JEDEC_solderability

合集下载

Solderability Introduction

Solderability Introduction

Wetting balance test没有 具体评判标准,具体细 节可参考J-STD-002B。 Dip and look Test测试后 需要对样品的外观在10X 的放大倍数(对于 Pitch<0.5mm在30X的放 大倍数)下判断,具体 评判细节参考J-STD002B。 Solder heat resistance检 查样品的Mount side是否 有crack或者deformation 等缺陷。具体评判细节 参考MIL-STD-883E
培训内容一:如何操作可焊性测试仪
关 机 结 束 评 样 估 品 后 处 理 试 程 备 ※ 结 果 换 品 测 过 准 剂 更 样 测 试 前 焊 备 动 校 准 换 器 测 试 助 准 启 平 安 衡 装 定 蘸 样 品 软 件 统 系 夹 具 设 • • • • • • • • • • • • 设 设 备 缸 准 电 锡 打 开
5
8
确认设备的温度达到稳定状态,及其各项测试参数 设定正确后,进行以下的操作: 对样品需要测试的部分进行检查和准备。 样品检查可以在10X放大倍数条件下完成,细间距 样品可以使用30X,主要检验样品引脚上是否有异 物、残渣、裂纹等异常。实际中,样品可能在采用 更高的放大倍数下观察。 根据测试模式及客户要求准备样品。当样品准备方 法不同于标准规定时,必须征得客户同意,且在最 终报告中注明。 把样品加在夹具上 在不同测试模式时,样品夹在夹具上的角度可参考 标准IPC/EIA/JEDECJ-STD-002B
把夹具固定在天 平上,同时把 Balance键拨在 ON的状态。 根据将要测试样 品的大小和测试 方式选择合适的 夹具。 Balance键位于控 制面板上。
天平
夹具
当天平处于非平衡状态时, 可以适当的在天平的后端2 增加或去除砝码,同时调 整Select旋钮6,使天平达 到平衡状态。 现对天平的平衡调整为粗 调。 高灵敏度天平当处于不平 衡状态时, 4 处的 为 或 ,当天平 调 整后,4处的 为 , 天平 平衡调整, 的 。

JESD22-B102E (Solderability)

JESD22-B102E (Solderability)

6
Table 4 Altitude versus Steam Temperature
7
Figures
Figure 1 Inspection Area for Dual Inline Packages
13
Figure 2 Inspection Area for Gull Wing Packages
14
viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard.
Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact:
JEDEC Solid State Technology Association 2500 Wilson Boulevard
9
5.3 Method 2. Surface Mount Process Simulation Test
12
6 Summary
16
Annex A
17
Tables
Table 1 Precondition Conditions for Solderability Testing
1
Table 2 Maximum Limits of Solder Bath Contaminant

02-基于JEDEC标准认证的半导体封装模型库及相关散热分析讲解-kevin

02-基于JEDEC标准认证的半导体封装模型库及相关散热分析讲解-kevin

半导体封装模型库及相关热模型分析讲解 ——基于JEDEC标准讲师: 徐文亮内容要点封装技术发展与热设计背景 封装结构与热设计模型 基于JEDEC51标准的热阻特性参数 典型半导体封装热仿真工具介绍 某芯片封装热可靠性案例分析2微电子封装技术——发展现状与趋势MCM/SiP BGA/CSP PGA/BGA00’s 05’sQFP90’sDIP80’s 60-70’S微电子封装技术——发展现状与趋势CSPSystem In Package FC BGAEBGA PBGA TBGA Stacked FBGA Stacked CSP BOC LQFP mBGA FPBGA SOIC TSOP BCC QFNStacked PTP 3 stacked BGAVFBGA QFPNear FutureWafer Level CSPFuture Assembly TechnologyCurrent当前热设计背景集成电路的集成度越来越高,功率不断增高,体积不断 减少,热密度急剧增加;电子产品热设计及热管理已经成为保证产品可靠性的关 键一环。

封装结构与热设计模型6封装结构典型封装结构BGA,CSP,PGA1.PBGA封装模型的特点PBGA封装有机基片Organic substrate 使用焊球(Solder balls)作为二级互联主要应用:ASIC’s, 内存, 图形显示,芯片组,通讯等.PBGA封装优缺点?8主要的PBGA封装类型---Wire-Bonded PBGA (Die-up)Epoxy-based Encapsulant BT Dielectric Die Attach & Die Solder Mask Flag Gold Bond Wires Cu Traces Silicon DieSolder Balls (37Pb/63Sn)Signal ViasThermal ViasBottom SpreaderPower & Ground Planes9主要的PBGA封装类型---Fine-Pitch BGA由Die-up PBGA变化而来别名: FSBGA, ChipArrayTM 可归类为 Near-CSP 焊球间隙典型值为1mm,0.8mm,0.65mm,0.5mm,0.4mm 经常缺少明显可见,比Die尺寸大的Die Pad,因为Die大小与封装大小相近热模型构建?Bond WiresDie Attach & Solder MaskDieSubstrate10SpreaderDie AttachStiffener RingEncapsulantAdhesive---Die-down PBGADieOrganicSubstrate with TracesSolder BallsBond WiresSignal Vias 111)最常见的Die-down PBGA 芯片为Amkor 公司的SuperBGATM ,但是SuperBGA 中无上图结构中的加强环(Stiffener Ring)2)如无加强环(Stiffener Ring),则塑料基片与Spreader 直接相连热模型构建?DieFlip-Chip BumpsUnderfillBuild-up---Flip-Chip PBGACore ViasBuild-up MicroviasCore121)因电气性能良好,应用越来越广泛2)基片(substrate)复杂,一般中间层为BT 层,两边另附有其它层热模型构建?Flip-Chip PBGA的散热加强手段Metal Cap热模型构建?Metal Cap与Lid可能由铝与铜制Metal LidLid Attach132.CBGA 封装模型的建立主要应用:高功耗处理器,军事用芯片主要分为:Flip-ChipBondWire热模型构建?14Epoxy encapsulantCeramic substrate (usually Alumina)Traces(Tungsten or Molybdenum)主要的CBGA 封装类型---Wire-Bonded CBGASolder balls (typically 90Pb/10Sn)Silicon DieDie attach15DieUnderfill (typically epoxy based)Ceramic substrate Solder BallsTraces (Tungsten or Molybdenum)Flip-chip layer Bare-Die主要的CBGA 封装类型---Flip-Chip CBGA(Typically Alumina)(typically 90Pb/10Sn)Metal CapAdhesiveCaped163.PQFP 封装模型的建立Plastic Quad Flat Pack (thin version called TQFP) 常用于逻辑芯片, ASIC 芯片, 显示芯片等封装外管脚(Lead), 表面贴装热模型构建?17Plastic EncapsulantExternal leadframe (gull-wing leads)截面结构图Au bond wireEpoxy overmoldCu / Alloy 42 leadframeCu / Alloy 42 tie bars Cu / Alloy 42 die flag18热模型构建?Thermal grease194.SOP/TSOP封装模型的建立Small Outline PackageLow profile version known as Thin SmallOutline Package (TSOP)类似于PQFP, 只是只有两边有管脚广泛应用于内存芯片常见的类型常规Lead-on-Chip20SOP/TSOP 封装模型的建立热模型构建?常规Bond WiresDie Die FlagLeadframe Die Bond Wires Encapsulant InsulationLeadframe DieBond WiresEncapsulantLeadframeLead-on-Chip215.QFN 封装模型的建立主要用于替换引脚数小于80的引线装芯片(主要是TSOP and TSSOP)热模型构建?Thermal Vias in PCBThermal Land in PCBDieDie Attach Pad Exposed PadLeads (Internal)SolderPCBMold226.CSP封装模型的建立封装相对于Die尺寸不大于20%主要应用于内存芯片,应用越来越广泛尺寸小,同时由于信号传输距离短,电气性能好种类超过40 种如封装尺寸相对于Die,大于20%但接近20%,则称为Near-CSP23Micro-BGA TM封装模型的建立为早期的一种CSP 设计常用于闪存芯片Traces 排布于聚酰亚胺的tape 层Die与Tape之间有专用的Elastomer采用引脚Lead将电信号由die传递至traces焊球可较随意排布热模型构建?DieEncapsulantElastomerLeadsTape & TracesSolder Balls24其它的CSP芯片Fine-Pitch BGA (ChipArray TM, FSBGA)类拟于PBGA, 更焊球间距更小Fan-in tracesMicroStar TM / FlexBGA TM类拟于ChipArray, 但基片材料为tape 而非BT257.堆栈封装(Stacked Packages)模型的建立开始应用于内存领域(stacked TSOP)近来应用到了面阵列封装领域Stacked TSOP mZ-Ball Stack TM26Active surfaceDie bodyCircuitry晶片(Dice),表面附有集成电路通常为硅制,部份为砷化镓制(微波芯片或高速芯片) 集成电路位于表面一侧的细节内,也可称active surfaceCuboidCollapsed source27(typically silicon)T c=T maxT Inner NodeActualTemperatureT Outer NodeProfile28Die Pad 的建模在塑料封装中Die 通常位于一金属薄片上(Die Pad 或Die Flag) Die Pad 通常为铜制,通常大于Die 的尺寸在部分的芯片当中,Die Pad 有其它形状(X 形或窗口形PQFP)29DieDie FlagDie Attach的建模建模的建议Die AttachDie较小时?30Wire Bonds 的建模陶瓷封装芯片中?金属较少的塑料封装中?建议的建模方法?在某些电源芯片中?其它31Flip-Chip Bonding 的建模倒装焊技术起源于1960年IBM 公司 但从1980年以后才开始流行Die 通过焊球(Ball)直接与基片(Substrate)相连32Die SubstrateFlip-chip bumpsUnderfill倒装互联的建模倒装焊的优势和劣势建模方法33Collapsed CuboidDie SubstrateDi eSubstrateFlip-chip bumpsUnderfill焊球(Solder Ball)的建模-1BGA 起源于1960年的IBM ,1990年后起为主流 球栅阵列(BGA)焊球可部分缺失很少采用填充料UnderfillPeripheral BallsCentral/Thermal Balls34采用焊球的优缺点?Solder balls typically of 95Pb/5Sn or 37Pb/63Sn solder焊球(Solder Ball)的建模-2每个焊球都可以单独建出真实的焊球等截面积35Full Cuboid平面方面热导能力差厚度方面传热能力好也可以折合成一块各向异性的立方块陶瓷基片的建模通常由氧化铝制(k = 20 W/mK)为了更好地散热,材料也有可能是AlN或BeO(k ~ 200 W/mK)BeO有毒,需特殊处理陶瓷各层叠放在一起,放于高温炉中烧制热模型构建?36建模较复杂电介质采用塑料层压制品如(FR4,BT),金属铜走线MetallizationResinDieOrganic Substrate走线?37Two signal tracesDie Bond wireDie FlagDie Bond wireDie FlagAdditional power and ground planes将走线层定义?在每个走线层,热传导系数?38原用于增加PCB多层板的互联也存在于芯片内部有些过孔有利于加强散热(热过孔)Substrate Cu plating Air or solderfilled39过孔分类信号过孔热过孔建模建议?Substrate Cu plating Air or solderfilled40Overmolding 的建模材料为环氧树脂热传导系数较低(0.6 -0.8 W/mK) 散热注意事项?41OvermoldDieMetal SlugAdhesive引线封装(Lead Package)的标准部件大多数具有Leadframe 都是塑料芯片(PQFP, SOP, PLCC) 部分为陶瓷芯片(CQFP)通常由铜制,部分为Alloy-42 (一种含铁合金) 热模型如何构建?42DieInternalLeadframeExternalLeadframe Die FlagLeadframe 的联接方式—通常由Bond-Wire 联接到Die 上—在TAB 封装中使用TAB 联接—在最新的一些TSOP 封装中,Leadframe 可使用绝缘胶直接联接至Die 表面(Lead-on-Chip)散热注意事项?43Thermal bottleneck Bond wireDieDie flagDie attach芯片外围结构芯片外围结构,,PCB 的板建模 热模型如何构建?44Metal PlanesDielectric Via disconnectedfrom copper plane Through-hole vias基于JEDEC51标准的热阻特性参数45PT T xj jx −=θ热阻定义热阻定义::Tj = Die 发热部位的温度值die (“junction”)Tx = 某参考点的温度值P = 芯片的功耗46PT a= 环境空气温度, 取点为JEDEC组织定义的特定空箱中特定点(Still-Air Test)芯片下印制板可为高传导能力的四层板(2S2P)或低传导能力的一层板之任一种(1S0P)47T a = 空气温度,取点为风洞上流温度 印制板朝向为重大影响因素48P jma =θ49P DieSubstrate PCBJunctionCaseθjb 从结点至印制板的热阻 定义标准由文件JESD51-8给出T T bj −50Pjb =θ。

泰腾电子 WCM3225F2SF-601T10 高频通信线路共模过滤器说明书

泰腾电子 WCM3225F2SF-601T10 高频通信线路共模过滤器说明书

P1P2DAECDB1. Features2. Dimension3. Part Numbering4. SpecificationTAI-TECH Part NumberCommon mode Impedance (Ω) Test Frequency (MHz) DC Resistance (Ω) max.Rated Current (mA)max. Rated Volt. (Vdc)max. WithstandVolt. (Vdc) max. IR (Ω) min.WCM3225F2SF-601T10600±25%1000.2010005012510M1. High common mode impedance at high frequency cause excellent noisesuppression performance.2. WCM3225F2SF series realizes small size and low profile.3.2x2.5x2.2 mm. 3. 100% Lead(Pb) & Halogen-Free and RoHS compliant. Series A(mm) B(mm) C(mm) D1(mm) D2(mm) E(mm) G1(mm) G2(mm) H(mm) L(mm) 3225F2SF 3.2±0.2 2.5±0.2 2.2±0.2 0.8±0.1 0.9±0.10.15±0.11.60.63.54.4WCM 3225 F 2 S F - 601T10A B C D E F GHIA: SeriesB: DimensionC: Material Ferrite Core D: Number of Lines 2=2 linesE: Type S=Shielded , N=Unshielded F: Lead free typeG: Impedance 601=600ΩH: Packaging T=Taping and Reel I: Rated Current 10=1000mAPb-freePbHalogen-freeHalogen Recommended PC Board PatternWire Wound Type Common Mode Filter WCM3225F2SF-601T10P3110100100010000FREQUENCY(MHz)0.1110100100010000I M P E D A N C E (O h m )WCM3225F2SF-601T10Common ModeNormal Mode5.Schematic Diagram6. MaterialsNo.DescriptionSpecificationa. Upper plate Ferriteb. Core Ferrite Core c Termination Tin (Pb Free)dWireEnameled Copper Wire7. Reliability and Test ConditionItemPerformanceTest ConditionBendingAppearance :No damage.Impedance :within ±15% of initial value Inductance :within ±10% of initial valueQ :Shall not exceed the specification value. RDC :within ±15% of initial value and shall not exceed the specification valueShall be mounted on a FR4 substrate of thefollowing dimensions: >=0805 inch(2012mm):40x100x1.2mm <0805 inch(2012mm):40x100x0.8mmBending depth: >=0805 inch(2012mm):1.2mm <0805 inch(2012mm):0.8mm duration of 10 sec. ShockSolder abilityMore than 95% of the terminal electrode should be covered with solder 。

海思消费类芯片可靠性测试技术总体规范V2

海思消费类芯片可靠性测试技术总体规范V2

海思消费类芯片可靠性测试技术总体规范V2.0海思消费类芯片可靠性测试技术总体规范V2.0是针对芯片可靠性测试的总体规范要求,包括电路可靠性和封装可靠性。

该规范适用于量产芯片验证测试阶段的通用测试需求,并能够覆盖芯片绝大多数的可靠性验证需求。

本规范描述的测试组合可能不涵盖特定芯片的所有使用环境,但可以满足绝大多数芯片的通用验证需求。

该规范规定了芯片研发或新工艺升级时,芯片规模量产前对可靠性相关测试需求的通用验收基准。

这些测试或测试组合能够激发半导体器件电路、封装相关的薄弱环节或问题,通过失效率判断是否满足量产出口标准。

在芯片可靠性测试中,可靠性是一个含义广泛的概念。

以塑封芯片为例,狭义的“可靠性”一般指芯片级可靠性,包括电路相关的可靠性(如ESD、Latch-up、HTOL)和封装相关的可靠性(如PC、TCT、HTSL、HAST等)。

但是芯片在应用场景中往往不是“独立作战”,而是以产品方案(如PCB板上的一个元器件)作为最终应用。

因此广义的“可靠性”还包括产品级的可靠性,例如上电温循试验就是用来评估芯片各内部模块及其软件在极端温度条件下运行的稳定性。

产品级的可靠性根据特定产品的应用场景来确定测试项和测试组合,并没有一个通用的规范。

本规范重点讲述芯片级可靠性要求。

本规范引用了JESD47I标准,该标准是可靠性测试总体标准。

在芯片可靠性测试中,测试组合通常以特定的温度、湿度、电压加速的方式来激发问题。

本规范还新增了封装可靠性测试总体流程图和测试前后的要求,并将《可靠性测试总体执行标准(工业级)》.xlsx作为本规范的附件。

海思消费类芯片可靠性测试技术总体规范V2.0本规范旨在规范海思消费类芯片的可靠性测试技术,确保其性能和质量符合要求。

以下是通用芯片级可靠性测试要求的详细介绍。

2.通用芯片级可靠性测试要求2.1电路可靠性测试电路可靠性测试是对芯片在不同应力条件下的可靠性进行评估的过程。

在测试过程中,需要按照以下要求进行测试:HTOL:在高温条件下进行测试,温度不低于125℃,Vcc不低于Vccmax。

jedec参数

jedec参数

jedec参数JEDEC(全称为Joint Electron Device Engineering Council)是一个非营利性的国际标准化组织,致力于电子器件和半导体技术的标准化工作。

JEDEC的成立旨在促进电子工业的发展,提高电子产品的质量和可靠性。

本文将介绍JEDEC的一些重要参数和其在电子工业中的应用。

JEDEC定义了一系列关于半导体器件的参数,这些参数对于电子工程师在设计和制造电子产品时非常重要。

其中一个重要的参数是温度系数(Temperature Coefficient),它衡量了器件在温度变化下的性能稳定性。

温度系数可以用来衡量器件的温度敏感性,帮助工程师选择适合的器件用于不同的应用环境。

另外,JEDEC还定义了器件的工作温度范围,这对于确保器件的正常工作非常重要。

除了温度相关的参数,JEDEC还定义了器件的封装规格。

封装是将芯片和电路连接到外部世界的关键步骤,它包括芯片的封装形式以及引脚的布局。

JEDEC定义了一系列标准封装,例如DIP(Dual In-line Package)、SOP(Small Outline Package)等,以及相应的引脚布局和尺寸。

这些标准封装可以确保不同厂商的芯片能够在相同的封装下互换使用,提高了电子产品的可扩展性和兼容性。

JEDEC还定义了器件的供电电压范围和电源电流。

供电电压范围是指器件正常工作所需的电压范围,这对于电源设计和电路稳定性至关重要。

电源电流则是指器件在正常工作状态下所消耗的电流,这对于电源选择和电路设计也非常重要。

JEDEC通过定义这些参数,帮助工程师更好地理解和选择合适的器件,从而提高电子产品的性能和可靠性。

JEDEC还定义了一系列关于存储器器件的标准。

存储器是电子产品中重要的组成部分,它用于存储和读取数据。

JEDEC定义了不同类型的存储器器件,例如DRAM(Dynamic Random-Access Memory)、SRAM(Static Random-Access Memory)等,并规定了它们的工作电压、时序、引脚布局等参数。

JEDEC工业标准

JEDEC工业标准

JEDEC工业标准环境应力试验[JDa1]JESD22-A100-B Cycled Temperature-Humidity-Bias Life Test 上电温湿度循环寿命试验, (Revision of JESD22-A100-A) April 2000 [Text-jd001][JDa2]JESD22-A101-B Steady State Temperature Humidity Bias Life Test 上电温湿度稳态寿命试验, (Revision of JESD22-A101-A) April 1997 [Text-jd002][JDa3]JESD22-A102-C Accelerated Moisture Resistance -Unbiased Autoclave高加速蒸煮试验, (Revision of JESD22-A102-B) December 2000 [Text-jd003][JDa4]JESD22-A103-A Test Method A103-A High Temperature Storage Life高温储存寿命试验, (Revision of Test Method A103 Previously Published in JESD22-B) July 1989 [Text-jd004][JDa5]JESD22-A103-B High Temperature Storage Life高温储存寿命试验, (Revision of JESD22-A103-A) August 2001 [Text-jd005][JDa6]JESD22-A104-B Temperature Cycling温度循环, (Revision of JESD22-A104-A) July 2000 (参见更新版本A104C) [Text-jd006][JDa7]EIA/JESD22-A105-B Test Method A105-B Power and Temperature Cycling上电和温度循环, (Revision of Test Method A105-A) February 1996 [Text-jd007][JDa8]JESD22-A106-A Test Method A106-A Thermal Shock热冲击, (Revision of Test Method A106-Previously Published in JESD22-B) April 1995 [Text-jd008][JDa9]JESD22-A107-A Salt Atmosphere盐雾试验, (Revision of Test Method A107-Previously Published in JESD22-B) December 1989 [Text-jd009][JDa10]JESD22-A108-B Temperature, Bias, and Operating Life高温环境条件下的工作寿命试验, (Revision of JESD22-A108-A) December 2000[JDa11]JESD22-A110-B Test Method A110-B Highly-Accelerated Temperature and Humidity Stress Test (HAST)高加速寿命试验, (Revision of Test Method A110-A) February 1999 [Text-jd010][JDa12]JESD22-A113-B Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing 非密封表贴器件在可靠性试验以前的预处理, (Revision of Test Method A113-A) March 1999[Text-jd011][JDa13]JESD22-A118 Accelerated Moisture Resistance - Unbiased HAST不上电的高加速湿气渗透试验, December 2000 [Text-jd012][JDa14]JESD22-B106-B Test Method B106-B Resistance to Soldering Temperature for Through-Hole Mounted Devices插接器件的抗焊接温度试验, (Revision of Test Method B106-A) February 1999 [Text-jd013][JDa15]EIA/JESD47 Stress-Test-Driven Qualification of Integrated Circuits集成电路施加应力的产品验收试验, July 1995 [Text-jd031][JDa1]JESD22-A104C Temperature Cycling, (Revision of JESD22-A104-B) May 2005 [Text-jd040]电应力和电测试试验[JDb1]JESD22-A114-B Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)人体模型条件下的静电放电敏感度试验, (Revision of JESD22-A114-A) June 2000 [Text-jd014] [JDb2]EIA/JESD22-A115-A Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)机器模型条件下的静电放电敏感度试验, (Revision of EIA/JESD22-A115) October 1997 [Text-jd015] [JDb3]JESD22-A117 Electrically Erasable Programmable ROM (EEPROM) Program/Erase Endurance and Data Retention Test EEPROM的擦涂和数据保存试验, January 2000 [Text-jd016][JDb4]EIA/JESD78 IC Latch-Up Test集成电路器件闩锁试验, March 1997 [Text-jd017][JDb5]JESD22-C101-A Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components微电子器件在电荷感应模型条件下的抗静电放电试验, (Revision of JESD22-C101) June 2000 [Text-jd018]机械应力试验[JDc1]JESD-22-B103-A Test Method B103-A Vibration, Variable Frequency振动和扫频试验 (Revision of Test Method B103 Previously Published in JESD22-B) July 1989 [Text-jd019][JDc2]JESD22-B104-A Test Method B104-A Mechanical Shock机械冲击 (Revision of Test Method B104, Previously Published in JEDEC Standard No.22-B) September 1990 [Text-jd020][JDc3]EIA/JESD22-B116 Wire Bond Shear Test Method焊线邦定的剪切试验方法, July 1998 [Text-jd021][JDc4]JESD22-B117 BGA Ball Shear BGA焊球的剪切试验, July 2000 [Text-jd022][JDc5]JESD22B113 Board Level Cyclic Bend Test Method for Interconnect Reliability Characterization of Components for Handheld Electronic Products, March 2006 [Text-jd038][JDc6]JESD22-B111 Board Level Drop Test Method of Components for Handheld Electronic Products, July 2003 [Text-jd039]综合试验与测试[JDd1]JEDEC Standard No.22-A109 Test Method A109 Hermeticity密封性试验, July 1988 [Text-jd023] [JDd2]JESD22-A120 Test Method for the Measurement of Moisture Diffusivity and Water Solubility in Organic Materials Used in Integrated Circuits集成电路器件中使用的有机材料水分扩散和水溶性测定试验方法, June 2001 [Text-jd024][JDd3]JESD22-B100-A Physical Dimensions物理尺寸的测量, (Revision of Test Method B100-Previously Published in JESD22-B) April 1990 [Text-jd025][JDd4]JESD22-B101 Test Method B101 External Visual外观检查, (Previously published in JESD22-B) September 1987 [Text-jd026][JDd5]EIA/JESD22-B102-C Solderability Test Method可焊性试验方法, September 1998 [Text-jd027] [JDd6]EIA/JESD22-B105-B Test Method B105-B Lead Integrity器件管脚的完整性试验, (Revision of Test Method B105-A) January 1999 [Text-jd028][JDd7]EIA/JESD22-B107-A Test Method B107-A Marking Permanency图标的耐久性试验, (Revision of Test Method B107-Previously Published in JESD22-B) September 1995 [Text-jd029][JDd8]JESD22-B108 Coplanarity Test for Surface-Mount Semiconductor Devices表贴半导体器件的共面性试验, November 1991 [Text-jd030]其它[JDe1]JEP113-B Symbol and Labels for Moisture-Sensitive Devices湿度敏感器件的符号和标识, (Revision of JEP113-A) May 1999 [Text-jd032][JDe2]EIA/JEP122 Failure Mechanisms and Models for Silicon Semiconductors Devices硅半导体器件的失效机理和模型, February 1996 [Text-jd033][JDe3]IPC/JEDEC J-STD-020A Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices针对非密封表贴半导体器件的湿度/回流焊敏感度分类和级别, April1999 [Text-jd034][JDe4]IPC/JEDEC J-STD-033 Standard for Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices湿度/回流焊敏感标贴器件的处理、包装、运输和使用的标准, May 1999 [Text-jd035][JDe5]EIA/JEP103-A Suggested Product-Documentation Classifications and Disclaimers, (Revision of JEP103) July 1996 [Text-jd036][JDe6]IPC/JEDEC J-STD-020D.1 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices针对非密封表贴半导体器件的湿度/回流焊敏感度分类和级别,Supersedes IPC/JEDEC J-STD-020D August 2007, March 2008 [Text-jd037]。

JESD22-B102

JESD22-B102

3
3.6 Surface Mount Process Simulation Test Equipment
3
3.7 Materials
4
4 Solderability Test Conditions
5
5 Test Procedures
7
5.1 Preconditioning
7
5.2 MeΒιβλιοθήκη hod 1. Dip and Look Test
charge for or resell the resulting material.
PRICE: Please refer to the current Catalog of JEDEC Engineering Standards and Publications online at
/Catalog/catalog.cfm
The purpose of this test method is to provide a means of determining the solderability of device package terminations that are intended to be joined to another surface using lead- (Pb-) containing or Pb-free solder for the attachment.
4
Table 3a Solderability Test Conditions for Method 1, Dip and Look Test
5
Table 3b Solderability Test Conditions for Method 2, SMD Process Simulation Test
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EIA/JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the EIA/JEDEC standards or publications.
Published by ©ELECTRONIC INDUSTRIES ALLIANCE 1998
Engineering Department 2500 Wilson Boulevard Arlington, VA 22201-3834
"Copyright" does not apply to JEDEC member companies as they are free to duplicate this document in accordance with the latest revision of
6
4 Critical areas in tantalum chip capacitor
6
5 Inspected area for gullwing packages (dip and look method)
13
6 Inspected area for J-lead packages (dip and look method)
No claims to be in conformance with this standard may be made unless all requirements stated in the standard are met.
Inquiries, comments, and suggestions relative to the content of this EIA/JEDEC standard or publication should be addressed to JEDEC Solid State Technology Division, 2500 Wilson Boulevard, Arlington, VA 22201-3834, (703)907-7560/7559 or \jedec.
1 Critical areas in rectangular passive components (SMD method)
5
2 Critical areas in SOIC and QFP packages (SMD method)
5
3 Critical areas in plastic-leaded chip carrier (SMD method)
The information included in EIA/JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a EIA/JEDEC standard or publication may be further processed and ultimately become an ANSI/EIA stan1 Altitude versus steam temperature
8
2 Maximum limits of solder bath contaminant
11
-i-
JESD22-B102-C
-ii-
JEDEC Standard 22-B102-C Page 1
TEST METHOD B102-C SOLDERABILITY
(From JEDEC Council Ballot JCB-97-71, formulated under the cognizance of the JC-14.1 Subcommittee on Reliability Test Methods for Packaged Devices.)
1 Purpose
4
3.3 Visual inspection
4
4 Procedure for dip and look solderability testing
7
4.1 Preconditioning
7
4.2 Solder dip conditions
7
4.3 Testing
7
5 Summary
14
Figures
The purpose of this test method is to provide a means of determining the solderability of device package terminations that are intended to be joined to another surface using solder for the attachment. This test method provides optional conditions for aging and soldering for the purpose of allowing simulation of the soldering process to be used in the device application. It provides procedures for dip & look solderability testing of through hole, axial and surface mount devices and reflow simulated use testing for surface mount packages.
JEDEC Publication 21 "Manual of Organization and Procedure".
PRICE: Please refer to the current Catalog of JEDEC Engineering Standards and Publications or call Global Engineering
Documents, USA and Canada (1-800-854-7179), International (303-397-7956)
Printed in the U.S.A. All rights reserved
PLEASE!
DON”T VIOLATE THE LAW!
This document is copyrighted by the EIA and may not be reproduced without permission. Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact:
2
2.6 Materials
2
2.7 SMD reflow equipment
2
3 Procedure for simulated board mounting reflow solderability test in SMDs
3
3.1 Test equipment set-up
3
3.2 Specimen preparation and surface condition
TEST METHOD B102-C SOLDERABILITY
CONTENTS
Page
1 Purpose
1
2 Apparatus
1
2.1 Solder pot
1
2.2 Dipping device
1
2.3 Optical equipment
1
2.4 Steam aging equipment
1
2.5 Lighting equipment
Global Engineering Documents 15 Inverness Way East
Englewood, CO 80112-5704 or call U.S.A. and Canada 1-800-854-7179, International (303) 397-7956
JEDEC Standard 22-B102-C
EIA/JEDEC STANDARD
Solderability Test Method
EIA/JESD22-B102-C
SEPTEMBER 1998
ELECTRONIC INDUSTRIES ALLIANCE
JEDEC Solid State Technology Division
NOTICE
EIA/JEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Council level and subsequently reviewed and approved by the EIA General Counsel.
相关文档
最新文档