2018届人教A版 立体几何中的向量方法(一)_证明平行与垂直 (理) 检测卷

合集下载

立体几何中的向量方法平行与垂直的证明

立体几何中的向量方法平行与垂直的证明
平面的法向量不唯一
求平面法向量的方法:
p, q为 平 面内 不 共 线 的 两 个 向 量 ,设a ( x, y, z),
p a

0 ,

当的给
定x,
y,
z中 一 个
的值,
即可得
一个
法 向 量a.
q a 0
求平面的法向量
1.已 知 平 面经 过 三 点A(1,2,3), B(2,0,1),C(3,2,0), 求 平 面的 一 个 法 向 量.
2.已 知 点A(a,0,0), B(0, b,0),C(0,0, c), 求 平 面ABC的 一 个 法 向 量.
3.设u, v分 别 是 平 面 , 的 法 向 量 , 判 断 下 列 平面 ,
的位置关系: (1)u (1,1,2),v (3,2, 1 );(2)u (2,0,4),v (1,0,2);
9、已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形, 且∠C1CB = ∠C1CD = ∠BCD,
(1)求证: CC1⊥BD
(2)CD/ CC1=?时A1C ⊥平面C1BD
B1
A1
A1C ⊥平面C1BD 与
C1
∠C1CB = ∠C1CD =
D1
∠BCD的值无关,可用恒
成立得比值为1的结果
n m n // m //
证明平行问题
4.正方体ABCD A1B1C1D1中 (1)M,N分别是C1C,B1C1的中点,求证:MN // 平面A1BD. (2)证明:平面A1BD // 平面CB1D1. 5.在平行六面体ABCD A1B1C1D1中,E, F,G分别为A1D1, D1D, D1C1的中点,求证:平面EFG// 平面AB1C.

第八章 8.7立体几何中的向量方法(一)——证明平行与垂直

第八章  8.7立体几何中的向量方法(一)——证明平行与垂直

§8.7 立体几何中的向量方法(一)——证明平行与垂直1.两个重要向量2.空间位置关系的向量表示概念方法微思考1.直线的方向向量如何确定?提示 l 是空间一直线,A ,B 是l 上任意两点,则AB →及与AB →平行的非零向量均为直线l 的方向向量.2.如何确定平面的法向量?提示 设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × ) 题组二 教材改编2.[P104T2]设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为__________;当v =(4,-4,-10)时,α与β的位置关系为________.答案 α⊥β α∥β 解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v =(4,-4,-10)时,v =-2u ⇒α∥β.3.[P111T3]如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则A (0,0,0),M ⎝⎛⎭⎪⎫0,1,12, O ⎝ ⎛⎭⎪⎫12,12,0,N ⎝ ⎛⎭⎪⎫12,0,1,AM →·ON →=⎝ ⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,-12,1=0,∴ON 与AM 垂直. 题组三 易错自纠4.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( ) A .l ∥α B .l ⊥α C .l 与α斜交 D .l ⊂α或l ∥α答案 B解析 由a =-n 知,n ∥a ,则有l ⊥α,故选B.5.已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不对 答案 C解析 ∵n 1≠λn 2,且n 1·n 2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β既不平行,也不垂直.6.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C.⎝ ⎛⎭⎪⎫-33,-33,-33 D.⎝⎛⎭⎪⎫33,33,-33 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量,AB →=(-1,1,0),AC →=(-1,0,1), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.题型一 利用空间向量证明平行问题例1 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .证明 ∵平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD , ∴AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究若本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC ,∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC .思维升华 利用空间向量证明平行的方法跟踪训练1 如图,在三棱锥PABC 中,PA ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.求证:MN ∥平面BDE .证明 如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.由题意,可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的一个法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可得n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE .题型二 利用空间向量证明垂直问题命题点1 证明线面垂直例2 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 且平面ABC ∩平面BCC 1B 1=BC ,AO ⊂平面ABC , 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB ,OO 1,OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的一个法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,即⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD . 命题点2 证明面面垂直例3 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB . 求证:平面BCE ⊥平面CDE .证明 设AD =DE =2AB =2a ,以A 为原点,分别以AC ,AB 所在直线为x 轴,z 轴,以过点A 垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),C (2a ,0,0),B (0,0,a ),D (a ,3a ,0),E (a ,3a ,2a ).所以BE →=(a ,3a ,a ),BC →=(2a ,0,-a ),CD →=(-a ,3a ,0),ED →=(0,0,-2a ). 设平面BCE 的法向量为n 1=(x 1,y 1,z 1), 由n 1·BE →=0,n 1·BC →=0可得⎩⎨⎧ ax 1+3ay 1+az 1=0,2ax 1-az 1=0,即⎩⎨⎧x 1+3y 1+z 1=0,2x 1-z 1=0.令z 1=2,可得n 1=(1,-3,2). 设平面CDE 的法向量为n 2=(x 2,y 2,z 2), 由n 2·CD →=0,n 2·ED →=0可得⎩⎨⎧ -ax 2+3ay 2=0,-2az 2=0,即⎩⎨⎧-x 2+3y 2=0,z 2=0.令y 2=1,可得n 2=(3,1,0).因为n 1·n 2=1×3+1×(-3)+2×0=0. 所以n 1⊥n 2,所以平面BCE ⊥平面CDE .思维升华 利用空间向量证明垂直的方法跟踪训练2 如图所示,已知四棱锥P —ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)PA ⊥BD ;(2)平面PAD ⊥平面PAB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, 平面PBC ∩底面ABCD =BC ,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO =3,∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3), ∴BD →=(-2,-1,0),PA →=(1,-2,-3). ∵BD →·PA →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴PA →⊥BD →, ∴PA ⊥BD .(2)取PA 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·PA →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥PA →,即DM ⊥PA .又∵PA ∩PB =P ,PA ,PB ⊂平面PAB , ∴DM ⊥平面PAB .∵DM ⊂平面PAD ,∴平面PAD ⊥平面PAB . 题型三 利用空间向量解决探索性问题例4 (2019·林州模拟)如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,以D 为原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则需FG →·CB →=0,且FG →·CP →=0,由FG →·CB →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 为AD 的中点.思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证;另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.跟踪训练3 如图所示,四棱锥P —ABCD 的底面是边长为1的正方形,PA ⊥CD ,PA =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:PA ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,请说明理由.(1)证明 ∵PA =AD =1,PD =2, ∴PA 2+AD 2=PD 2,即PA ⊥AD .又PA ⊥CD ,AD ∩CD =D ,AD ,CD ⊂平面ABCD , ∴PA ⊥平面ABCD .(2)解 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫0,23,13,AC →=(1,1,0),AE →=⎝ ⎛⎭⎪⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ) =(-λ,1-λ,λ),∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,1,1),则( ) A .l ∥αB .l ⊥αC .l ⊂α或l ∥αD .l 与α斜交答案 C解析 ∵a =(1,0,2),n =(-2,1,1), ∴a ·n =0,即a ⊥n , ∴l ∥α或l ⊂α.2.若a =(2,3,m ),b =(2n ,6,8),且a ,b 为共线向量,则m +n 的值为( ) A .7 B.52 C .6 D .8答案 C解析 由a ,b 为共线向量,知n ≠0且22n =36=m8,解得m =4,n =2,则m +n =6.故选C.3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0) D .P (3,-3,4) 答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内. 4.如图,F 是正方体ABCD —A 1B 1C 1D 1的棱CD 的中点,E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合 答案 A解析 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系(图略),设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),∵D 1F →·DE →=0×2+1×2-2z =0,∴z =1,∴B 1E =EB .5.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( )A .3B .4C .5D .6 答案 C解析 ∵α⊥β,∴u ·v =-2×6+2×(-4)+4t =0,∴t =5.6.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =______. 答案257解析 由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4,∴x +y =407-157=257.7.(2018·广州质检)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是______________. 答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0,即y =z , 由m ·AC →=0,得x -z =0,即x =z ,取x =1, ∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号) 答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确; 又AB ∩AD =A ,∴AP ⊥平面ABCD , ∴AP →是平面ABCD 的法向量,则③正确;∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.9.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和为________.答案 1解析 以D 1为原点,D 1A 1,D 1C 1,D 1D 所在直线分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x ,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1), ∴B 1E →=(x -1,0,1),FB →=(1,1,y ),∵B 1E ⊥平面ABF , ∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0,即x +y =1.10.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长度,DA ,DP ,DC 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz .由题意得Q (1,1,0),C (0,0,1),P (0,2,0), 则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC . 又DQ ∩DC =D ,DQ ,DC ⊂平面DCQ , ∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC , ∴平面PQC ⊥平面DCQ .11.如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点.(1)证明:AC ⊥BC 1; (2)证明:AC 1∥平面CDB 1.证明 因为直三棱柱ABC -A 1B 1C 1的底面边长分别为AC =3,BC =4,AB =5,所以△ABC 为直角三角形,AC ⊥BC .所以AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,直线CA ,CB ,CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则C (0,0,0),A (3,0,0),B (0,4,0),C 1(0,0,4),A 1(3,0,4),B 1(0,4,4),D ⎝ ⎛⎭⎪⎫32,2,0.(1)因为AC →=(-3,0,0),BC 1→=(0,-4,4), 所以AC →·BC 1→=0,所以AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE ,则E (0,2,2),DE →=⎝ ⎛⎭⎪⎫-32,0,2,AC 1→=(-3,0,4),所以DE →=12AC 1→,DE ∥AC 1.因为DE ⊂平面CDB 1,AC 1⊄平面CDB 1, 所以AC 1∥平面CDB 1.12.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意,知AA 1,AB ,AC 两两垂直,以A 为坐标原点,分别以AA 1,AB ,AC 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)由题意知AA 1⊥A 1B 1,AA 1⊥A 1C 1, 又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AA 1⊥平面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1), 所以MN →·AA 1→=0,即MN →⊥AA 1→. 又MN ⊄平面A 1B 1C 1, 故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1). 同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1). 因为n 1·n 2=2×0+1×1+(-1)×1=0, 所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C .13.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1) B.⎝⎛⎭⎪⎫23,23,1C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝⎛⎭⎪⎫24,24,1 答案 C解析 设AC 与BD 相交于O 点,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF , 平面ACEF ∩平面BDE =OE , ∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点. 在空间直角坐标系中,E (0,0,1),F (2,2,1). 由中点坐标公式,知点M 的坐标为⎝⎛⎭⎪⎫22,22,1. 14.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 以点C 1为坐标原点,分别以C 1B 1,C 1D 1,C 1C 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3, 则M ⎝ ⎛⎭⎪⎫a ,2a 3,a 3,N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a ,MN →=⎝ ⎛⎭⎪⎫-a3,0,2a 3.又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a ,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .15.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案72解析 以O 点为坐标原点,OB ,OS 所在直线分别为y 轴、z 轴,建立空间直角坐标系, 如图所示,则A (0,-1,0),B (0,1,0),S ()0,0,3,M ⎝ ⎛⎭⎪⎫0,0,32, 设P (x ,y ,0),∴AM →=⎝ ⎛⎭⎪⎫0,1,32,MP →=⎝ ⎛⎭⎪⎫x ,y ,-32,由AM →·MP →=y -34=0,得y =34,∴点P 的轨迹方程为y =34.根据圆的弦长公式,可得点P 形成的轨迹长度为21-⎝ ⎛⎭⎪⎫342=72. 16.如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系.设AB =a .则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a ,0,1),故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1.则B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0,所以B 1E →⊥AD 1→, 所以B 1E ⊥AD 1.(2)解 存在满足要求的点P , 假设在棱AA 1上存在一点P (0,0,z 0), 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0), 再设平面B 1AE 的一个法向量为n =(x ,y ,z ). AB 1→=(a ,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.因为n ⊥平面B 1AE ,所以n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0,取x =1,则y =-a2,z =-a ,则平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a2,-a .要使DP ∥平面B 1AE ,只要n ⊥DP →,即a 2-az 0=0,解得z 0=12.所以棱AA 1上存在点P ,满足DP ∥平面B 1AE ,此时AP =12.。

立体几何中的向量方法 ——证明平行与垂直

立体几何中的向量方法 ——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直【基础检测】1.思维辨析(在括号内打“√”或“×”). (1)直线的方向向量是唯一确定的.( )(2)若两直线的方向向量不平行,则两直线不平行.( ) (3)若两平面的法向量平行,则两平面平行或重合.( )(4)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1) B .(1,-1,1) C .⎝⎛⎭⎫-33,-33,-33 D .⎝⎛⎭⎫33,33,-33 3.已知直线l 的方向向量v =(1,2,3),平面α的法向量为u =(5,2,-3),则l 与α的位置关系是__ __.4.设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为__ _;当v =(4,-4,-10)时,α与β的位置关系为_ __.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是__ __.题型一 利用空间向量证明平行问题(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【例1】如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD=2,E,F,G分别是线段P A,PD,CD的中点.求证:PB∥平面EFG.题型二利用空间向量证明垂直问题证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明直线与直线垂直,只需要证明两条直线的方向向量垂直;证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【例2】如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC-A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.【例3】如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.题型三利用空间向量解决探索性问题对于“是否存在”型问题的探索方式有两种:一种是先根据条件作出判断,再进一步论证;另一种是利用空间向量,先假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.【例4】如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1.若存在,求出点P的位置,若不存在,请说明理由.【课堂练习】一、选择题1.若直线l ∥平面α,直线l 的方向向量为s ,平面α的法向量为n ,则下列结论可能正确的是( )A .s =(-1,0,2),n =(1,0,-1)B .s =(-1,0,1),n =(1,2,-1)C .s =(-1,1,1),n =(1,2,-1)D .s =(-1,1,1),n =(-2,2,2)2.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ⊥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,-1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)3.直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面α,则x =( )A .-2B .-2C .2D .±24.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,以CD ,CB ,CE 所在直线分别为x ,y ,z 轴建立空间直角坐标系,|AB |=2,|AF |=1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .⎝⎛⎭⎫23,23,1C .⎝⎛⎭⎫22,22,1D .⎝⎛⎭⎫24,24,15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC ,则( )A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交 D .EF 与BD 1异面6.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .斜交B .平行C .垂直D .不确定二、填空题7.若直线l 的方向向量e =(2,1,m ),平面α的法向量n =⎝⎛⎭⎫1,12,2,且l ⊥α, 则m = _ __.8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为__ __.9.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是__ __.三、解答题10.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为A 1B 1,B 1C 1,C 1D 1的中点.(1)求证:AG ∥平面BEF ;(2)试在棱长BB 1上找一点M ,使DM ⊥平面BEF ,并证明你的结论.11.(2019·北京西城二模)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,AB ⊥BC ,AB =2CD =2BC ,EA ⊥EB .(1)求证:AB ⊥DE ;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上是否存在点F ,使EC ∥平面FBD ?若存在,求出EFEA ;若不存在,请说明理由.。

45立体几何中的向量方法(Ⅰ)——证明平行与垂直

45立体几何中的向量方法(Ⅰ)——证明平行与垂直

第45课时 立体几何中的向量方法(Ⅰ)——证明平行与垂直编者:刘智娟 审核:陈彩余 第一部分 预习案 一、学习目标1. 理解直线的方向向量与平面的法向量;能用向量语言表述直线与直线、直线与平面、平面与平面的垂直和平行关系2. 了解向量方法在研究立体几何问题中的应用二、知识回顾1.直线的方向向量与平面的法向量(1)直线l 上的向量e (e ≠0)以及与e 共线的 向量叫做直线l 的方向向量.(2)如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时,我们把向量n 叫做平面α的法向量.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为1v 和2v ,则l 1∥l 2(或l 1与l 2重合)⇔ 1v ∥2v(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量1v 和2v ,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使=x 1v +y 2v(3)设直线l 的方向向量为,平面α的法向量为,则l ∥α或l ⊂α⇔⊥.(4)设平面α和β的法向量分别为1u ,2u ,则α∥β⇔1u ∥2u .3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为1v 和2v ,则l 1⊥l 2⇔1v ⊥2v ⇔1v ·2v =0. (2)设直线l 的方向向量为,平面α的法向量为,则l ⊥α⇔∥(3)设平面α和β的法向量分别为1u 和2u ,则α⊥β⇔1u ⊥2u ⇔1u ·2u =0. 三、基础训练1.两条不重合直线l 1和l 2的方向向量分别为1v =(1,0,-1),2v =(-2,0,2),则l 1与l 2的位置关系是__________2.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.3.已知=(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的序号是________. ①∥c ,b ∥c ; ②∥b ,⊥c ; ③∥,⊥; ④以上都不对.班级_________学号_________姓名_________4.已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的单位法向量为____________.5.若平面α、β的法向量分别为1v =(2,-3,5),2v =(-3,1,-4),则α、β的位置关系为____________.第二部分 探究案探究一 利用空间向量证明平行问题问题1、如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .探究二 利用空间向量证明垂直问题问题2、如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .探究三利用空间向量解决探索性问题问题3、如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.问题4、如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC.若存在,求SE∶EC的值;若不存在,试说明理由.我的收获第三部分训练案见附页。

( 人教A版)2-1:3.2立体几何中的向量方法第1课时空间向量与平行关系课件 (共31张PPT)

( 人教A版)2-1:3.2立体几何中的向量方法第1课时空间向量与平行关系课件 (共31张PPT)

解析:(1)∵a=(1,-3,-1),b=(8,2,2) ∴a·b=8-6-2=0,∴a⊥b,∴l1⊥l2. (2)∵u=(1,3,0),v=(-3,-9,0), ∴v=-3u,∴u∥v,∴α∥β. (3)∵a=(1,-4,-3),u=(2,0,3), ∴a与u既不共线,也不垂直, ∴l与平面α斜交.
[证明] 如图所示建立空间直角坐标系D-xyz,则有D(0,0,0), A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1), B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1).
(1)设n1=(x1,y1,z1)是平面ADE的法向量, 则n1⊥D→A,n1⊥A→E, 即nn11··DA→→EA==22yx11+=z01,=0,
设平面SCD的法向量为n=(1,y,z), 则n·D→C=(1,y,z)·(1,2,0)=1+2y=0, ∴y=-12. 又n·D→S=(1,y,z)·(-1,0,2)=-1+2z=0, ∴z=12. ∴n=1,-12,12即为平面SCD的一个法向量.
探究三 利用空间向量证明平行关系 [典例3] 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中 点,求证: (1)FC1∥平面ADE; (2)平面ADE∥平面B1C1F.
G→En=(x,y,z)是平面EFG的法向量,
n·G→E=0, 则n·G→F=0.
∴--2xx-+y+y+2zz==00,.
∴xy==zz., ∴n=(z,z,z),令z=1,此时n=(1,1,1), 所以平面EFG的一个法向量为(1,1,1).
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于没有路,你想知道将来要得到 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个门:一个是家门,成长的地方; 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己,只有战胜自己,才能战胜困难! 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺利的就忏悔,然后放下。“雁 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾;受得起打击;丢得起面 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲原则,坚持守底气;淡 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若一心想要事事求顺意, 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝。我们的梦想在哪里? 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊的宽道上!珍惜每一分 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的,不要感叹你失去或未得到; 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身处困境之人,不做苟且之事, 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光的心态,得失了无忧,来去都 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳光,才是永恒的美。意逐白云 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够用即可;累时,闲是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很多时候限制我们的,不是周遭 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。无论有多少委屈,一笑而泯之。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争,却有柴米之忧烦;世外桃源祥 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦荡,不为虚名所累;做事要头 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一点要求,多一点警醒。傲不可 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命得到升华洗礼,在自观中走向 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差距;表面上看是人脉的差距, 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同,心态决定命运。知恩感恩,是 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致, 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。知恩感恩,是很重要的一 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他这样一想、 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致,太阳就要 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平常心观不平常事,则事事平常。 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不仅要为成功而努力,更要为做 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。只有在我们不需 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不算事。和对自己有恶意的人绝 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失。不要试图给自己找任何借口, 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定要放下。活得轻松,任何事都 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有�

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。

3.2立体几何中的向量方法 第1课时 空间向量与平行关系 课件

3.2立体几何中的向量方法 第1课时 空间向量与平行关系 课件

研一研· 问题探究、课堂更高效
3.2 第1课时

(1)∵ a= (2,3,-1),b=(- 6,- 9,3) 1 ∴a=-3b,∴a∥b,∴l1∥l2.
(2)∵a=(-2,1,4),b=(6,3,3),∴a· b≠0 且 a≠kb(k∈R), ∴a,b 既不共线也不垂直,即 l1 与 l2 相交或异面. 1 (3)∵u=(1,-1,2),v=3,2,-2, ∴u· v=3-2-1=0,∴u⊥v,即 α⊥β. (4)∵u=(2, -3,4), v=(4, -2,1), ∴u· v≠0 且 u≠kv(k∈R), ∴u 与 v 既不共线也不垂直,即 α 和 β 相交但不垂直. (5)∵a=(0,-8,12),u=(0,2,-3), 1 ∴u=-4a,∴u∥a,即 l⊥α.
研一研· 问题探究、课堂更高效
3.2 第1课时
跟踪训练 2 用向量方法证明: 平面外一条直线与此平面内 的一条直线平行,则该直线与此平面平行. 已知:直线 l,m 和平面 α,其中 l⊄α,m⊂α,且 l∥m, 求证:l∥α.
证明 设直线 l,m 的方向向量分别为 a,b,平面 α 的 法向量分别为 u. 因为 l∥m,所以 a=kb,k∈R. 又因为 u⊥α,m⊂α,所以 u⊥b, 因此 u· b = 0, u· a= u· kb=0.所以 l∥α.
3.2 第1课时
探究点一 利用方向向量和法向量判定线面的位置关系 问题 1 对于一条确定的直线和一个确定的平面, 它的方向 向量及法向量有几个?
答案 一条直线的方向向量有无数多个,它们都是共线 向量;一个平面的法向量也有无数多个,它们也都是共 线向量.平面的法向量可看作平面的垂线的方向向量。
研一研· 问题探究、课堂更高效

18版:第7讲 立体几何中的向量方法(一)——证明平行与垂直(创新设计)

18版:第7讲 立体几何中的向量方法(一)——证明平行与垂直(创新设计)

第7讲 立体几何中的向量方法(一)——证明平行与垂直最新考纲 1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知 识 梳 理1.直线的方向向量和平面的法向量(1)直线的方向向量:给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 的参数方程.向量a 称为该直线的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示 直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2 n 1∥n 2⇔n 1=λn 2 l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m l ∥α n ⊥m ⇔n ·m =0 l ⊥αn ∥m ⇔n =λm 平面α,β的法向量分别为n ,mα∥β n ∥m ⇔n =λm α⊥β n ⊥m ⇔n ·m =0诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)直线的方向向量是唯一确定的.( )(2)若两直线的方向向量不平行,则两直线不平行.( ) (3)若两平面的法向量平行,则两平面平行或重合.( )(4)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 答案 (1)× (2)√ (3)√ (4)×2.(教材改编)已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对解析 ∵n 1≠λn 2,且n 1·n 2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β不平行,也不垂直. 答案 C3.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( )A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33D.⎝ ⎛⎭⎪⎫33,33,-33解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎨⎧-x +y =0,-x +z =0,∴x =y =z .答案 C4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A (0,0,0),M ⎝ ⎛⎭⎪⎫0,1,12,O ⎝ ⎛⎭⎪⎫12,12,0,N ⎝ ⎛⎭⎪⎫12,0,1.AM →·ON →=⎝ ⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,-12,1=0,∴ON 与AM 垂直. 答案 垂直5.设直线l 的方向向量为a ,平面α的法向量为n =(2,2,4),若a =(1,1,2),则直线l 与平面α的位置关系为________;若a =(-1,-1,1),则直线l 与平面α的位置关系为________. 解析 当a =(1,1,2)时,a =12n ,则l ⊥α;当a =(-1,-1,1)时,a ·n =(-1,-1,1)·(2,2,4)=0,则l ∥α或l ⊂α. 答案 l ⊥α l ∥α或l ⊂α考点一 利用空间向量证明平行问题【例1】 如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系 O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0.又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF→=14CD →,设点F 坐标为(x ,y ,0),则 (x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0又由法一知PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0,∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一 ∴EF→=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EF →=0,n ·EG →=0,即⎩⎨⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, ∵PB→=(2,0,-2),∴PB →·n =0,∴n ⊥PB →, ∵PB ⊄面EFG ,∴PB ∥平面EFG .法二 PB→=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1).设PB →=sFE →+tFG →, 即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎨⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE→与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明: (1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM→·PB →=32×1+0×0+32×(-3)=0,∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB . ∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零. ②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →. 令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底, 则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c , m =λBA 1→+μBD →=⎝ ⎛⎭⎪⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ+12μa +μb +λc =4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证.法二 如图所示,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →, 故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .考点三 利用空间向量解决探索性问题【例3】 (2017·丹东调研)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD ,平面AA 1C 1C ∩平面ABCD =AC , A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD ,以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .规律方法 向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.【训练3】 在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 坐标;若不存在,试说明理由.(1)证明 由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a ,0).∵EF→·DC →=0,∴EF →⊥DC →,从而得EF ⊥CD . (2)解 假设存在满足条件的点G ,设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,故存在满足条件的点G ,且点G 为AD 的中点.[思想方法]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.[易错防范]1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学一轮复习 第七章 立体几何 课时达标44 立体几何中的向量方法(一)—证明平行与垂直 理[解密考纲]利用空间向量证明平行与垂直关系,常出现于选择、填空题中,或在解答题立体几何部分的第(1)问考查,难度中等或较小.一、选择题1.若直线l ∥平面α,直线l 的方向向量为s 、平面α的法向量为n ,则下列结论正确的是( C )A .s =(-1,0,2),n =(1,0,-1)B .s =(-1,0,1),n =(1,2,-1)C .s =(-1,1,1),n =(1,2,-1)D .s =(-1,1,1),n =(-2,2,2)解析:由已知需s ·n =0,逐个验证知,只有C 符合要求,故选C .2.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( D ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,-1) C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)解析:若l ∥α,则a ⊥n ,一一验证,可知选D.3.直线l 的方向向量s =(-1,1,1),平面α的法向量为n =(2,x 2+x ,-x ),若直线l ∥平面α,则x 的值为( D )A .-2B .- 2C . 2D .± 2解析:由已知得s ·n =0,故-1×2+1×(x 2+x )+1×(-x )=0,解得x =± 2. 4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,以CD ,CB ,CE 所在直线分别为x ,y ,z 轴建立空间直角坐标系,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( C )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1 C .⎝⎛⎭⎪⎫22,22,1 D .⎝⎛⎭⎪⎫24,24,1 解析:由已知得A (2,2,0),B (0,2,0),D (2,0,0),E (0,0,1),设M (x ,x,1). 则AM →=(x -2,x -2,1),BD →=(2,-2,0),BE →=(0,-2,1).设平面BDE的一个法向量为n =(a ,b ,c ).则⎩⎪⎨⎪⎧n ⊥BD →,n ⊥BE →,即⎩⎨⎧2a -2b =0,-2b +c =0.解得⎩⎨⎧a =b ,c =2b ,令b =1,则n =(1,1,2).又AM ∥平面BDE ,所以n ·AM →=0. 即2(x -2)+2=0,得x =22,所以M ⎝ ⎛⎭⎪⎫22,22,1. 5.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别在A 1D ,AC 上,且A 1E =23A 1D ,AF =13AC ,则( B )A .EF 至多与A 1D ,AC 之一垂直B .EF ⊥A 1D ,EF ⊥AC C .EF 与BD 1相交D .EF 与BD 1异面解析:以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,则A 1(1,0,1),D (0,0,0),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫13,0,13,F ⎝ ⎛⎭⎪⎫23,13,0,B (1,1,0),D 1(0,0,1),A 1D →=(-1,0,-1),AC →(-1,1,0),EF →=⎝ ⎛⎭⎪⎫13,13,-13,BD 1→=(-1,-1,1), EF →=-13BD 1→,A 1D →·EF →=AC →·EF →=0,从而EF ∥BD 1,EF ⊥A 1D ,EF ⊥AC ,故选B.6.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M=AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( B )A .斜交B .平行C .垂直D .不确定解析:建立如图所示的坐标系, 由于A 1M =AN =2a3,则M ⎝ ⎛⎭⎪⎫a ,2a 3,a 3,N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a ,MN →=⎝ ⎛⎭⎪⎫-a3,0,2a 3,又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→, 所以MN ∥平面BB 1C 1C ,故选B. 二、填空题7.若直线l 的方向向量e =(2,1,m ),平面α的法向量n =⎝ ⎛⎭⎪⎫1,12,2,且l ⊥α,则m =4.解析:因为l ⊥α,所以e ∥n ,即e =λn (λ≠0),亦即(2,1,m )=λ⎝ ⎛⎭⎪⎫1,12,2,所以⎩⎪⎨⎪⎧λ=2,m =2λ.则m =4.8.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为407,-157,4.解析:由已知得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3 x -1 +y -3z =0,解得⎩⎪⎨⎪⎧x =407,y =-157,z =4.9.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是平行.解析:由已知得,AB →=(0,1,-1),AC →=(1,0,-1),设平面α的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ⊥AB →,m ⊥AC →,得⎩⎪⎨⎪⎧y -z =0,x -z =0.得⎩⎪⎨⎪⎧x =z ,y =z ,令z =1,得m =(1,1,1).又n =(-1,-1,-1),所以m =-n , 即m ∥n ,所以α∥β. 三、解答题10.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,E ,F ,G 分别为A 1B 1,B 1C 1,C 1D 1的中点.(1)求证:AG ∥平面BEF ;(2)试在棱长BB 1上找一点M ,使DM ⊥平面BEF ,并证明你的结论.解析:(1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴和z 轴建立空间直角坐标系,则A (1,0,0),B (1,1,0),E ⎝ ⎛⎭⎪⎫1,12,1,F ⎝ ⎛⎭⎪⎫12,1,1,G ⎝ ⎛⎭⎪⎫0,12,1,因为EF →=⎝ ⎛⎭⎪⎫-12,12,0,BF →=⎝ ⎛⎭⎪⎫-12,0,1,而AG →=⎝ ⎛⎭⎪⎫-1,12,1,所以AG →=EF →+BF →,故AG →与平面BEF 共面,又因为AG 不在平面BEF 内,所以AG ∥平面BEF . (2)设M (1,1,m ),则DM →=(1,1,m ),由DM →·EF →=0,DM →·BF →=0,所以-12+m =0⇒m =12 ,所以M 为棱BB 1的中点时,DM ⊥平面BEF .11.(2015·北京西城二模)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,AB ⊥BC ,AB =2CD =2BC ,EA ⊥EB .(1)求证:AB ⊥DE ;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上是否存在点F ,使EC ∥平面FBD ?若存在, 求出EFEA;若不存在,请说明理由.解析:(1)证明:取AB 的中点O ,连接EO ,DO . 因为EB =EA ,所以EO ⊥AB . 因为四边形ABCD 为直角梯形.AB =2CD =2BC ,AB ⊥BC ,所以四边形OBCD 为正方形, 所以AB ⊥OD .因为EO ∩DO =O ,所以AB ⊥平面EOD ,所以AB ⊥ED . (2)因为平面ABE ⊥平面ABCD ,且EO ⊥AB , 所以EO ⊥平面ABCD ,所以EO ⊥OD .由OB ,OD ,OE 两两垂直,建立如图所示的空间直角坐标系Oxyz .因为三角形EAB 为等腰直角三角形,所以OA =OB =OD =OE , 设OB =1,所以O (0,0,0),A (-1,0,0),B (1,0,0),C (1,1,0),D (0,1,0),E (0,0,1).所以EC →=(1,1,-1),平面ABE 的一个法向量为OD →=(0,1,0). 设直线EC 与平面ABE 所成的角为θ,所以sin θ=|cos 〈EC →,OD →〉|=|EC →·O D →||EC →||OD →|=33,即直线EC 与平面ABE 所成角的正弦值为33.(3)存在点F ,且EF EA =13时,有EC ∥平面FBD .证明如下:由EF →=13EA →=⎝ ⎛⎭⎪⎫-13,0,-13,F ⎝ ⎛⎭⎪⎫-13,0,23,所以FB →=⎝ ⎛⎭⎪⎫43,0,-23,BD →=(-1,1,0).设平面FBD 的法向量为v =(a ,b ,c ), 则有⎩⎪⎨⎪⎧v ·BD →=0,v ·FB →=0,所以⎩⎪⎨⎪⎧-a +b =0,43a -23c =0,取a =1,得v =(1,1,2).因为EC →·v =(1,1,-1)·(1,1,2)=0, 且EC ⊄平面FBD ,所以EC ∥平面FBD ,即点F 满足EF EA =13时,有EC ∥平面FBD .12.已知正方体ABCD ­A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.证明:(1)以B 为原点,以BA ,BC ,BB 1为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则B (0,0,0),E (3,0,1),F (0,3,2),D 1(3,3,3),则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3),所以BD 1→=BE →+BF →.由向量共面的充要条件知E ,B ,F ,D 1四点共面.(2)设M (0,0,z 0),G ⎝ ⎛⎭⎪⎫0,23,0,则GM →=⎝ ⎛⎭⎪⎫0,-23,z 0,而BF →=(0,3,2), 由题设得GM →·BF →=-23×3+z 0·2=0,得z 0=1.故M (0,0,1),有ME →=(3,0,0). 又BB 1→=(0,0,3),BC →=(0,3,0),所以ME →·BB 1→=0,ME →·BC →=0,从而ME ⊥BB 1,ME ⊥BC . 又BB 1∩BC =B ,故ME ⊥平面BCC 1B 1.。

相关文档
最新文档