2013理科高考试题分章汇集:函数
2013年高考试题分项版解析数学(理) 专题02 函数(Word精析版)(2)

第二章 函数 一.基础题组1.【2013年普通高等学校招生全国统一考试(江西卷)理】函数错误!未找到引用源。
的定义域为 ()A.(0,1)B.[0,1)C.(0,1]D.[0,1]2.【2013年普通高等学校统一考试试题大纲全国理科】已知函数()f x 的定义域为(1,0)-,则函数(21)f x +的定义域( )A .(1,1)-B .1(1,)2--C .(1,0)-D .1(,1)23.【2013年普通高等学校招生全国统一考试(陕西卷)】设全集为R, 函数()f x =M, 则C M R 为 ( )(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-4.【2013年普通高等学校招生全国统一考试(广东卷)理】定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .15.【2013年普通高等学校招生全国统一考试(北京卷)理】函数f (x )的图象向右平移一个单位长度,所得图象与y =e x关于y 轴对称,则f (x )=( )A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.【2013年普通高等学校招生全国统一考试(湖南卷)】函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为( )A .3B .2C .1D .07.【2013年普通高等学校招生全国统一考试数学浙江理】已知y x ,为正实数,则( ) A.y x yx lg lg lg lg 222+=+ B. lg()lg lg 222x y x y += C.y x yx lg lg lg lg 222+=∙ D. lg()lg lg 222xy x y =【答案】D8.【2013年普通高等学校统一考试试题大纲全国理科】函数21()log (1)(0)f x x x=+>的反函数1()f x -=( )A .1(0)21x x >- B .1(0)21xx ≠- C .21()xx R -∈ D .21(0)x x ->9.【2013年普通高等学校招生全国统一考试(山东卷)】已知函数()f x 为奇函数,且当0x >时, ()21,f x x x=+,则()1f -=A.2-B. 0C. 1D. 210.【2013年普通高等学校招生全国统一考试(上海卷)理】方程1313313x x-+=-的实数解为________.二.能力题组11.【2013年普通高等学校招生全国统一考试(四川卷)理科】函数331x x y =-的图象大致是( )12.【2013年普通高等学校统一考试天津卷理科】函数0.5()2|log |1x f x x =-的零点个数为( )(A) 1(B) 2(C) 3(D) 413.【2013年普通高等学校招生全国统一考试(山东卷)】函数cos sin y x x x =+的图象大致为14.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】设a =log 36,b=log 510,c=log 714,则 (A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c15.【2013年普通高等学校招生全国统一考试(陕西卷)】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( ) (A) [15,20] (B) [12,25](C) [10,30](D) [20,30]16.【2013年普通高等学校招生全国统一考试(上海卷)理】设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为______. 40m17.【2013年全国高考新课标(I )理科】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值是______.18.【2013年普通高等学校统一考试江苏数学试题】已知()f x 是定义在R 上的奇函数. 当0x >时,2()4f x x x =-,则不等式()f x x >的解集用区间表示为 .三.拔高题组19.【2013年普通高等学校招生全国统一考试(四川卷)理科】设函数()f x =a R ∈,e 为自然对数的底数)。
2013年全国高考理科数学试题分类汇编2:函数Word版含答案

2013 年全国高考理科数学试题分类汇编2:函数一、选择题1 .(2 013年高考江西卷(理))函数 y= x ln(1-x) 的定义域为A.(0,1)B.[0,1) C.(0,1] D.[0,1]【答案】 D 2 .( 2 013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若a bc , 则函数f x x a x b x b x c x c x a 的两个零点分别位于区间( )A.a,b 和 b, c 内 B., a 和 a,b 内C. b,c 和 c, 内D. ,a 和 c, 内【答案】 A13 .( 2 013年上海市春季高考数学试卷(含答案 ))函数 f( x) x2的大致图像是 ( )y y y yA x 0Bx 0 x 0xC D【答案】 A 4 .( 2013年高考四川卷(理))设函数 f ( x)e x x a ( aR , e为自然对数的底数 ).若曲线y sin x 上存在( x , y) 使得 f ( f( y ))y,则a的取值范围是 ( ) 000 0(A ) [1,e](B)1 ,(C)[1, e1](D)1[ e,-11] [e -1, e 1]【答案】 A5 .( 2013年高考新课标 1(理))已知函数 f ( x) x22x, x 0, 若|f (x) | ≥ ax ,则 aln( x1),x 0的取值范围是A. ,0]B. ( ,1]C.D. [ 2,0]( [ 2,1] 【答案】 D6 .( 2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))函数f x = log 2 1 1 x 0 的反函数f1x=x第 1 页共 7 页(A) 1 x 0 (B) 1 x 0 (C) 2x 1 x R (D) 2x 1 x 0 2x 1 2x 1【答案】 A7 .( 2 013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))已知 x, y为正实数 , 则A. 2lgxlgy 2lg x2lg y B.2lg( xy)2lgx 2lg yC. 2lgxlgy 2lg x2lg y D.2lg( xy)2lgx 2lg y【答案】 D8 .年普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数f( x)为奇( 2013函数 , 且当 x 0时 , f( x) x21 , 则 f ( 1)x(A)2(B) 0 (C) 1 (D) 2【答案】 A9 .(2 013 年高考陕西卷(理))在如图所示的锐角三角形空地中,欲建一个面积不小于3002m的内接矩形花园 ( 阴影部分 ), 则其边长x( 单位) 的取值范围是mx40m40m(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30]【答案】 C10 .( 2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案))y 3 a a 6 6 a 3 的最大值为( )A.9B.9C. 33 2 2 D.2 【答案】 B 11.( 2 013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数f x 的定义域为1,0, 则函数 f 2 x1 的定义域为(A) 1,1(B) 1, 1(C) -1,0 (D) 1 ,12 2第 2 页共 7 页【答案】 B 12.( 2 013年高考湖南卷(理))函数 f x2ln x 的图像与函数g x x24x 5 的图像的交点个数为A.3B.2C.1D.0 【答案】 B 13.( 2 013x2) 年高考四川卷(理))函数 y 的图象大致是(3x 1【答案】 C14.( 2 013 年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知函数f x x2 2 a 2 x a2 ,g x x2 2 a 2 x a28. 设H1x max f x , g x , H 2x min f x , g x , max p, q表示 p,q 中的较大值 , min p,q 表示 p, q 中的较小值 , 记 H1x 得最小值为 A,H 2x 得最小值为 B ,则A B(A) a22a 16 (B) a22a 16 (C) 16 (D) 16【答案】 B15.( 20 13年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数 y x3 ,y 2x , y x21, y 2sin x 中 , 奇函数的个数是 ( )A . 4 B. 3 C. 2 D. 1【答案】 C16.( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数f (x)=x3 +bx+c 有极值点 x1 , x2 , 且 f (x1)=x1 , 则关于 x 的方程 3(f (x1)) 2 +2f(x)+b=0 的不同实根个数是(A)3 (B)4 (C) 5 (D)6【答案】 A17 .( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案))函数第 3 页共 7 页f ( x) 2x | log 0.5x | 1的零点个数为(A) 1 (B) 2 (C)3 (D) 4【答案】 B18.( 2013年高考北京卷(理) ) 函数 f ( x) 的图象向右平移 1 个单位长度 , 所得图象与y=ex关于 y 轴对称 , 则 f( x)=A. e x 1B. e x 1C. e x 1D. e x 1【答案】 D19.( 2013 年上海市春季高考数学试卷(含答案 ))设 f -1( x) 为函数 f ( x) x 的反函数 ,下列结论正确的是( )(A)f 1(2) 2 (B) f 1(2) 4 (C) f 1(4) 2 (D) f 1(4)4【答案】 B20.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) )若函 数 f x =x 2 ax 1 在 1 ,+ 是增函数 , 则 a 的取值范围是x 2(A) [-1,0] (B) [ 1, ) (C) [0,3] (D) [3, ) 【答案】 D 二、填空题21 .( 2013年 上 海 市 春 季 高 考 数 学 试 卷 ( 含 答案 ) ) 函 数 y log 2 x( 2)的 定 义 域是_______________【答案】 ( 2, )22.( 2013 年高考上海卷(理) )方程3x 31 3x1的实数解为 ________1 3 【答案】 x log3 4 .23(.2013 年高考上海卷(理))对区间 I 上有定义的函数g( x) , 记 g (I ){ y | y g( x), x I } ,已知定义域为[0,3]的函数y f ( x) 有反函数y f 1( x) , 且f 1 ([0,1)) [1,2), f 1 ((2,4]) [0,1), 若方程 f( x) x 0有解x0 ,则x0_____第 4 页共 7 页【答案】 x0 2 .24.( 2 013年高考新课标 1(理))若函数 f ( x) = (1 x2 )( x2ax b) 的图像关于直线x2对称 , 则 f ( x) 的最大值是______.【答案】 16.25.( 2 013年上海市春季高考数学试卷(含答案 ))方程 2x8 的解是_________________【答案】 3 26.( 2 013年高考湖南卷(理))设函数f ( x) a x b x c x , 其中 c a 0,c b 0.(1)记集合 M (a,b, c) a,b,c不能构成一个三角形的三条边长,且a=b , 则( a,b, c) M 所对应的 f ( x) 的零点的取值集合为____.(2)若 a,b, c是 ABC的三条边长,则下列结论正确的是 ______.( 写出所有正确结论的序号 )①x ,1 , f x 0;②x R,使 xa x ,b x , c x不能构成一个三角形的三条边长;③若 ABC为钝角三角形,则x 1,2 , 使 f x 0.【答案】 (1) (0,1](2) ①②③27.( 2 013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯 WORD版含附加题))已知 f ( x) 是定义在 R 上的奇函数 . 当x 0 时 , f ( x) x24x , 则不等式 f (x)x的解集用区间表示为 ___________. 【答案】5,0 5,28.( 2 013年高考上海卷(理))设 a为实常数 , yf ( x) 是定义在 R 上的奇函数 , 当 x 0时, f ( x)a27 , 若 f ( x) a 1对一切x0 成立 , 则 a 的取值范围为________9xx【答案】 a 8 . 7三、解答题29.( 2 013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数第 5 页共 7 页f ( x) ax (1 a2 ) x2 , 其中 a 0 , 区间 I | x f (x)>0( Ⅰ) 求的长度 ( 注 : 区间 ( , ) 的长度定义为 ); ( Ⅱ) 给定常数 k (0,1) , 当时 , 求 l 长度的最小值 .【答案】解 : ( Ⅰ) f( x) x[ a (1 a 2 )x]( Ⅱ) 由( Ⅰ) 知 ,a 1 l2 11 aaa已知 k(0,1),0 1 - k a 1 k.令11 kg(a) a 1在 a 1 k时取最大值a0 x (0,a) . 所以区间长度为aa2.1 1 a2 1 - kk 20 11 - k恒成立 .1 k这时 l1 k 1 k(1 k )2 1 (1 k ) 211k所以当a1 k时, l取最小值1 (1 k )2 .30.( 2013 年上海市春季高考数学试卷 (含答案 ))本题共有 3 个小题 ,第 1 小题满分 5 分, 第 2 小题满分 7 分 , 第 3 小题满分 6 分 .已知真命题 : “函数y f ( x) 的图像关于点P(a、b) 成中心对称图形”的充要条件为“函数y f ( x a) b 是奇函数” .(1 ) 将函数g( x) x33x2的图像向左平移1 个单位 , 再向上平移2 个单位 , 求此时图像对应的函数解析式 , 并利用题设中的真命题求函数g (x) 图像对称中心的坐标 ;(2 ) 求函数h( x) log 22x图像对称中心的坐标 ;4 x(3)已知命题 : “函数y f ( x) 的图像关于某直线成轴对称图像”的充要条件为“存在实数 a 和 b, 使得函数 y f (x a) b 是偶函数” . 判断该命题的真假. 如果是真命题 ,请给予证明 ; 如果是假命题 , 请说明理由 , 并类比题设的真命题对它进行修改, 使之成为真命题( 不必证明 ).【答案】(1) 平移后图像对应的函数解析式为y (x 1)33(x 1)2 2 , 整理得 y x3 3x ,第 6 页共 7 页由于函数yx 3 3x 是奇函数 , 由题设真命题知 , 函数 g( x) 图像对称中心的坐标是(1, 2) . (2) 设 h( x) log 2 2x 的对称中心为 P(a ,b) , 由题设知函数 h(x a) b 是奇函数 .4 x设 f (x) h( x a) b, 2( x a) 2x 2a 则 f ( x) log 2 ( x a) b , 即 f (x) log 2 a b . 4 4 x 由不等式 2x 2a 0 的解集关于原点对称, 得 a 2 . 4 a x此时 f (x) lo g 2( x 2) , , . 2 x b x ( 2 2) 2 任取 x ( 2,2) , 由 f ( x) f (x) 0 , 得 b 1,所以函数 h(x)log 2 2x 图像对称中心的坐标是 (2,1) . 4 x (3) 此命题是假命题 .举反例说明 : 函数 f ( x) x 的图像关于直线 y x 成轴对称图像 , 但是对任意实数 a 和 b ,函数 y f (x a) b , 即 y x a b 总不是偶函数 .修改后的真命题 :“函数 y f ( x) 的图像关于直线 x a 成轴对称图像”的充要条件是“函数 y f ( x a)是偶函数” .第 7 页共 7 页。
2013年高考真题理科数学分类汇编(解析版):函数及答案

2013年高考真题理科数学分类汇编(解析版)函 数1、(2013年高考(安徽卷))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知,过原点的直线与曲线相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B 2、(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3、(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<,则112x -<<-。
故选B5、(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-, 因此,故选A6、(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象,可得交点数。
(完整版)2013年陕西高考理科数学试题及答案详解

2013年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.(2013陕西,理1)设全集为R ,函数f (x )=21x -的定义域为M ,则R M 为().A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞)1)∪(1,+∞).2.(2013陕西,理2)根据下列算法语句,当输入x 为60时,输出y的值为( ).A .25B .30C .31D .613.(2013陕西,理3)设a ,b 为向量,则“|a·b |=|a ||b |”是“a∥b ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2013陕西,理4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ).A .11B .12C .13D .145.(2013陕西,理5)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( ). A .π14-B .π12-C .π22-D .π4 6.(2013陕西,理6)设z 1,z 2是复数,则下列命题中的假.命题是( ). A .若|z1-z2|=0,则12z z = B .若12z z =,则12z z =C .若|z1|=|z2|,则1122z z z z⋅=⋅ D .若|z1|=|z2|,则z12=z22 7.(2013陕西,理7)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.(2013陕西,理8)设函数f (x )=610,0,x x x x x ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪-≥⎩,,则当x >0时,f [f (x )]表达式的展开式中常数项为 A .-20 B .20 C .-15 D .159.(2013陕西,理9)在如图所示的锐角三角形空地中,欲建一个面积不小于300m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( ).A.[15,20] B.[12,25]C.[10,30] D.[20,30]10.(2013陕西,理10)设[x]表示不大于x的最大整数,则对任意实数x,y,有( ).A.[-x]=-[x] B.[2x]=2[x]C.[x+y]≤[x]+[y] D.[x-y]≤[x]-[y]第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.(2013陕西,理11)双曲线22116x ym-=的离心率为54,则m等于__________.12.(2013陕西,理12)某几何体的三视图如图所示,则其体积为__________.13.(2013陕西,理13)若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为__________.14.(2013陕西,理14)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n个等式可为__________.15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为__________.B.(几何证明选做题)如图,弦AB与CD相交于e O内一点E,过E作BC的平行线与AD的延长线交于点P,已知PD=2DA=2,则PE=__________.C.(坐标系与参数方程选做题)如图,以过原点的直线的倾斜角θ为参数,则圆x2+y2-x=0的参数方程为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(2013陕西,理16)(本小题满分12分)已知向量a =1cos ,2x ⎛⎫-⎪⎝⎭,b =x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.17.(2013陕西,理17)(本小题满分12分)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.18.(2013陕西,理18)(本小题满分12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1.(1)证明:A1C⊥平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角θ的大小.19.(2013陕西,理19)(本小题满分12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.20.(2013陕西,理20)(本小题满分13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.21.(2013陕西,理21)(本小题满分14分)已知函数f (x )=e x ,x ∈R .(1)若直线y =kx +1与f (x )的反函数的图像相切,求实数k 的值;(2)设x >0,讨论曲线y =f (x )与曲线y =mx 2(m >0)公共点的个数;(3)设a <b ,比较2f a f b ()+()与f b f a b a()-()-的大小,并说明理由.2013年普通高等学校夏季招生全国统一考试数学(理科)(陕西卷)第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.答案:D解析:要使函数f (x )=21x -有意义,则1-x 2≥0,解得-1≤x ≤1,则M =[-1,1],R M =(-∞,-1)∪(1,+∞).2.答案:C 解析:由算法语句可知0.5,50,250.650,50,x x y x x ≤⎧=⎨+(-)>⎩所以当x =60时,y =25+0.6×(60-50)=25+6=31.3.答案:C解析:若a 与b 中有一个为零向量,则“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件;若a 与b 都不为零向量,设a 与b 的夹角为θ,则a ·b =|a ||b |cos θ,由|a ·b |=|a ||b |得|cos θ|=1,则两向量的夹角为0或π,所以a ∥b .若a ∥b ,则a 与b 同向或反向,故两向量的夹角为0或π,则|cos θ|=1,所以|a ·b |=|a ||b |,故“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件.4.答案:B解析:840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l ,则第k 段抽取的号码为l +(k -1)·20,1≤l ≤20,1≤k ≤42.令481≤l +(k -1)·20≤720,得25+120l -≤k ≤37-20l .由1≤l ≤20,则25≤k ≤36.满足条件的k 共有12个.5.答案:A解析:S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为 P =π2π2124F ABCD ADE CB ABCD S S S S ---==-矩形扇形扇形矩形. 6.答案:D解析:对于选项A ,若|z 1-z 2|=0,则z 1=z 2,故12z z =,正确;对于选项B ,若12z z =,则122z z z ==,正确;对于选项C ,z 1·1z =|z 1|2,z 2·z 2=|z 2|2,若|z 1|=|z 2|,则1122z z z z ⋅=⋅,正确;对于选项D ,如令z 1=i +1,z 2=1-i ,满足|z 1|=|z 2|,而z 12=2i ,z 22=-2i ,故不正确.7.答案:B解析:∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴π2A =,故△ABC 为直角三角形. 8.答案:A解析:当x >0时,f (x )=x -<0,则f [f (x )]=66⎛= ⎝. 663221666C (1)C (1)C r r r r r r r r r r r T x x x ----+⎛=⋅=-⋅=- ⎝.令3-r =0,得r =3,此时T 4=(-1)336C =-20.9.答案:C解析:设矩形另一边长为y ,如图所示.404040x y -=,则x =40-y ,y =40-x .由xy ≥300,即x (40-x )≥300,解得10≤x ≤30,故选C .10.答案:D解析:对于选项A ,取x =-1.1,则[-x ]=[1.1]=1,而-[x ]=-[-1.1]=-(-2)=2,故不正确;对于选项B ,令x =1.5,则[2x ]=[3]=3,2[x ]=2[1.5]=2,故不正确;对于选项C ,令x =-1.5,y =-2.5,则[x +y ]=[-4]=-4,[x ]=-2,[y ]=-3,[x ]+[y ]=-5,故不正确;对于选项D ,由题意可设x =[x ]+β1,0≤β1<1,y =[y ]+β2,0≤β2<1,则x -y =[x ]-[y ]+β1-β2,由0≤β1<1,-1<-β2≤0,可得-1<β1-β2<1.若0≤β1-β2<1,则[x -y ]=[[x ]-[y ]+β1-β2]=[x ]-[y ];若-1<β1-β2<0,则0<1+β1-β2<1,[x -y ]=[[x ]-[y ]+β1-β2]=[[x ]-[y ]-1+1+β1-β2]=[x ]-[y ]-1<[x ]-[y ],故选项D 正确.第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.答案:9解析:由双曲线方程知a =4.又54c e a ==,解得c =5,故16+m =25,m =9. 12. 答案:π3解析:由三视图可知该几何体是如图所示的半个圆锥,底面半圆的半径r =1,高SO =2,则V 几何体=1π2π323⨯⨯=.13.答案:-4解析:由y =|x -1|=1,1,1,1x x x x -≥⎧⎨-+<⎩及y =2画出可行域如图阴影部分所示.令2x -y =z ,则y =2x -z ,画直线l 0:y =2x 并平移到过点A (-1,2)的直线l ,此时-z 最大,即z 最小=2×(-1)-2=-4.14.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·12n n (+) 解析:第n 个等式的左边第n 项应是(-1)n +1n 2,右边数的绝对值为1+2+3+…+n =12n n (+),故有12-22+32-42+…+(-1)n +1n 2=(-1)n +112n n (+). 15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A .答案:2解析:(am +bn )(bm +an )=abm 2+(a 2+b 2)mn +abn 2=ab (m 2+n 2)+2(a 2+b 2)≥2abmn +2(a 2+b 2)=4ab +2(a 2+b 2)=2(a 2+2ab +b 2)=2(a +b )2=2(当且仅当m =n 时等号成立).B .解析:∠C 与∠A 在同一个e O 中,所对的弧都是»BD,则∠C =∠A .又PE ∥BC ,∴∠C =∠PED .∴∠A =∠PED .又∠P =∠P ,∴△PED ∽△PAE ,则PE PD PA PE=,∴PE 2=PA ·PD .又PD =2DA =2,∴PA =PD +DA=3,∴PE 2=3×2=6,∴PE . C .答案:2cos ,sin cos x y θθθ⎧=⎨=⎩(θ为参数)解析:由三角函数定义知y x=tan θ(x ≠0),y =x tan θ,由x 2+y 2-x =0得,x 2+x 2tan 2θ-x =0,x =211tan θ+=cos 2θ,则y =x tan θ=cos 2θtan θ=sin θcos θ,又π2θ=时,x =0,y =0也适合题意,故参数方程为2cos ,sin cos x y θθθ⎧=⎨=⎩(θ为参数).三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.解:f (x )=1cos ,2x ⎛⎫- ⎪⎝⎭x ,cos 2x )x sin x -12cos 2xx -12cos 2x =ππcos sin 2sin cos 266x x - =πsin 26x ⎛⎫- ⎪⎝⎭. (1)f (x )的最小正周期为2π2ππ2T ω===, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2, ∴ππ5π2666x -≤-≤.由正弦函数的性质, 当ππ262x -=,即π3x =时,f (x )取得最大值1. 当ππ266x -=-,即x =0时,f (0)=12-, 当π52π66x -=,即π2x =时,π122f ⎛⎫= ⎪⎝⎭, ∴f (x )的最小值为12-.因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上最大值是1,最小值是12-. 17.(1)解:设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n , ∴111nn a q S q (-)=-,∴11,1,1, 1.1n n na q S a q q q =⎧⎪=(-)⎨≠⎪-⎩ (2)证明:假设{a n +1}是等比数列,则对任意的k ∈N +,(a k +1+1)2=(a k +1)(a k +2+1),21k a ++2a k +1+1=a k a k +2+a k +a k +2+1,a 12q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1,∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾,∴假设不成立,故{a n +1}不是等比数列.18.(1)证法一:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立直角坐标系,如图.∵AB =AA 1,∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由11A B u u u u r =AB u u u r ,易得B 1(-1,1,1). ∵1AC u u u r =(-1,0,-1),BD u u u r =(0,-2,0), 1BB u u u r =(-1,0,1), ∴1AC u u u r ·BD u u u r =0,1AC u u u r ·1BB u u u r =0,∴A 1C ⊥BD ,A 1C ⊥BB 1,∴A 1C ⊥平面BB 1D 1D .证法二:∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又∵ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C .又∵OA 1是AC 的中垂线,∴A 1A =A 1C,且AC =2,∴AC 2=AA 12+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C .又BB 1∥AA 1,∴A 1C ⊥BB 1,∴A 1C ⊥平面BB 1D 1D .(2)解:设平面OCB 1的法向量n =(x ,y ,z ), ∵OC u u u r =(-1,0,0),1OB u u u r =(-1,1,1), ∴10,0,OC x OB x y z ⎧⋅=-=⎪⎨⋅=-++=⎪⎩u u u r u u u r n n ∴0,.x y z =⎧⎨=-⎩取n =(0,1,-1), 由(1)知,1AC u u u r =(-1,0,-1)是平面BB 1D 1D 的法向量,∴cos θ=|cos 〈n ,1AC u u u r 〉|12=. 又∵0≤θ≤π2,∴π3θ=.19.解:(1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=1223C 2C 3=,P (B )=2435C 3C 5=. ∵事件A 与B 相互独立,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为P (A B )=P (A )·P (B )=P (A )·[1-P (B )]=2243515⨯=.13242335C C 4.C C 15P AB ⎛⎫⋅()== ⎪⋅⎝⎭或 (2)设C 表示事件“观众丙选中3号歌手”,则P (C )=2435C 3C 5=, ∵X 可能的取值为0,1,2,3,且取这些值的概率分别为P (X =0)=1224()35575P ABC =⨯⨯=, P (X =1)=()()()P ABC P ABC P ABC ++ =2221321232035535535575⨯⨯+⨯⨯+⨯⨯=, P (X =2)=P (AB C )+P (A B C )+P (A BC )=2322231333335535535575⨯⨯+⨯⨯+⨯⨯=, P (X =3)=P (ABC )=2331835575⨯⨯=, ∴X 的分布列为∴X 的数学期望40123757575757515EX ⨯+⨯+⨯+⨯===. 20.(1)解:如图,设动圆圆心O 1(x ,y ),由题意,|O 1A |=|O 1M |,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点,∴1||O M =1||O A = = 化简得y =8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x ,∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2bk -8)x +b 2=0,其中Δ=-32kb +64>0.由求根公式得,x 1+x 2=282bk k -,① x 1x 2=22b k,② 因为x 轴是∠PBQ 的角平分线,所以121211y y x x =-++, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0,2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0,∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0).21.解:(1)f (x )的反函数为g (x )=ln x .设直线y =kx +1与g (x )=ln x 的图像在P (x 0,y 0)处相切,则有y 0=kx 0+1=ln x 0,k =g ′(x 0)=01x , 解得x 0=e 2,21ek =. (2)曲线y =e x与y =mx 2的公共点个数等于曲线2e x y x=与y =m 的公共点个数. 令()2e x x x ϕ=,则3e 2()x x x x ϕ(-)'=, ∴φ′(2)=0.当x ∈(0,2)时,φ′(x )<0,φ(x )在(0,2)上单调递减;当x ∈(2,+∞)时,φ′(x )>0,φ(x )在(2,+∞)上单调递增,∴φ(x )在(0,+∞)上的最小值为2e (2)4ϕ=. 当0<m <2e 4时,曲线2e x y x =与y =m 无公共点; 当2e 4m =时,曲线2e xy x=与y =m 恰有一个公共点; 当2e 4m >时,在区间(0,2)内存在1x =,使得φ(x 1)>m ,在(2,+∞)内存在x 2=m e 2,使得φ(x 2)>m .由φ(x )的单调性知,曲线2e xy x=与y =m 在(0,+∞)上恰有两个公共点. 综上所述,当x >0时,若0<m <2e 4,曲线y =f (x )与y =mx 2没有公共点; 若2e 4m =,曲线y =f (x )与y =mx 2有一个公共点; 若2e 4m >,曲线y =f (x )与y =mx 2有两个公共点. (3)解法一:可以证明2f a f b f b f a b a()+()()-()>-. 事实上,2f a f b f b f a b a()+()()-()>-⇔e e e e 2a b b a b a +->-⇔e e 2e e b a b a b a -->+⇔2e 12e e a b a b a ->-+⇔212e 1b a b a -->-+(b >a ).(*) 令2()12e 1x x x ψ=+-+(x ≥0), 则2222212e e 14e e 1()02e 12e 12e 1x x x x x x x x ψ(+)-(-)'=-==≥(+)(+)(+)(仅当x =0时等号成立), ∴ψ(x )在[0,+∞)上单调递增,∴x >0时,ψ(x )>ψ(0)=0.令x =b -a ,即得(*)式,结论得证. 解法二:e e e e 22b a b af a f b f b f a b a b a()+()()-()+--=--- =e e e e 2e 2e 2b a b a b ab b a a b a +---+(-)=e 2ab a (-)[(b -a )e b -a +(b -a )-2e b -a +2], 设函数u (x )=x e x +x -2e x+2(x ≥0),则u ′(x )=e x +x e x +1-2e x ,令h (x )=u ′(x ),则h ′(x )=e x +e x +x e x -2e x =x e x ≥0(仅当x =0时等号成立),∴u ′(x )单调递增,∴当x >0时,u ′(x )>u ′(0)=0,∴u (x )单调递增.当x >0时,u (x )>u (0)=0.令x =b -a ,则得(b -a )e b -a +(b -a )-2e b -a +2>0, ∴e e e e >02b a b ab a+---, 因此,2f a f b f b f a b a()+()()-()>-.。
2013年高考全国数学卷一理科试题及答案

2013年普通高等学校招生全国统一考试(全国卷一】数 学(理工类】参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分】注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。
2、本部分共12小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、7(1)x +的展开式中2x 的系数是( 】A 、42 B 、35 C 、28 D 、212、复数2(1)2i i-=( 】 A 、1 B 、1- C 、i D 、i -3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( 】 A 、不存在 B 、等于6 C 、等于3 D 、等于04、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( 】ABCD5、函数1(0,1)x y a a a a=->≠的图象可能是( 】6、下列命题正确的是( 】A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( 】 A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2013年高考真题理科数学分类汇编(解析版):函数及答案

2013年高考真题理科数学分类汇编(解析版)函 数1,(2013年高考(安徽卷))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知,过原点的直线与曲线相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B 2,(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3,(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4,(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<,则112x -<<-。
故选B5,(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-, 因此,故选A6,(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7,(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象,可得交点数。
2013年高考真题2:函数 Word版含答案

2013年高考解析分类汇编2:函数一、选择题错误!未指定书签。
.(2013年高考重庆卷(文1))函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞D .(2,4)(4,)+∞【答案】C【命题立意】本题考查函数的定义域。
要使函数有意义则,220log (2)0x x ->⎧⎨-≠⎩,即2021x x ->⎧⎨-≠⎩,即2x >且3x ≠,所以选C. 错误!未指定书签。
.(2013年高考重庆卷(文9))已知函数3()s i n 4(,)f x a x b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4 【答案】C【命题立意】本题考查函数的奇偶性以及对数的运算性质。
因为22lg10lg(log 10)lg(lg 2)lg(log 10lg 2)lg(lg 2)lg1012g +=⋅=⨯==,所以2l g (lg 2)l g (l o g 10)=-。
设2lg(log 10),t =则lg(lg 2)t =-。
由条件可知()5f t =,即3()sin 45f t at b t =++=,所以2si n 1a tb t +=,所以3()s i n 4143f t a t b t -=--+=-+=,选C. 错误!未指定书签。
.(2013年高考大纲卷(文6))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A)0)(11(log )(2>+==y x x f y ,所以y x 211=+,所以121-=y x,所以)0(121>-=y x y ,所以)0(121>-=x y x ,即)0(121)(1>-=-x x f x ,故选A.错误!未指定书签。
2013年全国高考理科数学考试试题分类汇编14:导数与积分

2013年全国高考理科数学试题分类汇编14:导数与积分一、选择题1 .(2013年高考湖北卷(理))已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( )A .121()0,()2f x f x >>- B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-【答案】D2 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x =【答案】C3 .(2013年高考江西卷(理))若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<【答案】B4 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值【答案】D5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点【答案】D6 .(2013年高考北京卷(理))直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 ( )A .43B .2C .83D .3【答案】C7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f kx ,则 ( )A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值【答案】C 二、填空题8 .(2013年高考江西卷(理))设函数()f x 在(0,)+∞内可导,且()xxf e x e =+,则(1)x f =______________【答案】2 9 .(2013年高考湖南卷(理))若209,Tx dx T =⎰则常数的值为_________.【答案】310.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))若曲线ln y kx x=+在点()1,k 处的切线平行于x 轴,则k =______.【答案】1- 三、解答题11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知函数)ln()(m x e x f x+-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >.【答案】12.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知函数()()()[]321,12cos .0,12e xx f x x g x ax x x x -=+=+++∈当时,(I)求证:()11-;1x f x x≤≤+ (II)若()()f x g x ≥恒成立,求实数a 取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.【答案】13.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设函数ax x x f -=ln )(,ax e x g x-=)(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论.卷Ⅱ 附加题部分答案word 版[选做题]第21题,本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.【答案】解:(1)由01)('≤-=a x x f 即a x ≤1对),1(+∞∈x 恒成立,∴max 1⎥⎦⎤⎢⎣⎡≥x a 而由),1(+∞∈x 知x1<1 ∴1≥a由a e x g x -=)('令0)('=x g 则a x ln = 当x <a ln 时)('x g <0,当x >a ln 时)('x g >0, ∵)(x g 在),1(+∞上有最小值 ∴a ln >1 ∴a >e综上所述:a 的取值范围为),(+∞e(2)证明:∵)(x g 在),1(+∞-上是单调增函数∴0)('≥-=a e x g x 即xe a ≤对),1(+∞-∈x 恒成立,∴[]min xea ≤而当),1(+∞-∈x 时,xe >e 1 ∴ea 1≤ 分三种情况:(Ⅰ)当0=a 时, xx f 1)('=>0 ∴f(x)在),0(+∞∈x 上为单调增函数 ∵0)1(=f ∴f(x)存在唯一零点 (Ⅱ)当a <0时,a xx f -=1)('>0 ∴f(x)在),0(+∞∈x 上为单调增函数 ∵)1()(aaae a ae a ef -=-=<0且a f -=)1(>0 ∴f(x)存在唯一零点(Ⅲ)当0<e a 1≤时,a x x f -=1)(',令0)('=x f 得ax 1= ∵当0<x <a 1时,x a x a x f )1()('--=>0;x >a 1时,x a x a x f )1()('--=<0 ∴a x 1=为最大值点,最大值为1ln 11ln )1(--=-=a aa a a f①当01ln =--a 时,01ln =--a ,e a 1=,)(x f 有唯一零点e ax ==1②当1ln --a >0时,0<ea 1≤,)(x f 有两个零点实际上,对于0<ea 1≤,由于e a e a e ef --=-=111ln )1(<0,1ln 11ln )1(--=-=a aa a a f >0 且函数在⎪⎭⎫ ⎝⎛a e 1,1上的图像不间断 ∴函数)(x f 在⎪⎭⎫⎝⎛a e 1,1上有存在零点另外,当⎪⎭⎫ ⎝⎛∈a x 1,0,a x x f -=1)('>0,故)(x f 在⎪⎭⎫ ⎝⎛a 1,0上单调增,∴)(x f 在⎪⎭⎫ ⎝⎛a 1,0只有一个零点 下面考虑)(x f 在⎪⎭⎫⎝⎛+∞,1a 的情况,先证)(ln ln )(1111121------=-=-=--a a a a a e a a ae e a ae e e f <0为此我们要证明:当x >e 时,x e >2x ,设2)(x e x h x-= ,则x e x h x2)('-=,再设x e x l x 2)(-=∴2)('-=xe x l当x >1时,2)('-=xe x l >e -2>0,x e x l x2)(-=在()+∞,1上是单调增函数故当x >2时,x e x h x 2)('-=>4)2(2'-=e h >0 从而2)(xe x h x-=在()+∞,2上是单调增函数,进而当x >e时,2)(x e x h x-=>2)(e e e h e-=>0 即当x >e 时,x e >2x , 当0<a<e1时,即1-a >e时,)(ln ln )(1111121------=-=-=--a a a a a e a a ae e a ae e e f <0又1ln 11ln)1(--=-=a aa a af >0 且函数)(x f 在[]1,1--a e a 上的图像不间断, ∴函数)(x f 在()1,1--a e a 上有存在零点,又当x >a 1时,xa x a x f )1()('--=<0故)(x f 在()+∞-,1a 上是单调减函数∴函数)(x f 在()+∞-,1a 只有一个零点 综合(Ⅰ)(Ⅱ)(Ⅲ)知:当0≤a 时,)(x f 的零点个数为1;当0<a <e1时,)(x f 的零点个数为214.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设函数()()21x f x x e kx=--(其中k ∈R ). (Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .【答案】(Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:x(),0-∞()0,ln 2ln 2()ln 2,+∞()f x '+- 0+()f x极大值极小值右表可知,函数()f x 的递减区间为()0,ln 2,递增区间为(),0-∞,()ln 2,+∞. (Ⅱ) ()()()1222x x x x f x e x e kx xe kx x e k'=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>; 所以()(){}(){}3max 0,max 1,1k M f f k k e k ==--- 令()()311kh k k e k =--+,则()()3k h k k e k'=-,令()3k k e k ϕ=-,则()330k k e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭所以存在01,12x ⎛⎤∈⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<,所以()k ϕ在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=>⎪⎝⎭,()10h =,所以()0h k ≥在1,12⎛⎤ ⎥⎝⎦上恒成立,当且仅当1k =时取得“=”.综上,函数()f x 在[]0,k 上的最大值()31k M k e k =--.15.(2013年高考江西卷(理))已知函数1()=(1-2-)2f x a x ,a 为常数且>0a . (1) 证明:函数()f x 的图像关于直线1=2x 对称; (2) 若0x 满足00(())=f f x x ,但00()f x x ≠,则称0x 为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,,x x 试确定a 的取值范围;(3) 对于(2)中的12,x x 和a , 设x 3为函数f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0),记△ABC 的面积为S(a),讨论S(a)的单调性.【答案】(1)证明:因为11()(12),()(12)22f x a x f x a x +=--=-,有11()()22f x f x +=-, 所以函数()f x 的图像关于直线12x =对称. (2)解:当102a <<时,有224,(())4(1),a x f f x a x ⎧⎪=⎨-⎪⎩ 1,21.2x x ≤>所以(())f f x x =只有一个解0x =,又(0)0f =,故0不是二阶周期点.当12a =时,有,(())1,x f f x x ⎧=⎨-⎩ 1,21.2x x ≤>所以(())f f x x =有解集1|2x x ⎧⎫≤⎨⎬⎩⎭,又当12x ≤时,()f x x =,故1|2x x ⎧⎫≤⎨⎬⎩⎭中的所有点都不是二阶周期点.当12a >时,有222221,44,11,24,42(())1412(12)4,,2444,41.4x aa x x a a x a f f x a a a a x x a a a x a x a≤⎧⎪<≤-⎪=⎨--+⎪<≤⎪-⎩-> 所以(()f f x x =有四个解2222240,,,141214a a a a a a +++,又22(0)0,()1212a af f a a==++, 22222244(),()14141414a a a a f f a a a a ≠≠++++,故只有22224,1414a a a a ++是()f x 的二阶周期点.综上所述,所求a 的取值范围为12a >. (3)由(2)得2122224,1414a a x x a a==++, 因为3x 为函数(())f f x 的最大值点,所以314x a =或3414a x a-=. 当314x a=时,221()4(14)a S a a -=+.求导得:22112(22'()(14)a a S a a +--=-+,所以当1(2a ∈时,()S a 单调递增,当1()2a +∈+∞时()S a 单调递减;当3414a x a -=时,22861()4(14)a a S a a -+=+,求导得:2221243'()2(14)a a S a a +-=+,因12a >,从而有2221243'()02(14)a a S a a +-=>+, 所以当1(,)2a ∈+∞时()S a 单调递增.16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值.【答案】(3)26ln 3f =+17.(2013年高考四川卷(理))已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.【答案】解:()I 函数()f x 的单调递减区间为(),1-∞-,单调递增区间为[)1,0-,()0,+∞()II 由导数的几何意义可知,点A 处的切线斜率为()1f x ',点B 处的切线斜率为()2f x ',故当点A 处的切线与点B 处的切垂直时,有()()121f x f x ''=-. 当0x <时,对函数()f x 求导,得()22f x x '=+. 因为120x x <<,所以()()1222221x x ++=-, 所以()()12220,220x x +<+>.因此()()21121222212x x x x -=-+++≥=⎡⎤⎣⎦ 当且仅当()122x -+=()222x +=1,即123122x x =-=且时等号成立.所以函数()f x 的图象在点,A B 处的切线互相垂直时,21x x -的最小值为1()III 当120x x <<或210x x >>时,()()12f x f x ''≠,故120x x <<.当10x <时,函数()f x 的图象在点()()11,x f x 处的切线方程为()()()21111222y x x a x x x -++=+-,即()21122y x x x a =+-+当20x >时,函数()f x 的图象在点()()22,x f x 处的切线方程为()2221ln y x x x x -=-,即221ln 1y x x x =∙+-. 两切线重合的充要条件是1222112 2 ln 1 x x x x a ⎧=+⎪⎨⎪-=-+⎩①②由①及120x x <<知,110x -<<. 由①②得,()2211111ln1ln 22122a x x x x =+-=-+-+.设()()21111ln 221(10)h x x x x =-+--<<, 则()1111201h x x x '=-<+. 所以()()1110h x x -<<是减函数. 则()()10ln21h x h >=--, 所以ln21a >--.又当1(1,0)x ∈-且趋近于1-时,()1h x 无限增大,所以a 的取值范围是()ln21,--+∞.故当函数()f x 的图像在点,A B 处的切线重合时,a 的取值范围是()ln21,--+∞18.(2013年高考湖南卷(理))已知0a>,函数()2x af x x a-=+.(I)记[]()0,4f x a 在区间上的最大值为g(),求a g()的表达式; (II)是否存在a ,使函数()y f x =在区间()0,4内的图像上存在两点,在该两点处的切线相互垂直?若存在,求a 的取值范围;若不存在,请说明理由.【答案】解:⎪⎪⎩⎪⎪⎨⎧<<-++=++-≥-<+=+-=>时,是单调递减的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考理科数学试题分类汇编:2函数一、选择题1 .(2013年高考江西卷(理))函数的定义域为A.(0,1)B.[0,1)C.(0,1]D.[0,1] 【答案】D 2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A.(),a b 和(),b c 内 B.(),a -∞和(),a b 内 C.(),b c 和(),c +∞内 D.(),a -∞和(),c +∞内 【答案】A3 .(2013年上海市春季高考数学试卷(含答案))函数12()f x x -=的大致图像是( )【答案】A4 .(2013年高考四川卷(理))设函数()f x =(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1[,-11]e -, (C)[1,1]e + (D)1[-1,1]e e -+ 【答案】A5 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a的取值范围是A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]- 【答案】D6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x -(A)()1021x x >- (B)()1021xx ≠- (C)()21x x R -∈ (D)()210x x -> 【答案】A 7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知y x ,为正实数,则 A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222∙=+ C.y x yx lg lg lg lg 222+=∙ D.y x xy lg lg )lg(222∙=【答案】D8 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (A) 2- (B) 0 (C) 1 (D) 2【答案】A9 .(2013年高考陕西卷(理))在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30]【答案】C 10.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))y =()63a -≤≤的最大值为( )A.9B.92C.3【答案】B11.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为 (A)()1,1- (B)11,2⎛⎫- ⎪⎝⎭ (C)()-1,0 (D)1,12⎛⎫⎪⎝⎭【答案】B12.(2013年高考湖南卷(理))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A.3B.2C.1D.013.(2013年高考四川卷(理))函数231x x y =-的图象大致是( )【答案】C 14.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A)2216a a -- (B)2216a a +- (C)16- (D)16【答案】B 15.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( ) A . 4 B.3C.2D.1【答案】C 16.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数3()=+b +f x x x c 有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是(A)3 (B)4 (C) 5 (D)6 【答案】A 17.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4 【答案】B18.(2013年高考北京卷(理))函数f (x )的图象向右平移1个单位长度,所得图象与y =e x关于y 轴对称,则f (x )=A.1e x +B. 1e x -C. 1e x -+D. 1e x --19.(2013年上海市春季高考数学试卷(含答案))设-1()f x 为函数()f x =,下列结论正确的是( ) (A) 1(2)2f-= (B) 1(2)4f -= (C) 1(4)2f-= (D) 1(4)4f -=【答案】B 20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A)[-1,0] (B)[1,)-+∞ (C)[0,3] (D)[3,)+∞ 【答案】D二、填空题21.(2013年上海市春季高考数学试卷(含答案))函数2log (2)y x =+的定义域是_______________ 【答案】(2,)-+∞22.(2013年高考上海卷(理))方程1313313x x-+=-的实数解为________ 【答案】3log 4x =.23.(2013年高考上海卷(理))对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【答案】02x =.24.(2013年高考新课标1(理))若函数()f x =22(1)()x x ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______. 【答案】16.25.(2013年上海市春季高考数学试卷(含答案))方程28x =的解是_________________ 【答案】326.(2013年高考湖南卷(理))设函数(),0,0.xxxf x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为____.(2)若,,a b c ABC ∆是的三条边长,则下列结论正确的是______.(写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,,,xxxx R xa b c ∃∈使不能构成一个三角形的三条边长; ③若()()1,2,0.ABC x f x ∆∃∈=为钝角三角形,则使 【答案】(1)]10(, (2)①②③27.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为___________. 【答案】()()+∞-,50,528.(2013年高考上海卷(理))设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________【答案】87a ≤-. 三、解答题 29.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求l 长度的最小值.【答案】解: (Ⅰ))1,0(0])1([)(22aa x x a a x x f +∈⇒>+-=.所以区间长度为21a a+. (Ⅱ) 由(Ⅰ)知,aa a al 1112+=+=恒成立令已知k kk k k k a k k -1110-111.1-10),1,0(2>+∴>⇒>++≤≤<∈. 22)1(11)1(1111)(k kk k l k a a a a g -+-=-+-≥⇒-=+=⇒这时时取最大值在 所以2)1(111k kl k a -+--=取最小值时,当. 30.(2013年上海市春季高考数学试卷(含答案))本题共有3个小题,第1小题满分5分,第2小题满分7分,第3小题满分6分.已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数22()log 4xh x x=- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件为“存在实数a 和b,使得函数()y f x a b =+- 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).【答案】(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++, 整理得33y x x =-,由于函数33y x x =-是奇函数,由题设真命题知,函数()g x 图像对称中心的坐标是(1 2)-,. (2)设22()log 4xh x x=-的对称中心为( )P a b ,,由题设知函数()h x a b +-是奇函数. 设()(),f x h x a b =+-则22()()log 4()x a f x b x a +=--+,即222()log 4x af x b a x +=---.由不等式2204x aa x+>--的解集关于原点对称,得2a =.此时22(2)()log (2 2)2x f x b x x+=-∈--,,.任取(2,2)x ∈-,由()()0f x f x -+=,得1b =,所以函数22()log 4xh x x=-图像对称中心的坐标是(2 1),. (3)此命题是假命题.举反例说明:函数()f x x =的图像关于直线y x =-成轴对称图像,但是对任意实数a 和b ,函数()y f x a b =+-,即y x a b =+-总不是偶函数. 修改后的真命题:“函数()y f x =的图像关于直线x a =成轴对称图像”的充要条件是“函数()y f x a =+是偶函数”.。