-+,,BE BD DE BC BD DC BD DE =-=+=+ 22AB AC BE BC ∴-=⋅.。

八年级数学下学期第17周培优试卷试题

八年级数学下学期第17周培优试卷试题

昭阳湖初级中学八年级数学第十七周培优试卷班级: 姓名: 学号: 得分: 一、选择填空〔每一小题10分〕1、如图,AB 是半圆O 的直径,AC=AD,OC=2, ∠CAB=300, 那么点O 到CD 的间隔 OE= .2、如图,在△ABC 中,AB =AC =15,BC =18,点D 为BC 边上一动点〔不与点B 重合〕,以D 为圆心,DC 的长为半径作⊙D ;当⊙D 与AB 边相切时,BD 的长为_________.3、如图,⊙P 在第一象限,半径为2.动点A 沿着⊙P 运动一周,在点A 运动的同时,作点A 关于原点O 的对称点B ,再以AB 为边作等边三角形△ABC ,点C 在第二象限,点C 随点A运动所形成的图形的面积为4、如图在平面直角坐标系中,)1,0(A ,)0,3(B -,C 〔3,0〕,以点C 为圆心,半径为1作⊙C,将⊙C 沿x 轴向左平移, 在平移的过程中,当⊙C 与ABO ∆的一边所在的直线相切时, 平移的间隔 为 .5、如图,⊙O 的直径为10cm ,弦AB 为8cm , P 是弦AB 上一点,假设OP 的长是整数,那么满足条件的点P 有〔 )A. 2 个B. 3 个C. 4 个D. 5 个6、如图,在ABC △中,AB=15,AC=12,BC=9,经过点C 且与边AB 相切的动圆与CB 、CAAB〔2题图〕DC〔3题〕分别相交于点E 、F ,那么线段EF 长度的最小值是 A .512 B .536 C .215D .8〔第5题图〕 〔第6题图〕 〔第7题图〕 7、如图边长为12m 的正方形池塘的周围是草地,池塘边A, B, C, D 处各有一棵树,且AB=BC=CD=3m ,现用长4m 的绳子将一头羊拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在〔 〕A. A 处B. B 处C. C 处D. D 处二、解答题〔每一小题15分〕8、:△ABC 内接于⊙O ,AB =AC ,D 是BC ︵一点,E 是DB 延长线上一点,AE =AD . 〔1〕如图1,求证:BE =CD ;〔2〕如图2,假设AB =2,∠BAC =90°,BD ︵ = 1 2 CD ︵,求阴影局部的面积.EF AB CABCDEOAEBDO图1图29、如图,△ABC内接于⊙O,AD⊥BC于D,AE是⊙O的直径,BC平分∠ABE交AE于F,EG⊥BC好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。

2022年最新沪科版八年级数学下册第17章 一元二次方程综合练习试题(含答案及详细解析)

2022年最新沪科版八年级数学下册第17章 一元二次方程综合练习试题(含答案及详细解析)

八年级数学下册第17章 一元二次方程综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的两边长是4和6,第三边的长是方程(x ﹣3)2=4的根,则此三角形的周长为( )A .17B .11C .15D .11或152、下列方程中,是一元二次方程的个数有( )(12+2x +1=0;(2)21x +1x+2=0;(3)x 2-2x +1=0;(4)(a -1)x 2+bx +c =0;(5)x 2+x =4-x 2.A .2个B .3个C .4个D .5个 3、方程2280x x +-=的两个根为( )A .124,2x x =-=-B .122,4x x =-=C .122,4x x ==D .124,2=-=x x4、下列方程,哪个是关于x 的一元二次方程( )A .20ax bx c ++=B .2310y y -+=C .223x x -=D .222(1)24x x x -=+5、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x ,根据题意,可列方程A .128(1 - x 2)= 88B .88(1 + x )2 = 128C .128(1 - 2x )= 88D .128(1 - x )2 = 886、用配方法解方程x 2﹣6x ﹣1=0时,配方结果正确的是( )A .(x ﹣3)2=10B .(x ﹣3)2=8C .(x ﹣6)2=10D .(x ﹣3)2=17、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x ,则x 满足的方程是( )A .()()211011x +-=%B .()()211011x -+=%C .()()110121x -+=%D .()()110121x +-=% 8、方程()2x x x -=的根为( )A .0x =B .12x =,20x =C .3x =D .10x =,23x =9、新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .x +x (1+x )=100B .1+x +x 2=100C .1+x +x (1+x )=100D .x (1+x )=10010、已知关于x 的一元二次方程x 2﹣kx +k ﹣3=0的两个实数根分别为x 1,x 2,且x 12+x 22=5,则k 的值是( )A .﹣2B .2C .﹣1D .1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某药品经过两次降价,每瓶零售价由100元降为81元,若设平均每次降价的百分率为x ,则由题意可列方程为 ________________,可得x =____.2、某商品由于连续两次降低成本,使成本比原来降低了36%,则平均每次降低成本_______(填百分数).3、若关于x 的一元二次方程x 2﹣m =0的一个解为3,则m 的值为___.4、关于x 的一元二次方程()21220a x x -+-=有两个不相等的实数根,则a 的值可以是______.(填一个即可)5、若关于x 的一元二次方程x 2-2x +m =0有一个根为1,则m 的值为_______.三、解答题(5小题,每小题10分,共计50分)1、解方程:(y ﹣2)(1+3y )=6.2、为满足春节市场需求,某商场在节前购进大批某品牌童装,该品牌童装若每件盈利40元,平均每天可售出20件,经调查发现,若每件童装降价1元,商场平均每天可多售出2件,若商场希望该品牌童装日盈利为1200元,同时为了尽量减少库存,请问该童装应降价多少元最合适?3、解下列方程:(1)2280x x --= (2)()()211x x -=-4、已知关于x 的一元二次方程2(2)10x m x m +-+-=.(1)求证:方程总有两个实数根;(2)若0m <,且此方程的两个实数根的差为3,求m 的值.5、因国际马拉松赛事即将在某市举行,某商场预计销售一种印有该市设计的马拉松图标的T 恤,已知这种T 恤的进价为40元一件.经市场调查,当售价为60元时,每天大约可卖出300件;售价每降低1元,每天可多卖出20件.在鼓励大量销售的前提下,商场还想获得每天6080元的利润,问应将这种T 恤的销售单价定为多少元?-参考答案-一、单选题1、C【分析】先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.【详解】解:(x ﹣3)2=4,x ﹣3=±2,解得x 1=5,x 2=1.若x =5,则三角形的三边分别为4,5,6,其周长为4+5+6=15;若x =1时,6﹣4=2>1,不能构成三角形,则此三角形的周长是15.故选:C .【点睛】本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键.2、B【分析】根据一元二次方程的定义(只含有一个未知数,且未知数的最高次数为二次的整式方程,且二次项系数不为0)依次进行判断即可.【详解】解:(12210x ++=是一元二次方程;(2)21120x x ++=不是一元二次方程;(3)2210x x +=-是一元二次方程;(4)()210a x bx c -++=,1a -的值不确定,不是一元二次方程;(5)224x x x +=-是一元二次方程,共3个,故选:B .【点睛】题目主要考查一元二次方的定义,深刻理解这个定义是解题关键.3、D【分析】十字交叉相乘进行因式分解,各因式值为0,求解即可.【详解】解:2280x x +-=()()240x x -+=20x -=,40x +=解得1242x x =-=,故选D .【点睛】本题考查了解一元二次方程.解题的关键在于正确的进行因式分解.4、C【分析】关于x 的一元二次方程中,未知数为x ,最高次幂为2,平方项系数不为0.【详解】解:A中a的值未知,故不符合题意;B是关于y的一元二次方程,故不符合题意‘C是关于x的一元二次方程,故符合题意;D中最高次幂为1,故不符合要求;故选C.【点睛】本题考查了一元二次方程的特征.解题的关键明确方程中的元与次.5、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:128(1-x)2=88.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6、A【分析】先把常数项移到方程右边,再把方程两边加上9,然后把方程左边写成完全平方形式即可.【详解】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,∴(x ﹣3)2=10.故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.7、A【分析】股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x 表示每天下跌的百分率,从而有110%•(1-x )2=1,这样便可找出正确选项.【详解】设x 为平均每天下跌的百分率,则:(1+10%)•(1-x )2=1;故选:A .【点睛】考查对股票的涨停和跌停概念的理解,知道股票下跌x 后,变成原来价格的(1-x )倍.8、D【分析】首先移项,然后提取公因式x ,即可得到0(1)2x x --=,则可得到两个一次方程:0x =或30x -=,继而求得答案.【详解】∵()2x x x -=,∴()20x x x --=,即0x =或30x -=,解得:10x =或23x =.故选:D .【点睛】此题考查了因式分解法解一元二次方程.此题比较简单,解题的关键是找到公因式x ,利用提取公因式法求解.9、C【分析】设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 人,第二轮传染了x (1+x )人,根据经过两轮传染后有100患病,即可得出关于x 的一元二次方程,此题得解.【详解】解:设每轮传染中平均一个人传染了x 个人,则第一轮传染了x 人,第二轮传染了x (1+x )人, 依题意得:1+x +x (1+x )=100.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10、D【分析】用根与系数的关系可用k 表示出已知等式,可求得k 的值.【详解】解:∵关于x 的一元二次方程x 2﹣kx +k ﹣3=0的两个实数根分别为x 1,x 2,∴x 1+x 2=k ,x 1x 2=k ﹣3,∵x 12+x 22=5,∴(x 1+x 2)2﹣2x 1x 2=5,∴k 2﹣2(k ﹣3)=5,整理得出:k 2﹣2k +1=0,解得:k 1=k 2=1,故选:D .【点睛】本题考查一元二次方程根根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.二、填空题1、100(1﹣x )2=81 10%【分析】设该药品平均每次降价的百分率为x ,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x ),第二次后的价格是100(1﹣x )2,据此即可列方程求解.【详解】解:根据题意得:100(1﹣x )2=81,解得:x =0.1=10%或x =1.1(舍去),故答案为:100(1﹣x )2=81,10%.【点睛】本题考查一元二次方程解降价的百分率问题,掌握一元二次方程解降价的百分率问题的方法与步骤是解题关键.2、20%【分析】利用等量关系成本(1⨯-降低率)2136%=-,设出未知数,把相关数值代入即可求解.【详解】解:设原来的成本为1,平均每次降低x ,由题意得2(1)136%x -=-解得:10.2x =,2 1.8x =(不合题意,舍去)故答案是:20%.【点睛】本题考查一元二次方程的实际运用,解题的关键是掌握平均变化率的方法:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.3、9【分析】根据一元二次方程的解定义,代入即可求得m 的值.【详解】解:把x =3代入x 2﹣m =0得9﹣m =0,解得m =9.故答案为9.【点睛】本题考查了一元二次方程的解,掌握一元二次方程解的定义是解题的关键.一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.4、0【分析】根据根的判别式确定字母的取值范围,即可写出答案.【详解】解:由题意可知:Δ=22﹣4(1﹣a )×(﹣2)=-8a +12>0,∴a <1.5,∵1﹣a ≠0,∴a <1.5且a ≠1,故答案为:0.(答案不唯一)【点睛】本题考查一元二次方程的根的判别式,解题的关键是熟练运用一元二次方程的根的判别式,确定字母的取值范围.5、1【分析】根据关于x 的方程x 2-2x +m =0的一个根是1,将x =1代入可以得到m 的值,本题得以解决.【详解】解:∵关于x 的方程x 2-2x +m =0的一个根是1,∴1-2+m =0,解得m =1,故答案为:1.【点睛】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.三、解答题1、128,13y y ==-.【分析】先将方程化成一般形式,再利用因式分解法解一元二次方程即可得.【详解】解:(2)(13)6y y -+=化成一般形式为23580y y --=,因式分解,得(38)(1)0y y -+=,380y -=或10y +=,83y =或1y =-, 故方程的解为128,13y y ==-.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.2、该童装应每件降价20元最合适【分析】利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润,列出方程解答即可.【详解】解:设该童装应每件降价x 元,依题意得:()()402021200x x -+=化简得:2302000x x -+=解得:110x =,220x =∵要尽量减少库存,∴110x =舍去答:该童装应每件降价20元最合适.【点睛】本题考查了一元二次方程的应用,解题的关键是掌握:平均每天售出的件数×每件盈利=每天销售的利润.3、(1)122,4x x =-=;(2)1212x x ==,【分析】(1)运用十字相乘法进行因式分解,然后求解一元二次方程即可.(2)运用提公因式法进行因式分解,然后求解一元二次方程即可.【详解】(1)解:2280x x --=(4)(2)0x x -+=解得:12x =-,24x =.(2)解:()()211x x -=-(11)(1)0x x ---=(2)(1)0x x --= 解得:11x =,22x =.【点睛】 本题主要是考查了因式分解求解一元二次方程,熟练掌握各类因式分解的方法,是求解该题的关键.4、(1)见解析;(2)3m =-【分析】(1)证明一元二次方程的判别式大于等于零即可;(2)用m 表示出方程的两个根,比较大小后,作差计算即可.【详解】(1)证明:∵一元二次方程2(2)10x m x m +-+-=,∴()()2241m m ∆=---=24444m m m -+-+=2m .∵20m ≥,∴0∆≥.∴ 该方程总有两个实数根.(2)解:∵一元二次方程2(2)10x m x m +-+-=,解方程,得11x =-,21x m =-.∵ 0m <,∴ 11m ->-.∵该方程的两个实数根的差为3,∴ 1(1)3m ---=.∴3m =-.【点睛】本题考查了一元二次方程根的判别式,方程的解法,熟练掌握判别式,并灵活运用实数的非负性是解题的关键.5、应将这种T 恤的销售单价定为56元/件.【分析】设应将这种T 恤的销售单价定为x 元/件,则每天大约可卖出[300+20(60-x )]件,根据总利润=每件的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设应将这种T 恤的销售单价定为x 元/件,则每天大约可卖出[300+20(60-x )]件,根据题意得:(x -40)[300+20(60-x )]=6080,整理得:x2-115x+3304=0,解得:x1=56,x2=59.∵鼓励大量销售,∴x=56.答:应将这种T恤的销售单价定为56元/件.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省无锡市宜兴外国语学校八年级(下)第17周周测数学试卷一.选择题1.在3.14、、﹣、、π、0.2020020002这六个数中,无理数有()A.1个B.2个C.3个D.4个2.下列命题中,正确的是()A.有理数和数轴上的点一一对应B.等腰三角形的对称轴是它的顶角平分线C.全等的两个图形一定成轴对称D.有理数和无理数统称为实数3.已知点A(a,2014)与点B(2015,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.34.在直线y=x+上且到x轴或y轴距离为1的点有()个.A.1 B.2 C.3 D.45.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°6.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P 从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.7.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正确的个数是()A.1 B.2 C.3 D.4二.填空题8.16的算术平方根是.9.用四舍五入法把9.456精确到百分位,得到的近似值是.10.等腰三角形的一个角是80°,则它的底角是.11.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.12.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.13.如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB= °.14.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式ax﹣3<3x+b<0的解集是.16.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.三、解答题(共5题,共45分)17.+|1﹣|﹣﹣(π﹣1)0.20.解方程:(x﹣1)3+27=0.21.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.22.△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.23.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.24.对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)令P0(2,﹣3),O为坐标原点,则d(O,P0)= ;(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(3)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.若P(a,﹣3)到直线y=x+1的直角距离为6,求a的值.2015-2016学年江苏省无锡市宜兴外国语学校八年级(下)第17周周测数学试卷参考答案与试题解析一.选择题1.在3.14、、﹣、、π、0.2020020002这六个数中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数;立方根.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣、π是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列命题中,正确的是()A.有理数和数轴上的点一一对应B.等腰三角形的对称轴是它的顶角平分线C.全等的两个图形一定成轴对称D.有理数和无理数统称为实数【考点】命题与定理.【分析】根据实数和数轴上的点一一对应对A进行判断;根据对称轴的定义对B进行判断;根据轴对称的定义对C进行判断;根据实数的分类对D进行判断.【解答】解:A、实数和数轴上的点一一对应,所以A选项错误;B、等腰三角形的对称轴是它的顶角的平分线所在的直线,所以B选项错误;C、全等的两个图形不一定成轴对称,所以C选项错误;D、有理数和无理数统称为实数,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.已知点A(a,2014)与点B(2015,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得a、b的值,再根据有理数的加法,可得答案.【解答】解:由点A(a,2014)与点B(2015,b)关于x轴对称,得a=2015,b=﹣2014,a+b=2015﹣2014=1,故选:B.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.在直线y=x+上且到x轴或y轴距离为1的点有()个.A.1 B.2 C.3 D.4【考点】一次函数的性质.【分析】由题可知,把x=±1,y=±1分别代入直线方程,即可求得点的个数.【解答】解:根据题意,得:把x=±1分别代入,得:y=1或0,把y=±1分别代入,得x=1或﹣3,故满足条件的点有(1,1)或(﹣1,0)或(﹣3,﹣1),共3个.故选C.【点评】注意距离是坐标的绝对值,故坐标要分情况讨论.5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC ≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P 从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】求出CE的长,然后分①点P在AD上时,利用三角形的面积公式列式得到y与x 的函数关系;②点P在CD上时,根据S△APE=S梯形AECD﹣S△ADP﹣S△CEP列式整理得到y与x 的关系式;③点P在CE上时,利用三角形的面积公式列式得到y与x的关系式,然后选择答案即可.【解答】解:∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵点E是BC边上靠近点B的三等分点,∴CE=×3=2,①点P在AD上时,△APE的面积y=x2=x(0≤x≤3),②点P在CD上时,S△APE=S梯形AECD﹣S△ADP﹣S△CEP,=(2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+﹣5+x,=﹣x+,∴y=﹣x+(3<x≤5),③点P在CE上时,S△APE=×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故选:A.【点评】本题考查了动点问题函数图象,读懂题目信息,根据点P的位置的不同分三段列式求出y与x的关系式是解题的关键.7.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正确的个数是()A.1 B.2 C.3 D.4【考点】等腰三角形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②证明∠PO C=60°且OP=OC,即可证得△OPC是等边三角形;③首先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.【解答】解:如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故②正确;如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;如图3,过点C作CH⊥AB于H,∵∠PAC=∠DAC=60°,AD⊥BC,∴CH=CD,∴S△ABC=ABCH,S四边形AOCP=S△ACP+S△AOC=APCH+OACD=APCH+OACH=CH(AP+OA)=CHAC,∴S△ABC=S四边形AOCP;故④正确.故选D.【点评】本题主要考查了等腰三角形的判定与性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.二.填空题8.16的算术平方根是 4 .【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.9.用四舍五入法把9.456精确到百分位,得到的近似值是9.46 .【考点】近似数和有效数字.【分析】把千分位上的数字6进行四舍五入即可.【解答】解:9.456≈9.46(精确到百分位).故答案为9.46.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.10.等腰三角形的一个角是80°,则它的底角是50°或80°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是80°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:由题意知,分两种情况:(1)当这个80°的角为顶角时,则底角=(180°﹣80°)÷2=50°;(2)当这个80°的角为底角时,则另一底角也为80°.故答案为:50°或80°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.11.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为y=3x+2 .【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为y=3x+2.故答案为:y=3x+2.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.12.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为 2.5 .【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=AB即可.【解答】解:∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB==5,∵CD是△ABC中线,∴CD=AB=×5=2.5,故答案为:2.5.【点评】本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=AB是解此题的关键.13.如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB= 112 °.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠C=∠D,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△OAD≌△OBC,∴∠C=∠D=20°,在△AOD中,∠CAE=∠D+∠O=20°+72°=92°,在△ACE中,∠AEB=∠C+∠CAE=20°+92°=112°.故答案为:112.【点评】本题考查了全等三角形对应角相等,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.14.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为 4 .【考点】翻折变换(折叠问题).【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BND中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故答案为:4.【点评】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.15.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式ax﹣3<3x+b<0的解集是﹣2<x<﹣.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法把(﹣2,﹣5)代入y=3x+b中可得b的值,进而得到函数关系式,再求出y=3x+b与x轴的交点坐标,利用图象写出不等式ax﹣3<3x+b<0的解集即可.【解答】解:∵y=3x+b经过(﹣2,﹣5),∴﹣5=﹣6+b,解得:b=1,∴函数关系式为y=3x+1,当y=0时,3x+1=0,x=﹣,根据图象可得ax﹣3<3x+b<0的解集是﹣2<x<﹣,故答案为:﹣2<x<﹣.【点评】此题主要考查了一元一次不等式与一次函数的关系,关键是能从图象中得到正确信息.16.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形.【分析】将△ABM逆时针旋转90°得到△ACF,连接NF,由条件可以得出△NCF为直角三角形,利用勾股定理就可以求出NF,通过证明三角形全等就可以MN=NF,求出NF即可.【解答】解:将△AMB逆时针旋转90°到△ACF,连接NF,∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,∵△ABC是等腰直角三角形,AB=AC,∴∠B=∠ACB=45°,∠BAC=90°,∵∠MAN=45°,∴∠NAF=∠1+∠3=∠1+∠2=90°﹣45°=45°=∠NAF,在△MAN和△FAN中∴△MAN≌△FAN,∴MN=NF,∵∠ACF=∠B=45°,∠ACB=45°,∴∠FCN=90°,∵CF=BM=1,CN=3,∴在Rt△CFN中,由勾股定理得:MN=NF==,故答案为:.【点评】本题考查了旋转的性质的运用,勾股定理的运用,全等三角形的判定与性质,能正确作出辅助线是解此题的关键,难度适中.三、解答题(共5题,共45分)17.+|1﹣|﹣﹣(π﹣1)0.【考点】实数的运算;零指数幂.【分析】利用二次(三次)根式的性质,绝对值的性质,零次幂的意义即可求出答案.【解答】解:原式=3+﹣1﹣2﹣1=﹣1【点评】本题考查实数运算,属于基础题型.20.解方程:(x﹣1)3+27=0.【考点】立方根.【分析】把(x﹣1)看作一个整体并根据立方根的定义求出其值,再求解即可.【解答】解:(x﹣1)3+27=0,(x﹣1)3=﹣27,x﹣1=﹣3,x=﹣2.【点评】本题考查了利用立方根的定义求未知数的值,整体思想的利用是解题的关键.21.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【考点】线段垂直平分线的性质;全等三角形的判定与性质.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.22.△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.【考点】作图-平移变换;轴对称-最短路线问题.【分析】(1)将A、B、C分别向左平移5个单位,顺次连接即可得到△A1B1C1;(2)AB长度固定,只要满足PA+PB最小即可,根据轴对称的性质得到点P的位置,结合直角坐标系可得点P的坐标.【解答】解:(1)如图所示:.(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,点P(2,0).【点评】本题考查了平移作图及轴对称的性质,解答本题的关键是掌握平移变换的特点,难度一般.23.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.【考点】一次函数综合题.【分析】(1)对于直线解析式,令x与y为0,分别求出y与x的值,确定出A与B的坐标即可;(2)过点D作DH⊥x轴于H,DG⊥y轴于G,由D与A的坐标确定出DG与AG的长,利用勾股定理求出AD的长,再求出AB与BD的长,利用勾股定理的逆定理判断即可得证;(3)作出线段AD的垂直平分线,交x轴于点C,连接AC,DC,利用垂直平分线定理得到AC=DC,设C坐标为(x,0),利用两点间的距离公式列出关于x的方程,求出方程的解得到x的值,即可确定出C的坐标.【解答】解:(1)对于直线解析式y=﹣x+4,令x=0,得到y=4,令y=0,得到x=3,则A(0,4),B(3,0);(2)过点D作DH⊥x轴于H,DG⊥y轴于G,∵D(11,6),A(0,4),∴DG=11,AG=2,由勾股定理得:AD==,∵AB2=42+32=25,BD2=82+62=100,∴AB2+BD2=AD2,则△ABD是直角三角形;(3)作AD的垂直平分线,交x轴于点C,连接AC,DC,此时AC=DC,设OC长为x,由两点间的距离公式得:x2+42=(11﹣x)2+62,解得:x=,则C(,0).【点评】此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,勾股定理,勾股定理的逆定理,以及等腰三角形的性质,熟练掌握定理及性质是解本题的关键.24.对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).(1)令P0(2,﹣3),O为坐标原点,则d(O,P0)= 5 ;(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;(3)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.若P(a,﹣3)到直线y=x+1的直角距离为6,求a的值.【考点】一次函数综合题.【分析】(1)由P0与原点O的坐标,利用题中的新定义计算即可得到结果;(2)利用题中的新定义列出x与y的关系式,画出相应的图象即可;(3)设直线y=x+1上一点Q(x,x+1),表示出d(P,Q),由P(a,﹣3)到直线y=x+1的直角距离为6列出方程,分类讨论a与x的正负,利用绝对值的代数意义化简,求出a的值即可.【解答】解:(1)根据题意得:d(O,P0)=|2﹣0|+|﹣3﹣0|=2+3=5;故答案为:5;(2)由题意,得|x|+|y|=1,所有符合条件的点P组成的图形如图所示;(3)∵P(a,﹣3)到直线y=x+1的“直角”距离为6,∴设直线y=x+1上一点Q(x,x+1),则d(P,Q)=6,∴|a﹣x|+|﹣3﹣x﹣1|=6,即|a﹣x|+|x+4|=6,当a﹣x≥0,x≥﹣4时,原式=a﹣x+x+4=6,解得a=2;当a﹣x<0,x<﹣4时,原式=x﹣a﹣x﹣4=6,解得a=﹣10,综上,a的值为2或﹣10.【点评】此题属于一次函数综合题,涉及的知识有:绝对值的代数意义,利用了分类讨论的思想,弄清题中的新定义是解本题的关键.。

相关文档
最新文档