3.1 等差数列(一)
高一数学等差数列1(201909)

二.应用
例1.已{a知n}
数列令bn
a
n
1
2满.
a1
4,a n
4
ቤተ መጻሕፍቲ ባይዱ
4 (n a n 1
2),
足
(1)求证:数列 {bn} 为等差数列; (2)求数列 {an} 的通项公式.
分析:由等差数列的定义,要判断{b n }是不是等差数列,
am an ap aq. 性质4:设 n N* ,则a1 an a2 an1 a3 an2 . 性质5:设 c, b 为常数,若数列{an}为等差数列,则数
列 {an b}及 {c an b}为等差数列. 性质6:设 p, q 为常数,若数列{an} 、{bn}均为等差数列,
等差数列
一、等差数列的性质 已知数列{an} 为等差数列,那么有 性质1:若 m,p,n(m,p,n N*)
am,ap,an
成等差数列,则
证明:根据成等等差差数数列列的. 定义, m,p,n成等差数列,
p m n p, (p m)d (n p)d.
ap am an ap.
即 a m , a p , a n 成等差数列.证毕.
如 a1, a6 , a11 成等差数列,a3, a6 , a9 成等差数列.
性质2:设 k,m N* ,则 ak , akm , a k2m , 成等差数列. 性质3:设m,n,p,q N*,若 m n p q, 则
只要看 bn bn1(n 2)是不是一个与n 无关的
常数就行了.
;/ 仓库管理软件 库存管理系统
等差数列(第一课时)教学设计

等差数列(第一课时)教学设计一、设计理念随着科学技术的不断发展,数学已经不仅仅是学习后继课程和解决科技问题的工具,而且是培养理性思维的重要载体,成为科技人员科技水平的重要组成部分。
但数学要跟上时代发展的步伐,满足社会发展的需要,就应该从传统的教学模式转变为以问题为中心,以探索为主线,以培养学生思维能力和创新意识为核心的数学素质教育的实践模式。
课堂上采用学生“自主、合作、探索”的教学方式,教师是学生学习的组织者、合作者和服务者,以背景问题激发学生的学习兴趣及好奇心。
以探索问题引导学生对数学问题进行自主观察、比较、分析、综合、抽象和概括。
在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,这正是新课程所倡导的数学理念。
二、教材分析本节课主要研究等差数列的概念、通项公式及其应用,是本章的重点内容之一。
而所处章节《数列》又是高中数学的重要内容,并且在实际生活中有着广泛的应用,它起着承前启后的作用。
一方面,数列与前面学习的函数等知识有密切的联系;另一方面,学习数列又为进一步学习数列的极限等内容作好了准备。
同时也是培养学生数学能力的良好题材。
学习数列要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题。
等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。
三、教学目标知识目标:理解等差数列的定义,掌握等差数列的通项公式。
能力目标:1.培养学生观察能力2.进一步提高学生推理、归纳能力德育渗透目标:1.体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神;2.渗透函数、方程、化归的数学思想;3.培养学生数学的应用意识,参与意识和创新意识。
四、教学重点1、等差数列概念的理解与掌握;2、等差数列通项公式的推导与应用。
五、教学难点等差数列“等差”特点的理解、把握和应用六、教学方法启发式教学启发学生逐步发现和认识等差数列“等差”特点及探索出等差数列的通项公式。
必修5——等差数列(第一课时),自己做的

18,15.5,13,10.5, 18,15.5,13,10.5,8,5.5. 5.5.
③
二、(一)等差数列的定义 、(一 等差数列的定义 • 1、定义:一般地,如果一个数列{an},从第2项 从第2 定义:一般地,如果一个数列 从第 起每一项与它的前一项的差等于同一个常数, 起每一项与它的前一项的差等于同一个常数, 那么这个数列就叫做等差数列, 那么这个数列就叫做等差数列,这个常数叫做 等差数列的公差。 表示。 等差数列的公差。公差通常用字母 d 表示。 那么对于以上四组等差数列,它们的公差 依次是 5,5,-2.5,72。 (1)从第2 从第 注: (1)从第2项起
(要求:写出解题过程) 要求:写出解题过程)
数字 量
编号
a1 a
1
d
2 4
n n
15
ann
解方程: 解方程: 方程思 想
(1) -8 (2) 5 (3) -45 (4) 5.2
20
105 45 9.2
26
31
11
3
0.4
思考:解题过程中体现了什么样的思想? 思考:解题过程中体现了什么样的思想?
思 考?
a1 = 48 a 2 = 53 = 48 + 5 × 1
a 3 = 58 = 53 + 5 = 48 + 5 × 2
a4 = 63 = 58 + 5 = 48 + 5 × 3
a n = 48 + 5 × ( n − 1)
二、(二)等差数列的通项公式 、(二
• 1、导入: 导入: • (2)问题2:类比上面的方法,根据等差数列的定义, 问题2 类比上面的方法,根据等差数列的定义, 如果任意给一个等差数列的首项a1和公差 和公差d,那么它的通 如果任意给一个等差数列的首项 和公差 那么它的通 项公式是什么? 项公式是什么?
三奥第14讲 等差数列(一)

第十四讲等差数列(一)知识要点等差数列的有关定义:若干个数列排成一列成为数列,数列中的每一个数称为一项,其中第一项叫首项,最后一项称为末项,数列中的个数称为项数。
从第二项开始,后项与前项之差都相等的数列叫“等差数列”,这时后项与前项(或前项与后项的差)称为公差。
举例:2,4,6,8,···98,100这是一个首项为2,末项为100,公差为2,项数为50的等差数列。
有关公式:(1)第几项=首项+(项数n-1)×公差末项=首项+(项数—1)×公差首项=末项-(项数-1)×公差(2)项数=(末项—首项)÷公差+1(3)公差=(末项—首项)÷(项数-1)(4)等差数列的和=(首项+末项)×项数÷2导入:有一个老和尚有两个徒弟,大徒弟一次种了40棵树,第一天种2棵,然后每天种多种4棵,小和尚第一天种了3课,第二天种了6棵,第三天种了9棵……,大和尚对小和尚说你怎么都不会赶上我的,小和尚就跑过去问师傅,师傅掐指一算就知道能否赶上,同学们你们觉得能不能赶上?师:让我们带着这个疑问进入接下来的课堂中吧。
例题精讲例1、有一个等差数列:3、7、11、15……,这个等差数列的第30项是多少?第75项呢?如果让我们把每项加起来算的话计算快不快?是否能有其他的方法呢?哦,有同学发现一头一尾加起来的和刚好都相等,都等于122,师:很好,这位同学很善于观察和思考,那我们一起来探讨一下关于这样一组数求和的简便计算方法1、引入等差数列的定义2、可以先试着计算前面几项的和当做试验。
3、总结规律例1、有一个等差数列:3、7、11、15……,这个等差数列的第30项是多少?第75项呢?第几项=首项+(项数n-1)×公差第30项=3+(30-1)x (7-3)=119第75项=3+(75-1)x(7-3)=299练求等差数列1、4、7、10 …… ,这个等差数列的第30项是多少?刚才是告诉了首项求第几项,同学们完成的都很好,现在反过来大家试一试,例2、已知一个等差数列共有32项,公差是6,末项是191,求这个等差数列的首项。
2.1 等差数列的概念(1) 一等奖创新教学设计

2.1 等差数列的概念(1)一等奖创新教学设计4.2.1 等差数列的概念(1)(详案)通过研究最新版《普通高中课程方案及课程标准》,我按照“高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识”的要求,遵从“既要重结论,又要重过程”的现代教育理念,着眼于概念和结论的生成过程来上等差数列的概念(第一课时)这一节课。
教学模式对于这一节课的教学模式,我严格按照滨州市数学教研员王文清老师倡导的“自主学习与创新意识培养”数学课堂教学模式进行,大体按照以下7个环节展开:1.设计问题,创设情境;2.学生探索,尝试解决;3.信息交流,揭示规律;4.运用规律,解决问题;5.变练演编,深化提高;6.信息交流,教学相长;7.反思小结,观点提炼。
教材分析:等差数列是在学生已经学习了数列的有关概念,并且可以观察归纳得出通项公式之后的基础上对数列的知识进一步深入学习。
等差数列作为数列部分的主要内容,它起着承前启后的作用,是学生探究特殊数列的开始,为以后学习等差数列的求和、等比数列奠定基础,同时也培养了学生数学能力。
同学们在学习后续内容时,会感受到无论在知识上,还是在方法上这节的学习都具有积极的意义。
学情分析:高二的学生已经具有一定的理性分析能力和概括能力,并且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程。
以及对函数和方程思想有所体会,也能够应用数学公式解决简单问题。
但是他们的思维仍然需要依赖一定的具体实例来理解并抽象出数学概念,同时思维的严密性有待加强。
教学目标:1. 通过实例,让学生理解等差数列的定义,了解等差中项的定义及性质;2.使学生掌握等差数列的通项公式,体会等差数列通项公式与一次函数的关系;3. 让学生学会用等差数列的通项公式解决简单的数学问题.核心素养目标:数学抽象、数学运算、逻辑推理、数学建模。
教学重点:等差数列的定义、等差数列的通项公式及其运用.教学难点:等差数列定义的生成及通项公式的推导.教学过程:复习引入:引导语:同学们,我们上一节课学习了数列的定义、性质及其相关概念(如:通项公式、递推公式、前n项和等),并且知道了数列是一类特殊的函数。
经典数字推理

经典数字推理一、数字推理解答的关键点二、古典型数字推理主要类型及特点(一)等差数列题型:例 1、22, 25, 28, 31, 34,()例 2、253, 264, 275, 286,()例 3、28, 46, 68, 94,124,()例 4、105, 117, 135, 159, 189,()例 5、18, 25, 50, 97, 170,()例 6、18, 23, 40, 75, 134,()例 7、20, 23, 32, 59,()例 8、25, 26, 34, 61, 125,()总结:练习:1. 102, 96, 108, 84, 132,()A.36B.64C.70D.722.67 75 59 91 27 ()A.155B.147C.136D.1283. ( ) 40 23 14 9 6A、81B、73C、58D、524. 0,6,24,60,120,()A.186 B.210 C.220 D.2265.2,6, 20, 50, 102,()。
A.140 B.160 C.182 D.2006.3,8,9,0,-25,-72,()A.-147B.-144C.-132D.-1217.2 10 19 30 44 62 ( )A、83B、84C、85D、868、 ( ) 36 19 10 5 2A.77 B.69C.54 D.489.1, 2, 6,33, 289,()A.3414B.5232C.6353D.715110. -1.5, 2,1, 9,一1, ( ) A.10B.4 C.25 D.8(二)等比数列题型:例 1、3, 6, 12, 24,()例 2、2, 6, 18, 54,()例3、1, 2, 8, 64,()例4、1, 1, 2, 6, 24,()例 5、2, 5, 11, 23, 47,()例 6、3, 7, 16, 35,()例 7、2, 1, 5, 16, 53,()例8、2, 1, 3, 7, 24,()练习:1.11 13 28 86 346 ( )A、1732B、1728C、1730D、1352.() 13.5 22 41 81A.10.25 B.7.25 C.6.25 D.3.253.1 2 512 29 ()A、82 B、70 C、48D、624.1, 4, 9,22, 53,()。
等差数列前n项和公式的推导方法

等差数列前n项和公式的推导方法等差数列,是数学里一个超基础但又特别有趣的概念。
说简单点,它就是每一项跟前一项的差一样的那种数列。
比如说,2、5、8、11、14,这就是一个等差数列,因为每一项之间差的都是3。
今天,我们就来聊聊如何推导出这个等差数列前n项和的公式,弄明白它的背后那些“玄机”。
1. 了解等差数列的基本概念1.1 等差数列的定义等差数列就是每一项和前一项之间有一个固定的差,这个差叫做“公差”。
这就像是你在走路,每一步的长度都是一样的,那你走了10步,走过的总距离就是步长乘以步数。
1.2 举个例子假设你在玩一个有趣的游戏,每次你得到的奖励都比上一次多10元,第一轮你获得10元,第二轮20元,第三轮30元,依此类推。
那么你的奖励就是一个等差数列,公差就是10元。
2. 推导等差数列前n项和的公式2.1 简单的逻辑推导我们要算前n项和,首先得知道每一项的值。
拿前面的例子来说,第n项的值就是第一项加上(n1)乘以公差。
公式就是这样的:( a_n = a_1 + (n1) cdot d )。
如果你跟着这个公式算,结果是一样的。
2.2 推导过程的趣味假如我们要算前n项的和,可以用一种超级简单的办法来搞定。
先假设你有一个等差数列,然后把它从头到尾写出来,像这样:```S_n = a_1 + a_2 + a_3 + ... + a_n。
```然后,把这些数列的项从后往前也写一遍:```S_n = a_n + a_{n1 + a_{n2 + ... + a_1。
```把这两个式子一加,发现每对数加起来都是一样的,就是 (a_1 + a_n),所以总和是:```2S_n = n cdot (a_1 + a_n)。
```于是,前n项的和 (S_n) 就是:```S_n = frac{n cdot (a_1 + a_n){2。
```是不是很有趣?就是这么简单,一看就懂了!3. 公式的应用实例3.1 实际应用你可能在生活中遇到各种各样的情况,比如说你在参加一个比赛,每一轮的分数都比上一轮高一些。
2012二轮3.1等差数列、等比数列

专题三:数 列第一讲 等差数列、等比数列【备考策略】根据近几年高考命题特点和规律,复习本专题时要注意以下几方面:1.弄清等差、等比数列的基本概念及性质,掌握等差、等比数列的通项公式、前n 项和公式。
2.掌握特殊数列的求和方法。
如:倒序相加、错位相减、裂项相消、分组求和等。
3.利用数列中n a 与n S 之间的关系,求能项公式及解决其他数列问题。
4.利用数列的递推关系,求通项公式,结合n 项和公式,解决数列应用题。
5.数列经常与函数、三角、不等式、解析几何等知识结合,综合考查等差、等比数列的性质、通项公式及前n 项和公式的应用。
6.利用方程的思想、根据公式列方程(组),解决等差数列、等比数列中的“知三求二”问题;利用函数的思想或根据函数的图象、单调性、值域等解决数列中项的最值及数列的前n 项和n S 的最值问题;利用等价转化的思想把非等差数列、等比数列问题转化为等差、等比数列问题来解决;利用分类讨论的思想解决等比数列的公比q 是否为1等问题。
7.结合数学归纳法解决一类归纳——猜想——证明的题目。
第一讲 等差数列、等比数列【考纲透析】1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。
(2)了解数列是自变量为正整数的一类函数。
2.等差数列、等比数列(1)理解等差数列、等比数列的概念。
(2)掌握等差数列、等比数列的通项公式与前n 项和公式。
【要点突破】要点考向1:有关等差数列的基本问题考情聚焦:1.等差数列作为高考中数学的重点内容,在历年高考中都有所考查。
2.该类问题一般独立命题,考查等差数列的概念、性质、通项公式、前n 项公式,有时与函数的单调性、不等式知识结合在一起命题。
3.多以选择题、填空题的形式出现,属中、低档题。
考向链接:1.涉及等差数列的有关问题往往用等差数列的通项公式和求和公式“知三求二”解决问题;2.等差数列前n 项和的最值问题,经常转化为二次函数的最值问题;有时利用数列的单调性(d >0,递增;d <0,递减);3.证明数列{n a }为等差数列有如下方法:①定义法;证明1n n a a d +-=(与n 值无关的常数);②等差中项法:证明112(2,)n n n a a a n n N *-+=+≥∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题:3.1 等差数列(一)教学目的:1.明确等差数列的定义,掌握等差数列的通项公式;2.会解决知道n d a a n ,,,1中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式教学难点:等差数列的性质授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:本节是等差数列这一部分,在讲等差数列的概念时,突出了它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么表示等差数列的各点都均匀地分布在一条直线上,为什么两项可以决定一个等差数列(从几何上看两点可以决定一条直线)教学过程:一、复习引入:上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法和前n 项和公式..这些方法从不同的角度反映数列的特点下面我们看这样一些例子1.小明觉得自己英语成绩很差,目前他的单词量只 yes,no,you,me,he 5个他决定从今天起每天背记10个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,…(问:多少天后他的单词量达到3000?)2.小芳觉得自己英语成绩很棒,她目前的单词量多达3000不再背单词了,结果不知不觉地每天忘掉5个单词,那么从今天开始,她的单词量逐日递减,依次为:3000,2995,2990,2985,…(问:多少天后她那3000个单词全部忘光?)从上面两例中,我们分别得到两个数列① 5,15,25,35,… 和 ② 3000,2995,2990,2980,…请同学们仔细观察一下,看看以上两个数列有什么共同特征??·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列二、讲解新课:1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求;⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列是等差数列,d 为公差 2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】 等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:d a a =-12即:d a a +=12d a a =-23即:d a d a a 2123+=+=d a a =-34即:d a d a a 3134+=+=……由此归纳等差数列的通项公式可得:d n a a n )1(1-+=∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项a 如数列①1,2,3,4,5,6; n n a n =⨯-+=1)1(1(1≤n ≤6)数列②10,8,6,4,2,…; n n a n 212)2()1(10-=-⨯-+=(n ≥1) 数列③;,1,54;53,52;51 551)1(51n n a n =⨯-+=(n ≥1) 由上述关系还可得:d m a a m )1(1-+=即:d m a a m )1(1--=则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+--即的第二通项公式 =n a d m n a m )(-+ ∴ d=nm a a n m --如:d a d a d a d a a 43212345+=+=+=+=三、例题讲解例1 ⑴求等差数列8,5,2…的第20项⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 解:⑴由35285,81-=-=-==d an=20,得49)3()120(820-=-⨯-+=a⑵由4)5(9,51-=---=-=d a得数列通项公式为:)1(45---=n a n由题意可知,本题是要回答是否存在正整数n ,使得)1(45401---=-n 成立解之得n=100,即-401是这个数列的第100项例2 在等差数列{}n a 中,已知105=a ,3112=a ,求1a ,d ,n a a ,20 解法一:∵105=a ,3112=a ,则⎩⎨⎧=+=+311110411d a d a ⇒⎩⎨⎧=-=321d a ∴53)1(1-=-+=n d n a a n5519120=+=d a a解法二:∵3710317512=⇒+=⇒+=d d d a a∴5581220=+=d a a 3)12(12-=-+=n d n a a n小结:第二通项公式 d m n a a m n )(-+=例3将一个等差数列的通项公式输入计算器数列n u 中,设数列的第s 项和第t 项分别为s u 和t u ,计算ts u u t s --的值,你能发现什么结论?并证明你的结论解:通过计算发现ts u u t s --的值恒等于公差 证明:设等差数列{n u }的首项为1u ,末项为n u ,公差为d ,⎩⎨⎧-+=-+=)2()1()1()1(11d t u u d s u u t s⑴-⑵得d t s u u t s )(-=- d ts u u t s =--∴ 小结:①这就是第二通项公式的变形,②几何特征,直线的斜率例4 梯子最高一级宽33cm ,最低一级宽为110cm ,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度解:设{}n a 表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:1a =33, 12a =110,n=12∴d a a )112(112-+=,即10=33+11d 解得:7=d因此,,61,54,47740,407335432===+==+=a a a a,103,96,89,82,75,6811109876======a a a a a a答:梯子中间各级的宽度从上到下依次是40cm ,47cm ,54cm ,61cm ,68cm ,75cm ,82cm ,89cm ,96cm ,103cm.例5 已知数列{n a }的通项公式q pn a n +=,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?分析:由等差数列的定义,要判定{}n a 是不是等差数列,只要看1--n n a a (n ≥2)是不是一个与n 无关的常数解:当n ≥2时, (取数列{}n a 中的任意相邻两项1-n a 与n a (n ≥2)) ])1([)(1q n p q pn a a n n +--+=--p q p pn q pn =+--+=)(为常数 ∴{n a }是等差数列,首项q p a +=1,公差为p注:①若p=0,则{n a }是公差为0的等差数列,即为常数列q ,q ,q ,… ②若p ≠0, 则{n a }是关于n 的一次式,从图象上看,表示数列的各点均在一次函数y=px+q 的图象上,一次项的系数是公差,直线在y 轴上的截距为q.③数列{n a }为等差数列的充要条件是其通项n a =pn+q (p 、q 是常数)第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个四、练习:1.(1)求等差数列3,7,11,……的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所求项.解:根据题意可知:1a =3,d =7-3=4.∴该数列的通项公式为:n a =3+(n -1)×4,即n a =4n -1(n ≥1,n ∈N *) ∴4a =4×4-1=15, 10a =4×10-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,……的第20项.解:根据题意可知:1a =10,d =8-10=-2.∴该数列的通项公式为:n a =10+(n -1)×(-2),即:n a =-2n +12, ∴20a =-2×20+12=-28.评述:要注意解题步骤的规范性与准确性.(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.分析:要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数.解:根据题意可得:1a =2,d =9-2=7.∴此数列通项公式为:n a =2+(n -1)×7=7n -5.令7n -5=100,解得:n =15,∴100是这个数列的第15项.(4)-20是不是等差数列0,-321,-7,……的项?如果是,是第几项?如果不是,说明理由. 解:由题意可知:1a =0,d =-321 ∴此数列的通项公式为:n a =-27n +27, 令-27n +27=-20,解得n =747 因为-27n +27=-20没有正整数解,所以-20不是这个数列的项. 2.在等差数列{n a }中,(1)已知4a =10,7a =19,求1a 与d ;(2)已知3a =9, 9a =3,求12a .解:(1)由题意得:⎩⎨⎧=+=+19610311d a d a , 解之得:⎩⎨⎧==311d a . (2)解法一:由题意可得:⎩⎨⎧=+=+389211d a d a , 解之得⎩⎨⎧-==1111d a ∴该数列的通项公式为:n a =11+(n -1)×(-1)=12-n ,∴12a =0 解法二:由已知得:9a =3a +6d ,即:3=9+6d ,∴d =-1又∵12a =9a +3d ,∴12a =3+3×(-1)=0.Ⅳ.课时小结五、小结 通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:n a -1-n a =d ,(n ≥2,n ∈N +).其次,要会推导等差数列的通项公式:d n a a n )1(1-+=,并掌握其基本应用.最后,还要注意一重要关系式:=n a d m n a m )(-+和n a =pn+q (p 、q 是常数)的理解与应用.六、课后作业:七、板书设计(略)八、课后记:。